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Abstract

Despite its experimental success, Model-
based Reinforcement Learning still lacks a
complete theoretical understanding. To this
end, we analyze the error in the cumula-
tive reward using a contraction approach.
We consider both stochastic and determin-
istic state transitions for continuous (non-
discrete) state and action spaces. This ap-
proach doesn’t require strong assumptions
and can recover the typical quadratic error to
the horizon. We prove that branched rollouts
can reduce this error and are essential for de-
terministic transitions to have a Bellman con-
traction. Our analysis of policy mismatch er-
ror also applies to Imitation Learning. In this
case, we show that GAN-type learning has an
advantage over Behavioral Cloning when its
discriminator is well-trained.

1 Introduction

Reinforcement learning (RL) has attracted much at-
tention recently due to its ability to learn good policies
for sequential systems. However, most RL algorithms
have a high sample complexity of environment queries
(typically in the order of millions). This sample com-
plexity hinders the deployment of RL in practical sys-
tems. An intuitive potential solution is to learn an ac-
curate model of the environment’s outcome, hence re-
ducing the demand for environment queries. This ap-
proach leads to a dichotomy of RL algorithms: train-
ing without an environment model is called model-free
RL, and training with an environment model is called
model-based RL. Model-free RL is often faulted for low
exploitation of environment queries, while the perfor-
mance of model-based RL suffers under model inaccu-
racy.
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Model-based Reinforcement Learning (MBRL) is non-
trivial since RL’s sequential nature allows errors to
propagate to future time-steps. This fact leads to the
planning horizon dilemma (Wang et al., 2019); a long
horizon incurs a large cumulative error, while a short
horizon results in shortsighted decisions. We need to
understand this trade-off better as it is currently one
of the fundamental limitations of model-based RL.

Most prior error analyses impose a strong assump-
tion in their proofs; e.g., Lipschitz value function (Luo
et al., 2019; Xiao et al., 2019; Yu et al., 2020) or maxi-
mum model error (Janner et al., 2019). In general, the
value function is unlikely to be Lipschitz because its
gradient w.r.t. the state can be very large. This event
happens when a state perturbation is applied at the
stability-instability boundary of a control system, re-
sulting in a large change in value (performance) from
a small change in state. For instance, if one perturbs
a robot’s leg, it may fall and, as a result, receive many
negative future rewards.

To mitigate the cumulative reward error, Janner et al.
(2019) experimentally shows that branched rollouts
(short model rollouts initialized by previous real roll-
outs) help reduce this error and improve experimental
results. However, the effectiveness of branched roll-
outs remains unclear since the experiments of Janner
et al. (2019) use deterministic transitions (MuJoCo
(Todorov et al., 2012)). However, their error analy-
sis only applies to stochastic transitions and contains
unclear reasoning, see §3. Ideally, we need an analysis
framework that applies to both stochastic and deter-
ministic transitions.

Our main contribution is a contraction-based approach
to analyze the error of MBRL that applies to both
stochastic and deterministic transitions without strong
assumptions. Prior work typically makes strong as-
sumptions such as a Lipschitz value function or a
maximum model error. To avoid these assumptions
and maintain generality, we: (a) provide an analy-
sis framework that applies to both (absolutely con-
tinuous) stochastic and deterministic transitions, (b)
mostly uses constants in expectation, and (c) does not
require a Lipschitz assumption on value functions. Our
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results also contribute to theoretical explanations of
some techniques in deep RL. We prove that branched
rollouts significantly reduce the cumulative reward er-
ror for both stochastic and deterministic transitions.
In particular, branched rollouts are vital for determin-
istic transitions to have a Bellman contraction. Al-
though prior work also claimed to have a similar con-
clusion, the analysis is unclear (see §3) and, in any
case, does not apply to the deterministic environment
in their experiment. Our approach also helps analyze
Imitation Learning. We show a GAN-type learning
method like Generative Adversarial Imitation Learn-
ing (Ho and Ermon, 2016) is potentially preferable to
a supervised learning method like Behavioral Cloning
(Ross et al., 2011; Syed and Schapire, 2010) when the
discriminator is well-trained.

The primary intuition of our analysis comes from the
MBRL problem’s asymmetry: the policy mismatch
and model mismatch errors, or the terms on the RHS
of Eq. (8), are the errors of interest and are symmetric
when interchanging transitions or policies. However,
the objects that control the errors of interest (can be
directly made small in training) are asymmetric. At
some point, we have to bridge from symmetry to asym-
metry. We show that the Bellman flow operator is the
key to this bridge. If the Bellman flow operator is a
contraction w.r.t. a metric, we can analyze the error
of MBRL under that metric regardless of the asym-
metry. When we do not have a Bellman contraction,
we provide another way inspired by Syed and Schapire
(2010) to analyze the problem and identify the impact
of asymmetry. The resulting insight suggests the po-
tential usefulness of the Ensemble Method (Kurutach
et al., 2018).

Prior work has done extensive experiments on
branched rollouts (Janner et al., 2019), Generative Ad-
versarial Imitation Learning (Ho and Ermon, 2016)
and the Ensemble Method (Kurutach et al., 2018).
Since the empirical evidence in the literature is clear,
this work does not include additional experiments. In-
stead, we focus on providing an improved theoretical
understanding of existing empirical results.

