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Appendices

A Proof of Theorem 1

The proof of Theorem 1 follows the same steps as the proof provided by Caragiannis et al. [2013] for the upper
bound of the sample complexity of finding the central ranking given complete Mallows samples.

Assume that S is p−frequent and Π ∼MSπ0,β
. Also, without loss of generality, let π0 be the identity permutation

id. For the following, we denote with ni�j = ni�j [Π] the number of samples where i � j, for any i, j ∈ [n] and
with Wij = Wij(S) the total number of samples where they both appear. We, then, have that:

Pr[π̂[Π] 6= π0] ≤ Pr[∃i < j : ni�j < nj�i] ≤
∑
i<j

Pr[ni�j < nj�i]

For any fixed pair i < j, the probability that ni�j < nj�i is maximized in the case when they are adjacent in
π0. In this case, ni�j =

∑
`∈Wij

X`, where X` ∼ Be(e−β/(1 + e−β)),∀` ∈ [Wij ]. Let Y` = 1 − X`,∀` ∈ [Wij ].
Then, we have:

Pr[ni�j < nj�i] ≤ Pr

 ∑
`∈[Wij ]

X` − Y` ≥ 0

 ≤ exp

(
−2Wij

(
1− e−β

1 + e−β

)2
)
≤ exp

(
−2p|S|

(
1− e−β

1 + e−β

)2
)
,

where the second inequality follows from the Hoeffding bound and the third from the fact that S is p−frequent.

Demanding that the last term is less than ε and solving for |S| concludes the proof of Theorem 1.

B Proof of Theorem 2

Let S contain p|S| full sets and (1− p)|S| sets of size at most n
√
p/(1− p). For any i, j ∈ [n], let Wij(S) be the

number of sets of S containing both i and j, that is, the number of the appearances of pair (i, j).

Clearly, S is p−frequent and: ∑
i<j

Wij(S) ≤ pn2|S|, (1)

since each full set has no more than n2/2 pairs of alternatives and each of the remaining sets have no more than
n2p/(2(1− p)) pairs.

Assume that |S| < 1
8pβ log(n(1−ε)

4ε ). From Eq. (1) we get that:

∑
i<j

Wij(S) <
n2

8β
log

(
n(1− ε)

4ε

)
, (2)

We will show that there exists a set of n/2 disjoint pairs of alternatives which we observe only a few times in the
samples. For simplicity, assume that n/2 ∈ N. Consider the following family {Pt}t∈[n/2] of perfect matchings on
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the set of alternatives, that is, n/2 sets of n/2 disjoint pairs:

P1 = {(1, 2), (3,4), . . . , (n− 1, n)}
P2 = {(1, 4), (3,6), . . . , (n− 1, 2)}

. . .

Pt = {(1, (2t) modn), . . . , (n− 1, (2t+ n− 2) modn)}
. . .

Pn/2 = {(1, n), (3, 2), . . . , (n− 1, n− 2)}

Observe that no pair of alternatives appears in more than one perfect matching of the above family. Therefore:

∑
t∈[n/2]

∑
(i,j)∈Pt

Wij(S) ≤
∑
i<j

Wij(S) (3)

Therefore, combining Eq. (2) and Eq. (3), we get that:

∃t ∈ [n/2] :
∑

(i,j)∈Pt

Wij(S) <
n

4β
log

(
n(1− ε)

4ε

)

Therefore, since |Pt| = [n/2], there exist at least n/4 pairs (i, j) ∈ Pt with:

Wij(S) <
1

β
log

(
n(1− ε)

4ε

)
(4)

We proceed with an information-theoretic argument which is based on the observation that if the pairs of P = Pt,
for which Eq. (4) holds, are adjacent in the central ranking, then the probability of swap is maximized for each
pair and also knowledge of the pairwise orders of any fraction of the pairs does not give information about the
pairwise order of any remaining pair. For simplicity and without loss of generality, assume that P = P1,

For the selection vector S = (S1, . . . , S|S|) we denote with Sym(S) the support of MSπ0,β
, namely the set of

vectors containing in any position ` ∈ [|S|] a permutation of S`. For the following, Π̂ will be used to denote
elements of Sym(S), while Π ∼MSπ0,β

will be a random variable.

Let π̃ be any (randomized) algorithm for estimating the central ranking. With the notation Pr[A] we refer to the
probability of the event A, taking into consideration any randomness involved in A (for example the randomness
of Π and π̃). Also, let F ⊆ Sn be as follows:

F = {π ∈ Sn : {π(2i− 1), π(2i)} = {2i− 1, 2i}} (5)

For example, if n = 4 then F = {1 � 2 � 3 � 4, 1 � 2 � 4 � 3, 2 � 1 � 3 � 4, 2 � 1 � 4 � 3}.