2 Preliminaries

Consider an infinite-horizon Markov Decision Process
(MDP) represented by 〈S, A, T, r, γ〉. Here S, A are
finite-dimensional continuous state and action spaces,
T (s′|s, a) is the transition density of s′ given (s, a),
r(s, a) is the reward function, and γ ∈ (0, 1) is the
discount factor. We use T to denote a deterministic
transition with the density T (s′|s, a) = δ(s′−T (s, a)).

Given an initial state distribution ρ0, the goal of re-
inforcement learning is to learn a (stochastic) policy

π that maximizes the γ-discounted cumulative reward
Rγ(ρ0, π, T ), or equivalently, the expected cumulative
reward, denoted as R(ρρ0,πT,γ ), under the normalized oc-

cupancy measure ρρ0,πT,γ .

Rγ(ρ0, π, T ) = E
[∑∞

i=0 γ
ir(si, ai)

∣∣∣ρ0, π, T
]

= 1
1−γE(s,a)∼ρρ0,πT,γ

[r(s, a)]

= R(ρρ0,πT,γ ).

ρρ0,πT,γ (s, a) = (1− γ)
∑∞
i=0 γ

ifi(s, a|ρ0, π, T ),

(1)

where fi(s, a|ρ0, π, T ) is the density of (s, a) at step i
under (ρ0, π, T ). Because (ρ0, π, T, γ) uniquely deter-
mines the occupancy measure, we use R(ρρ0,πT,γ ) as an
alternative expression for Rγ(ρ0, π, T ). When ρ0, γ
are fixed, we simplify the notation to R(π, T ) and ρπT .

2.1 Bellman Flow Operator

In Eq. (1), because each fi(s, a|ρ0, π, T ) uses the
same policy, fi(s, a) and ρρ0,πT,γ (s, a) can be factored

as fi(s)π(a|s) and ρρ0,πT,γ (s)π(a|s). This allows us to
mainly focus on the state distributions. In particu-
lar, we define the normalized state occupancy measure
ρρ0,πT,γ (s) as the marginal of ρρ0,πT,γ (s, a) and show (Fact
4, Appendix) that it satisfies a fixed-point equation
characterized by a Bellman flow operator Bπ,T (·).

ρρ0,πT,γ (s) , (1− γ)
∑∞
i=0 γ

ifi(s|ρ0, π, T )

= Bπ,T (ρρ0,πT,γ (s)),
(2)

where Bπ,T (·) under (ρ0, π, T ) and γ is defined as:

Bπ,T (ρ(s)) ,(1− γ)ρ0(s)

+ γ
∫
T (s|s′, a′)π(a′|s′)ρ(s′)ds′da′

(3)

Bπ,T (·) is a γ-contraction w.r.t. total variation dis-
tance (see Appendix). Hence, Bπ,T (·) has a unique
fixed point, and by Eq. (2), this point is ρρ0,πT,γ (s). This
result foreshadows the utility of the Bellman flow oper-
ator for analyzing state occupancy measures. Indeed,
Lemma 1 exploits the Bellman flow operator to upper
bound the distance between state distributions. This
is useful for analyzing MBRL. In passing, we note that
previous work (Syed et al., 2008) has made distinct use
of a Bellman flow constraint.

2.2 Model-based RL

We study the model-based RL procedure shown in
Algorithm 1, and its variants (e.g., branched roll-
outs). Line 3 deals with the storage of a dataset
D of real transitions. Observe that Di−1 is gen-
erated by (ρ0, πi−1, T ) and that D aggregrates the
Di−1’s. The policy that generates D, which we
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Algorithm 1 Model-based RL Algorithm

Require: Dataset D = ∅, policy π0, learned transi-
tion T̂ .

1: for i = 1, 2, ... do
2: Sample Di−1 = {st, at, s′t} from real transition

T and policy πi−1.
3: D ← Truncate(D ∪Di−1)
4: Fit T̂ using samples in D.
5: πi = arg max

π∈BπD
R(π, T̂ )

6: end for

call the sampling policy πD, is a mixture of previ-
ous policies. If Di−1’s have equal sizes, πD(a|s) =∑i−1
j=i−q πj(a|s)ρ

πj
T (s)/

∑i−1
j=i−q ρ

πj
T (s) with q being the

truncation level. The larger q is, the more dependent
the sampling policy is on previous policies. To facili-
tate subsequent supervised learning, we need D to be
sufficiently large. However, the larger dataset implies
the stronger dependence of the sampling policy on pre-
vious policies. For technical reasons (see the final para-
graph of the section), we need the current policy π and
the sampling policy πD to be sufficiently close. Hence
we expect a tight truncation, e.g., D = Di−1 ∪ Di−2.

Line 4 is a supervised learning task. The objective
function is usually the log-likelihood for stochastic
transitions or the `2 error for deterministic transitions.
For stochastic transitions, maximizing likelihood is
equivalent to minimizing KL divergence. Hence, by
Pinsker’s Inequality, the total variation distance

επD
T,T̂

= E(s,a)∼ρπDT
DTV (T (·|s, a) ‖ T̂ (·|s, a))

is small. For deterministic transitions, the objective is

to minimize ε`2 = E(s,a)∼ρπD
T

‖T (s, a)− T̂ (s, a)‖2.

Line 5 is to maximize model-based cumulative reward
R(π, T̂ ) under the learned transition T̂ . Still, the over-
all goal is to maximize the true cumulative reward
R(π, T ). Note that

R(πi, T )−R(πi−1, T ) = R(πi, T̂ )−R(πi−1, T̂ )︸ ︷︷ ︸
m.-b. policy improvement

+R(πi, T )−R(πi, T̂ ) +R(πi−1, T̂ )−R(πi−1, T )︸ ︷︷ ︸
reward errors

.
(4)

Hence Line 5 makes an improvement on R(π, T )
(Eq. (4)> 0) if the error in cumulative reward
|R(π, T )−R(π, T̂ )| is small and the model-based policy
improvement R(πi, T̂ )−R(πi−1, T̂ ) is large. However,
the model-based policy improvement is often theoreti-
cally intractable. This is because the policy optimiza-
tion is usually conducted by deep RL algorithms (Fu-
jimoto et al., 2018; Haarnoja et al., 2018) but state-
of-the-art provable RL algorithms are still limited to

linear function approximation (Jin et al., 2020; Duan
et al., 2020). Therefore, we assume the model-based
policy improvement is sufficiently large and focus on
the error in the cumulative reward.

The desired closeness between π and πD is achieved by
Line 3’s truncation and Line 5’s constraint to a local
ball BπD of πD. Such closeness of policies is commonly
used in the literature (Luo et al., 2019; Janner et al.,
2019; Yu et al., 2020). Indeed, since T̂ is fitted under
πD (D’s distribution is ρπDT ), if π and πD are far apart,

we cannot expect T̂ behave like T under π. Practi-
cally, this is not a strong assumption, because we can
algorithmically enforce closeness between π and πD
by constraining the KL divergence between π and πD.
Since it is much easier to control the policy error, the
model error is the dominating error in MBRL. Hence
we focus on the dependency of the cumulative model
error w.r.t. the horizon.

3 Related Work

There have been many experimental studies of model-
based RL. Evidence in Gu et al. (2016) and Naga-
bandi et al. (2018) suggests that for continuous con-
trol tasks, vanilla MBRL (Sutton, 1991) hardly sur-
passes model-free RL, unless using a linear transition
model or a hybrid model-based and model-free algo-
rithm. To enhance the applicability of MBRL, the
Ensemble Method is widely adopted in the literature,
since it helps alleviate overfitting in a neural network
(NN) model. Instances of this approach include an
ensemble of deterministic NN transition models (Ku-
rutach et al., 2018), an ensemble of probabilistic NN
transition models (Chua et al., 2018) with model pre-
dictive control (Camacho and Bordons Alba, 2013) or
ensembles of deterministic NN for means and variances
of rollouts with different horizons (Buckman et al.,
2018). In addition to training multiple models, Clav-
era et al. (2018) leverages meta-learning to train a pol-
icy that can quickly adapt to new transition models.
Wang et al. (2019) provides useful benchmarks of var-
ious model-based RL methods.

On the theoretical side, for stochastic state transitions
the error in the cumulative reward is quadratic in the
length of model rollouts. Specifically, Janner et al.
(2019, Theorem A.1) provides the bound

R(π, T )−R(π, T̂ ) ≥ − 2γrmax

(1−γ)2 (εm+2επ)− 4επr
max

1−γ , (5)

where εm = maxt Es,a∼ρπD,tDTV (T (·|s, a) ‖ T̂ (·|s, a)),

επ = maxsDTV (πD(·|s) ‖π(·|s)) and ρπD,t is the den-
sity of (s, a) at step t following (ρ0, πD, T ). For de-
terministic state transitions and an L-Lipschitz value
function V (s), Luo et al. (2019, Proposition 4.2) shows
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∣∣∣R(π, T )−R(π, T̂ )
∣∣∣ ≤

γ
1−γL E s∼ρπD

T
a∼π(·|s)

‖T̄ (s, a)− ˆ̄T (s, a)‖+ 2 γ2

(1−γ)2 δ diamS ,
(6)

where δ = Es∼ρπT
√
DKL(π(·|s) ‖πD(·|s)) and diamS

is the diameter of S.

In practice, we enforce πD and π to be close, so the
model error terms dominate in Eq. (5) and (6). Eq. (6)
looks sharper since the model error is correlated with a
linear rather than quadratic term of the expected roll-
out length (1−γ)−1. However, since the value function
represents the cumulative reward, it’s Lipschitz con-
stant (assuming it exists) can be O((1 − γ)−1). So it
is hard to compare Eq (5) and (6). While a Lipschitz
value function is commonly assumed in the literature
(Luo et al., 2019; Xiao et al., 2019; Yu et al., 2020), in
practice, this property is hard to verify, and, even if it
holds, the constant can be very large. To avoid strong
assumptions, we do not assume a Lipschitz value func-
tion. In addition, we enhance the results of Janner
et al. (2019), by showing their constants “in maxima”
can be replaced by constants “in expectation”.