Fix π ∈ F . For any π′ ∈ F , let D(π′) denote the number of pairwise disagreements between π and π′ on the
elements of P :

D(π′) = {(i, j) ∈ P : (π(i)− π(j))(π′(i)− π′(j)) < 0}

Fix Π̂ ∈ Sym(S). Then, assuming the following notation:

Pr[Π̂|π] := PrΠ∼MSπ,β
[Π = Π̂],

we apply the triangle inequality property of Kendall tau distance and get that:

Pr[Π̂|π] ≥ e−β
∑

(i,j)∈D(π′)Wij(S)Pr[Π̂|π′] (6)

Also, since the estimator π̃ must have a single output:



∑
π′∈F

Pr[π̃[Π̂] = π′] ≤ 1 (7)

We multiply the terms of Ineq. (7) with Pr[Π̂|π], apply Ineq. (6) and sum over all Π̂ ∈ Sym(S) to get:

∑
π′∈F

e−β
∑

(i,j)∈D(π′)Wij(S)
∑

Π̂∈Sym(S)

Pr[π̃[Π̂] = π′]Pr[Π̂|π′] ≤
∑
Π̂∈F

Pr[Π̂|π] ≤ 1

Assume, for contradiction, that for every π′ ∈ F it holds:

PrΠ∼MSπ,β
[π̃[Π] = π′] ≥ 1− ε

Then, since it holds that PrΠ∼MSπ,β
[π̃[Π] = π′] =

∑
Π̂∈Sym(S) Pr[π̃[Π̂] = π′]Pr[Π̂|π′], we get:

(1− ε)
∑
π′∈F

e−β
∑

(i,j)∈D(π′)Wij(S) ≤ 1

However, from Ineq. (4), we get that:∑
π′∈F

e−β
∑

(i,j)∈D(π′)Wij(S) > 1 +
n

4

4ε

n(1− ε)

We conclude that: 1− ε+ ε < 1, contradiction.

C Proof of Theorem 3

For the following, for any ranking π ∈ Sn and S ⊆ [n], let π|S denote the reduced central ranking of π to S,
that is, the permutation1 of the elements of S that agrees with their order in π.

Assume that Π ∼MSπ0,β
, where S is p−frequent. The proof of Theorem 3 is based on the definition of a notion

of neighborhood for each alternative i ∈ [n]. In particular, for every i ∈ [n], L > 0 and λ > 0 we define
Ni(L, λ) = Ni(L, λ)[Π] to be the subset of [n] containing all the alternatives j for which there exist at least r/λ
sets S of S for each of which it holds that |π0|S(i)− π0|S(j)| ≤ L.

Observe that the neighborhoods are formed according to the input data but they are unknown to the algorithm,
since π0 is unknown.

Furthermore, the following Lemma holds, that controls the neighborhoods’ size.

Lemma C.1. For every i ∈ [n], L > 0, λ > 0, it holds that:

|Ni(L, λ)| ≤ 2λL

Proof. There are at most 2|S|L total positions for the neighbors of i and each neighbor takes at least |S|/λ of
them.

We now prove that we can pick L and λ so that, with high probability, for any i ∈ [n], every element outside
its neighborhood Ni(L, λ) is ranked correctly relatively to i in the majority of samples where they both appear.
More specifically, the following Lemma holds:

1Specifically, for a permutation π : [n]→ [n] and S ⊆ [n], the mapping π|S is a bijection from S to [|S|].



Aggregating Incomplete and Noisy Rankings

Lemma C.2. Assume that Π = (π1, . . . , πr) ∼MSπ0,β
, c ∈ (0, 1/2], c constant and ε ∈ (0, 1). Then, there exists

some constant C = C(c) such that, by considering:

L =
C

β
+

2

βcpr
log(2n2/ε) and λ =

2

(1− c)p
,

it holds that:
ni�j ≥ (1− c)Wij

for every i ∈ [n] and for every j ∈ [n] \ (Ni(L, λ) ∪ {i}) with probability at least 1− ε.

Proof. Fix i ∈ [n] and j ∈ [n] \ (Ni(L) ∪ {i}). It is sufficient to show that the probability of the event that
nj�i > cWij is less than ε/n2, since, in that case, the union of the corresponding events over all pairs i′, j′ such
that j′ ∈ [n] \ (Ni′(L) ∪ {i′}) would hold with probability less than ε.

We have that |S| ≥ Wij ≥ p|S|. From the selection of j we have that the number of elements of the set I of
indices ` ∈ [|S|] such that: |π0|S`(i)− π0|S`(j)| > L (i and j are initially distant and hence they do not appear
swapped in the corresponding sample, with high probability) is at least Wij − (1/λ)|S|.