A major contribution of Janner et al. (2019) is the
use of branched rollouts generated by (ρπDT , π, T̂ ). By
Theorem 4.3 in (Janner et al., 2019), branched rollouts
of length k satisfy

R(π, T )−Rbranch(π)

≥−2rmax
[ γk+1επ

(1− γ)2
+
γkεπ
1− γ

+
kεm

1− γ

]
,

(7)

with the same constants as Eq. (5). Eq. (7) implies
that if the model is almost perfect (εm ≈ 0), the error
is dominated by the policy error γkεπ. Since γ < 1,
the minimal error is attained at large k. This sug-
gests that a near perfect model helps correct the error
due to the mismatch of the sampling policy and cur-
rent policy. Still, with an almost perfect model, the
problem is reduced to off-policy RL, which always suf-
fers from policy mismatch error (Duan et al., 2020).
Attaining the minimal error at large branch length k
also contradicts the fact that the error accumulates
over the trajectory (Wang et al., 2019; Xiao et al.,
2019). The error propagation in the MBRL system
implies the compounding error always increases with
length. If we accept Eq. (7), there is still an impor-
tant gap since Eq. (7) is for stochastic transitions, but
the experiments in Janner et al. (2019) used deter-
ministic transitions. Our analysis shows the error of
branched rollouts for both stochastic and deterministic
transitions increases in the expected branched length
(1 − β)−1. So we always favor short lengths and are
free from the issues mentioned above.

4 Main Result

As discussed in §2.2, we focus on the error in the cu-
mulative reward |R(π, T )−R(π, T̂ )| in MBRL settings.
To do so we use the triangle inequality:

|R(π, T )−R(π, T̂ )| ≤ |R(π, T )−R(πD, T )|︸ ︷︷ ︸
controlled by εTπD,π

+ |R(πD, T )−R(πD, T̂ )|︸ ︷︷ ︸
controlled by ε

πD
T,T̂

or ε`2

+ |R(πD, T̂ )−R(π, T̂ )|︸ ︷︷ ︸
controlled by εT̂πD,π

.
(8)

The error terms on the RHS of Eq. (8) result from
policy mismatch (1st and 3rd terms) and transition
mismatch (2nd term). Moreover, since these errors
are controlled by the discrepancies between T, T̂ and
between π, πD, the errors can be made small in the
MBRL training (see the discussion in §2.2).

The discrepancy between policies πD and π is mea-
sured by the total variation (TV) distance:

εTπD,π = Es∼ρπDT DTV (πD(·|s) ‖ π(·|s))

and εT̂πD,π = Es∼ρπ
T̂
DTV (πD(·|s) ‖ π(·|s)).

The expectation in εTπD,π is over ρπDT and in εT̂πD,π over
ρπ
T̂

. This allows us to measure policy discrepancy un-

der the real dataset D (distributed as ρπDT ) and the
simulated environment (distributed as ρπ

T̂
).

The discrepancies between real and learned transitions
T, T̂ are measured by (a) TV distance for stochastic
transitions and (b) `2 error for deterministic ones.

(a) επD
T,T̂

= E(s,a)∼ρπDT
DTV

(
T (·|s, a) ‖ T̂ (·|s, a)

)
and (b) ε`2 = E(s,a)∼ρπD

T

‖T (s, a)− T̂ (s, a)‖2.

From the RHS of Eq. (8), the policy mismatch errors
(1st and 3rd terms) are invariant under exchange of
π and πD. We hence call these terms “symmetric in
(π, πD)”. Similarly, the transition mismatch error (2nd

term) is symmetric in (T, T̂ ). However, the terms that

control them, εTπD,π, ε
T̂
πD,π, and επD

T,T̂
, ε`2 are asymmet-

ric; the first two in (π, πD) and the last in (T, T̂ ). To
bridge these symmetric and asymmetric quantities, we
establish the following:

|R(ρ1)−R(ρ2)| ≤
(∗)

C×{DTV (ρ1||ρ2) or W1(ρ1 ‖ ρ2)}

≤
(∗∗)

C ′×{εTπD,π, ε
T̂
πD,π, ε

πD
T,T̂

, or ε`2}.

(9)
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Eq. (9) outlines the proof technique using notations in
Eq. (1), with C, C ′ being underdetermined constants.
Inequality (∗) upper bounds the cumulative reward er-
ror by one of the symmetric quantities w.r.t. occu-
pancy measures (ρ1(s, a), ρ2(s, a)): TV distance for
stochastic transitions or 1-Wasserstein distance (Vil-
lani, 2008) for deterministic transitions. Inequality
(∗∗) upper bounds the symmetric quantities by one
of the asymmetric ones, using the contraction of the
Bellman flow operator (if it holds).

While the Bellman flow operator is a contraction
w.r.t. TV distance, this may not hold w.r.t. W1 dis-
tance. We address this situation in §4.3.2. Although
we use W1 distance as an intermediate step to analyze
deterministic transitions, we finally upper bound W1

distance by `2 error, as outlined by Inequality (∗∗).
This avoids the need to minimize W1 error using a
Wasserstein GAN (Arjovsky et al., 2017) or other op-
timization techniques (Peyré and Cuturi, 2019).

In the following subsections, we first analyze the pol-
icy error, then the transition error when we have: (1)
absolutely continuous stochastic transitions, (2) de-
terministic transitions with strong continuity, and (3)
deterministic transitions with weak continuity. Cases
(1) and (2) have Bellman contractions yielding sharp
two-sided bounds. Case (3) uses a bounding technique
inspired by Syed and Schapire (2010, Lemma 2) to es-
tablish a one-sided bound. By combining the policy
error with the transition errors, we obtain correspond-
ing MBRL errors. Full proofs are in the Appendix.

4.1 Symmetry Bridge Lemma and Policy
Mismatch Error

We start by introducing a key lemma. Then we will
use it to analyze the policy mismatch error.

4.1.1 Symmetry Bridge Lemma

Lemma 1 (following Conrad (2014, Corollary 2.4)) is
a key to analyze both policy mismatch and transition
mismatch errors through contractions.

Lemma 1. Let B be a Bellman flow operator with
fixed-point ρ? and ρ be a state distribution. If B is a
η-contraction w.r.t. some metric ‖·‖, then

‖ρ− ρ?‖ ≤ ‖ρ−B(ρ)‖ /(1− η).

Recall from inequality (∗∗) of Eq. (9), we need
to bridge from symmetric quantities to asymmetric
ones. Lemma 1 constructs a bridge for this purpose.
The LHS is symmetric (invariant under exchange) in
(ρ, ρ?). Also, the RHS is asymmetric in (ρ, ρ?) be-
cause B is associated with ρ?. Hence, one can upper

bound symmetric quantities using asymmetric ones if
the contraction is given.

4.1.2 Policy Mismatch Error

The policy mismatch error is analyzed by Eq. (9).
Note that the discrepancy between policies is measured
by TV distance and that the Bellman flow operator is
a contraction w.r.t. TV distance. Lemma 1 establishes
the inequality (∗∗) of Eq. (9). The next Lemma is used
to verify inequality (∗).
Lemma 2. If 0 ≤ r(s, a) ≤ rmax, then

|R(ρ1)−R(ρ2)| ≤ DTV (ρ1‖ρ2)rmax/(1− γ).

The following theorem establishes the upper bounds of
policy mismatch errors (1st and 3rd terms of Eq. (8)).
Lemmas 1 and 2 are used in its proof.

Theorem 1. If 0 ≤ r(s, a) ≤ rmax and εTπD,π =
Es∼ρπDT [DTV (πD(·|s) ‖π(·|s))], then

|R(πD, T )−R(π, T )| ≤ εTπD,πr
max
( 1

1− γ
+

γ

(1− γ)2

)
.

Proof Sketch. By Lemma 2, it is enough to upper
bound DTV (ρπDT (s, a)||ρπT (s, a)):

DTV (ρπDT (s, a)‖ρπT (s, a))

≤DTV (ρπDT (s)πD(a|s)‖ρπDT (s)π(a|s))
+DTV (ρπDT (s)π(a|s)‖ρπT (s)π(a|s))

≤εTπD,π +
1

1− γ
DTV (BπDT (ρπDT (s))‖BπT (ρπDT (s)))

≤εTπD,π +
γ

1− γ
εTπD,π,

where the second inequality follows from Lemma 1 and
the fixed-point property.

4.1.3 Application to Imitation Learning

We now make the following interesting side observa-
tion. Imitation learning (Syed and Schapire, 2010; Ho
and Ermon, 2016) is matching the demonstrated pol-
icy and the generator policy. Because Theorem 1 is
about policy mismatch error, it is applicable to imita-
tion learning. Observe that the objective of GAIL is JS
(Jensen-Shannon) divergence when its discriminator is
well-trained and that Behavior Cloning’s objective is
KL divergence. We can use Pinsker’s Inequality to up-
per bound these divergences and translate Theorem 1
and Lemma 2, yielding:

Corollary 1 (Error of Behavioral Cloning). Let πD
and π be the expert and agent policy. If 0 ≤ r(s, a) ≤
rmax and Es∼ρπDT DKL(πD(·|s)‖π(·|s)) ≤ εBC, then

|R(πD, T )−R(π, T )| ≤
√
εBC/2 r

max
(

1
1−γ + γ

(1−γ)2

)
.
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Corollary 2 (Error of GAIL). Let πD and π be the
expert and agent policy, respectively. If 0 ≤ r(s, a) ≤
rmax and DJS(ρπDT ‖ρπT ) ≤ εGAIL, then

|R(πD, T )−R(π, T )| ≤
√

2εGAIL rmax/(1− γ).

Observe that Behavioral Cloning’s error is quadratic
w.r.t. the expected horizon (1 − γ)−1 while GAIL’s
is linear. This suggests that when the discriminator is
well-trained, GAN-style imitation learning, like GAIL,
has an advantage.

4.2 MBRL with Stochastic Transitions

If the true transitions are stochastic, we can learn T̂ by
maximizing the likelihood, or equivalently by minimiz-
ing the KL divergence. To ensure the KL divergence
is defined on a continuous state space, we assume the
transition probability is absolutely continuous w.r.t.
the state space, i.e., there is a density function and
hence no discrete or singular continuous measures (He-
witt and Ross, 1963). The following theorem then fol-
lows by the proof of Theorem 1.

Theorem 2. If 0 ≤ r(s, a) ≤ rmax and
επD
T,T̂

= E(s,a)∼ρπDT
[DTV (T (·|s, a)‖T̂ (·|s, a))], then

|R(πD, T )−R(πD, T̂ )| ≤ επD
T,T̂

rmaxγ(1− γ)−2.

Theorems 1 and 2 yield the following result for MBRL
with absolutely continuous stochastic transitions.

Corollary 3. Assume 0 ≤ r(s, a) ≤ rmax and let

επD
T,T̂

, E(s,a)∼ρπDT
DTV (T (·|s, a) ‖ T̂ (·|s, a))

εTπD,π , Es∼ρπDT DTV (πD(·|s) ‖ π(·|s))

εT̂πD,π , Es∼ρπ
T̂
DTV (πD(·|s) ‖ π(·|s)). Then

|R(π, T )−R(π, T̂ )| ≤ (επD
T,T̂

+ εTπD,π + εT̂πD,π) r
maxγ

(1−γ)2

+ (εTπD,π + εT̂πD,π) r
max

(1−γ) .

Comparing the result in Corollary 3 with the prior
results in Eq. (5), we sharpen the bounds by changing
the constants from maxima to expected values.

4.2.1 MBRL with Branched Rollouts

Corollary 3 indicates that the model error term
επD
T,T̂

rmaxγ/(1 − γ)2 is quadratic w.r.t. the expected

rollout length (1− γ)−1, which makes MBRL undesir-
able for long rollouts and leads to the planning hori-
zon dilemma. An intuitive countermeasure is to use

short rollouts that share similar distributions with the
long ones. This leads to the idea of branched rollouts.
Throughout the rest of the paper, β > 0 will denote
the branched discount factor with β < γ. We define a
branched rollout with discount factor β, to be a rollout
following the laws of (ρπDT,γ , π, T̂ ). Intuitively, these
are rollouts initialized on the states of previous real
long rollouts, ρπDT,γ(s), and then run a few steps under

policy π and model T̂ .

The occupancy measure of branched rollouts is ρ
ρ
πD
T,γ ,π

T̂ ,β

where the superscripts ρπDT,γ , π indicate the initial state

distribution and policy, and the subscripts T̂ , β in-
dicate the transition and discount factor. Branched
rollouts are short by construction, but it is unclear
whether their distribution is similar to that of long
rollouts. This is verified by the following Lemma.

Lemma 3. Let γ > β be the discount factors of long
and short rollouts, and πD and T be the sampling pol-
icy and the real transition. Then

DTV (ρπDT,γ ‖ ρ
ρ
πD
T,γ ,πD

T,β ) ≤ (1− γ)β/(γ − β).

By Lemma 3, ρπDT,γ and ρ
ρ
πD
T,γ ,πD

T,β are close if β is small.

Hence once the pairs (π, πD) and (T, T̂ ) are close, the
distribution of branched rollouts is similar to that of
long real rollouts, and the error in cumulative reward
is small. This is given in detail below.

Corollary 4. Let 0 ≤ r(s, a) ≤ rmax,
εT,γπD,π = Es∼ρπDT,γDTV (πD(·|s) ‖ π(·|s)),

εT̂ ,βπD,π = E
s∼ρ

ρ
πD
T,γ

,π

T̂ ,β

DTV (πD(·|s) ‖ π(·|s)), and

επD,β
T,T̂

= E
(s,a)∼ρ

ρ
πD
T,γ

,πD

T,β

DTV (T (·|s, a) ‖ T̂ (·|s, a)).

Then∣∣∣Rγ(ρ0, π, T ) − 1−β
1−γRβ(ρπDT,γ , π, T̂ )

∣∣∣ ≤ rmax
(
εT,γπD,π

γ

(1−γ)2 +

(ε
πD,β

T,T̂
+εT̂ ,βπD,π

)β

(1−β)(1−γ) +
εT,γπD,π

+εT̂ ,βπD,π

1−γ + β
γ−β

)
.

Proof Sketch. Decompose the error as follows and then
apply Theorems 1, 2, and Lemmas 2, 3.

|Rγ(ρ0, π, T )− 1−β
1−γRβ(ρπDT,γ , π, T̂ )|

≤|Rγ(ρ0, π, T )−Rγ(ρ0, πD, T )|
+ |Rγ(ρ0, πD, T )− 1−β

1−γRβ(ρπDT,γ , πD, T )|

+ 1−β
1−γ |Rβ(ρπDT,γ , πD, T )−Rβ(ρπDT,γ , πD, T̂ )|

+ 1−β
1−γ |Rβ(ρπDT,γ , πD, T̂ )−Rβ(ρπDT,γ , π, T̂ )|.

Notice επD,β
T,T̂

is controlled by supervised learning since

it is evaluated on dataset D. Because branched roll-
outs are shorter than normal rollouts, the branch
cumulative reward is rescaled to 1−β

1−γRβ(ρπDT,γ , π, T̂ )
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for comparison to normal rollouts. Compared with
Corollary 3, the model error term’s dependency on
the rollout lengths is reduced from O((1 − γ)−2) to
O((1−γ)−1(1−β)−1). This shows that branched roll-
outs greatly reduce the cumulative reward error.

Corollary 4 shows the error in cumulative reward in-
creases in β, or equivalently in the expected branched
length (1−β)−1. Thus our result is free from the issue
of previous work Eq. (7) (Note: (1−β)−1 corresponds
to the branch length k in Eq. (7)). It is tempting to
set β = 0 to minimize the reward error. However, if
β = 0, each branched rollout is composed of a single
point drawn from ρπDT,γ . This means that the branched

rollouts access neither T nor T̂ , so we will learn a pol-
icy that only optimizes on initial states and has no
concern for the future. For example, the reward of Mu-
JoCo environment (Todorov et al., 2012) is typically

r(s, a) = velocity(s) − ‖a‖22 . To maximize cumulative
reward on branched rollouts with β = 0, the optimal
policy will shortsightedly select a = 0 for any s.

The branched rollout makes a trade-off between
policy improvement and reward error, as discussed
in §2.2. The policy improvement Rβ(ρπDT , πi, T̂ ) −
Rβ(ρπDT , πi−1, T̂ ) in branched rollouts benefits from a
larger β, while the reward error, as shown in Corol-
lary 4 and 5, favors smaller β. In MuJoCo, Janner
et al. (2019, Appendix C) says the branched length
is chosen as 2 in early epochs and may stay small or
gradually increase to 16 or 26 later. This suggests for
continuous-control (MuJoCo) tasks, β ≈ 0.9 is enough
to balance policy improvement and reward error.

4.3 MBRL with Deterministic Transitions

We discuss deterministic transitions under (a) strong,
and (b) weak Lipschitz assumptions. The main differ-
ence is the validity of Lemma 4, which is controlled by
the smoothness of the deterministic transition.

4.3.1 Strong Lipschitz Continuity

A major difficulty in analyzing deterministic transi-
tions is that TV distance is not suitable for comparing

T and T̂ . Indeed, for any fixed (s, a), DTV (δ(s′ −
T (s, a)) ‖ δ(s′ − T̂ (s, a))) = 1 once T (s, a) 6= T̂ (s, a).
Moreover, the model error is controlled by ε`2 =

E(s,a)∼ρπD
T

‖T (s, a) − T̂ (s, a)‖2, but the `2 error is not

a distance metric for distributions. To control the dis-
tance between distributions through an `2 error, we
can select a distance metric for distributions that is
upper bounded by `2 error. The 1-Wasserstein dis-
tance is a good candidate:

W1(ρ1(s) ‖ ρ2(s)) = inf
J(s1,s2)∈Π(ρ1,ρ2)

EJ ‖s1−s2‖2 (10)

where the infimum is over joint distributions J(s1, s2)
with marginals ρ1(s1), ρ2(s2). To apply Eq. (9), it is
crucial to use a metric under which the Bellman flow
operator is a contraction. To ensure this holds for W1

distance, we make the following Lipschitz assumptions
on the transitions and policies.

Assumption 1

(1.1) T , T̂ are (LT ,s, LT ,a), (L
T̂ ,s
, L

T̂ ,a
) Lipschitz

w.r.t. states and actions.

(1.2) A is a convex, closed, bounded (diameter diamA)
set in a dimA-dimensional space.

(1.3) π(a|s) ∼ PA[N (µπ(s),Σπ(s))] and πD(a|s) ∼
PA[N (µπD (s),ΣπD (s))].

(1.4) µπ, µπD , Σ
1/2
πD , Σ

1/2
π are Lπ,µ, LπD,µ, Lπ,Σ, LπD,Σ

Lipschitz w.r.t. states.

In (1.3), PA is the projection to A and in (1.4)

‖Σ1/2
π (s) − Σ

1/2
π (s′)‖ ≤ Lπ,Σ ‖s− s′‖2. Assumption

1 is easily satisfied in most continuous control tasks,
as explained in §4 of the Appendix. The harder one,
which will be resolved later, is γηπ,T < 1 in Lemma 4.

Lemma 4. If Assumption 1 holds, and ηπ,T = LT ,s+

LT ,a(Lπ,µ+Lπ,Σ
√

dimA) < 1/γ, then Bπ,T is a γηπ,T -
contraction w.r.t. 1-Wasserstein distance.

To verify there exists a nontrivial system such that the
condition γηπ,T < 1 in Lemma 4 holds under Assump-
tion 1, we consider a continuous-control task. The
key term depends on the sample interval ∆. Let s =
[x, v]> = [position, velocity]>, and a = acceleration.
By the laws of motion,

s′ =

[
x′

v′

]
=

[
x+ v∆ + 1

2a∆2

v + a∆

]
=

[
I I∆
0 I

]
s+

[
I 1

2∆2

I∆

]
a = T (s, a)

(11)

This shows LT ,s = 1+O(∆), LT ,a = O(∆) and ηπ,T =
1 + O(∆). Therefore, we conclude that γηπ,T = γ +
O(∆) < 1 for small enough ∆.

If Lemma 4 holds for T̂ , we can apply Eq. (9): mea-
sure error in W1 distance, apply contraction on W1 to
get an asymmetric bound (Lemma 1) and then upper
bound W1 distance by `2 error. This gives the follow-
ing Theorem for deterministic transitions.

Theorem 3. Under Lemma 4, if r(s, a) is Lr-
Lipschitz and the `2 error is ε`2 , then

|R(πD, T )−R(πD, T̂ )|

≤(1 + LπD,µ + LπD,Σ
√

dimA)Lr
γε`2

(1− γ)(1− γη
πD,T̂

)
.
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The typical MuJoCo reward, r(s, a) = velocity(s) −
‖a‖22 , is Lipschitz if the diameter diamA is finite. As
MuJoCo also provides the bounds for the action space
A, the Lipschitz assumption on r(s, a) is usually sat-
isfied in MuJuCo continuous-control tasks.

Theorem 3, in conjunction with the calculation of η
in Eq. (11), indicates that the cumulative model error
decreases as the sampling interval ∆ becomes smaller.
This is because the cumulative model error decreases
in η

π,T̂
and η

π,T̂
= 1 +O(∆). Hence, as expected, the

sampling period of a continuous-control task has to be
small enough in order to train an MBRL system.

Although Theorem 3 requires Lemma 4’s strong as-
sumption, branched rollouts allow this assumption to
be satisfied since branched rollouts use a much smaller
discount factor. Thus, one might expect a benefit from
using branched rollouts with deterministic transitions.
This is validated in the following Corollary.

Corollary 5. Let r(s, a) be Lr-Lipschitz and bounded:
0 ≤ r(s, a) ≤ rmax. Let

εT ,γπD,π = Es∼ρπD
T,γ

DTV (πD(·|s) ‖π(·|s)),

εT̂ ,βπD,π = E
s∼ρ

ρ
πD
T,γ

,π

T̂ ,β

DTV (πD(·|s) ‖π(·|s)),

ε`2,β = E
(s,a)∼ρ

ρ
πD
T,γ

,πD

T,β

‖T (s, a)− T̂ (s, a)‖2. Then,

∣∣∣Rγ(ρ0, π, T )− 1−β
1−γRβ(ρπD

T ,γ
, π, T )

∣∣∣
≤rmax

(
εT,γπD,π

γ

(1−γ)2 +
εT̂ ,βπD,π

β

(1−β)(1−γ) +
εT,γπD,π

+εT̂ ,βπD,π

1−γ + β
γ−β

)
+ (1 + LπD,µ + LπD,Σ

√
dimA)Lr

βε`2,β
(1−γ)(1−βη

πD,T̂
) .

Corollary 5 shows an additional benefit of branched
rollouts: to ensure βη

πD,T̂
< 1, by choosing a small

β (say 0.9). This suggests that branched rollouts are
particularly useful for deterministic transitions. Such
a suggestion on branched length (or equivalently, the
branched discount factor β) supports the experimen-
tal success of Janner et al. (2019) and their choice of
hyperparameter, as mentioned in the last paragraph
of § 4.2. Also, this result is for deterministic transi-
tions, so this resolves an open issue in Janner et al.
(2019), as they proved for stochastic transitions but
experimented with deterministic transitions.

4.3.2 Weak Lipschitz Continuity

When Lemma 4 is invalid, there is no Bellman con-
traction, and we cannot use the bounding principle in
Eq. (9). We provide another way to analyze the error,
giving a weaker one-sided bound.

We cannot expect much when L
T̂ ,s
� 1, since the roll-

out diverges when being repeatedly applied to T̂ , with

the error growing exponentially w.r.t. rollout length.
Hence in this subsection we assume L

T̂ ,s
≤ 1+(1−γ)ι

with ι < 1; i.e., the Lipschitzness of the transition
w.r.t. state is slightly higher than 1. The longer the

expected length (1− γ)−1, the smoother T̂ should be.

The following theorem reveals the impact of asymme-
try when there is no Bellman contraction.

Theorem 4. Let 0 ≤ r(s, a) ≤ rmax and ε`2 =

E(s,a)∼ρπD
T

‖T − T̂‖2. Assume that:

(a) T̂ (s, a), r(s, a), πD(a|s) are Lipschitz in s for any
a with constants L

T̂ ,s
, Lr,s, LπD,s.

(b) L
T̂ ,s
≤ 1 + (1− γ)ι with ι < 1.

(c) The action space is bounded: diamA <∞. Then,

R(πD, T ) − R(πD, T̂ ) ≤ 1+γ
(1−γ)2

√
2ε`2r

maxLr +
1+O(ι)

(1−γ)5/2
rmax

√
2ε`2LπDdiamA.

Theorem 4 is a one-sided bound resulting from the

asymmetry of ε`2 = E(s,a)∼ρπD
T

‖T − T̂‖2: E is taken

biasedly on ρπD
T

, so we can only upper bound R(πD, T )

by R(πD, T̂ ) + O((1 − γ)−5/2). The resulting MBRL
error only ensures that a policy that works well on T

also works on T̂ , but not the other way around. This

one-sided nature may allow T̂ to overfit the data. This
supports the use of the Ensemble Method (Kurutach
et al., 2018) to mitigate model bias by training multi-
ple independent models.

Theorem 4 only indicates the consequence of the ε`2
objective’s asymmetry. However, this is avoidable. As
discussed in Corollary 5, branched rollouts provide a
Bellman contraction and hence two-sided bounds.

5 Conclusion

Using a Bellman flow contraction w.r.t. distance met-
rics of probability distributions, we have provided re-
sults on the cumulative reward error in MBRL for both
stochastic and deterministic transitions. In particu-
lar, absolutely continuous stochastic transitions and
deterministic transitions with strong Lipschitz conti-
nuity have Bellman contractions. This result suggests
that MBRL is better suited to these situations. The
difficulty of dealing with deterministic transitions that
do not yield a Bellman contraction arises from the ob-
jective function’s asymmetry. Finally, we prove that
branched rollouts can significantly reduce the error of
MBRL and allow a Bellman contraction under deter-
ministic transitions.
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