For some index λ ∈ I we have that the probability that i and j appear swapped in π` is upper bounded as
follows, according to Bhatnagar and Peled [2015]:

ρ = Pr[(π`(i)− π`(j))(i− j) < 0] ≤ 2e−βL/2

Assume that i < j. We will show that in most of the Wij samples where both i and j appear, it holds that
i �π` j. That is, following the notation introduced in Section A of the supplement:

Pr[ni�j > cWij ] < ε/(2n2)

Let n′i�j be the random variable that corresponds to the number of indices ` ∈ I for which i �π` j. Clearly:

Pr[ni�j > cWij ] ≤ Pr[n′i�j > cWij ]

Also, let W ′ij = |I|(≥Wij − (1/λ)|S|). The random variable n′i�j follows the Binomial distribution Bin(W ′ij , ρ).
We want to find some constant c′ = c′(c) ∈ (0, 1) such that c′W ′ij ≥ cWij , because, in this case, it suffices to
bound the following probability:

Pr[n′i�j > c′W ′ij ]

We pick c′ = cλp/(λp − 1). For the selected λ, c′ is indeed a constant (since c is considered a constant) taking
some value within the interval (0, 1) (since c ∈ (0, 1)) and from the Chernoff bound we get:

Pr[n′i�j > c′W ′ij ] ≤ exp(−W ′ijDKL(c′ ‖ ρ)) ≤ exp(−(p− 1/λ)rDKL(c′ ‖ ρ)),

where DKL(c′ ‖ ρ) = c′ log(c′/ρ) + (1 − c′) log((1 − c′)/(1 − ρ)) ≥ c′βL/2 − C ′, where C ′ = C ′(c′) > 0 is some
positive constant.2 For the selected L, if C = 2C ′/c′, we get that Pr[n′i�j > c′W ′ij ] ≤ ε/(2n2), concluding the
proof of Lemma C.2.

We conclude the proof of Theorem 3 by combining Lemmata C.1 and C.2 to get that with probability at least
1 − ε, for every alternative i ∈ [n], the number of other alternatives with which i is ordered reversely in the
majority of samples where they both appear is upper bounded by N :

N =
2C

(1− c)pβ
+

4

βc(1− c)pr
log(2n2/ε)

Hence, after tie braking, the resulting permutation ranks each alternative no more than 2N places away from
its position in π0. More specifically, if before breaking ties, for i, j ∈ [n] we have π̂(j) ≤ π̂(i) then: π̂(j) + N ≤
π̂(i) +N . However: j ≤ π̂(j) +N and π̂(i) +N ≤ i+ 2N therefore: j ≤ i+ 2N ⇒ j − i ≤ 2N . Therefore, after
tie braking: π̂(i) ≤ i+ 2N . Symmetrically: π̂(i) ≥ i− 2N .

2Let µ, ν be two discrete probability measures on Ω. The Kullback–Leibler divergence between µ is defined as DKL(µ ‖
ν) =

∑
x∈Ω µ(x) log(µ(x)

ν(x)
)



D Proof of Theorem 4

Theorem 4 consists of two parts. The first one considers the runtime of an algorithm finding a likelier than
nature estimation of the central ranking given p−frequent selective Mallows samples while the second one refers
to solving the maximum likelihood estimation problem. Both parts are based on Lemma 2 (which originates to
the work of Braverman and Mossel [2009]).

Part 1. A careful examination of the proof of Lemma 2 (which can be found in [Braverman and Mossel, 2009])
reveals that if π0 ∈ A = {π ∈ Sn : |π(i)− π̂(i)| ≤ N, ∀i ∈ [n]}, then, we can find a likelier than nature estimation
π◦ in time O(n ·N2 · 26N ). Picking N according to Theorem 3, π0 is indeed an element of A and therefore, we
get the desired result.

Part 2. In this case, we want to show that π∗ ∈ A′ = {π ∈ Sn : |π(i) − π̂(i)| ≤ N ′,∀i ∈ [n]}. We claim
that with probability at least 1 − ε/2: {|π∗(i) − π0(i)| ≤ K,∀i ∈ [n]} (π∗ and π0 are pointwise close) for some
K = O( 1

βp3 + 1
βp4r log(n/ε)). Therefore, picking N ′ = K + N = O(K), we have that π∗ ∈ A′, which gives the

desired result.

To prove our claim, we generalize the proof that the maximum likelihood estimation of the central ranking from
complete Mallows samples is pointwise close to the central ranking.

Assume, without loss of generality, that π0 = id. Let h > 0 and c ∈ (0, 1/2), which will be defined later. For
any i, j ∈ [n], ni�j is the number of samples where i � j and Wij is the number of samples where both i and j
appear. Clearly, it holds that ni�j + nj�i = Wij .

From Lemmata C.2 and C.1, with probability at least 1− ε, there exist λ and L such that for every alternative
i ∈ [n] and any constant c ∈ (0, 1/2] there exists some constant C = C(c) such that :

1. |Ni(L, λ)| ≤ N = 2C
β(1−c)p + 4

β(1−c)cp2r log(2n2/ε)

2. j ∈ {i+ 1, i+ 2, . . . , n} \ Ni(L, λ)⇒ nj�i ≤ cWij (and Wij ≥ pr).

3. Symmetrically, for j ∈ {1, . . . , i− 1} \ Ni(L, λ): ni�j ≤ cWij .

Fix i ∈ [n] such that |π∗(i)− i| = K, where K ≥ hN . Without loss of generality, assume π∗(i) = i+K. It suffices
to find values of c and h that contradict the assumption π∗(i) = i+K.

Let D = {j ∈ [n] : i ≤ π∗(j) < i + K} and: D1 = {j ∈ D : j < i}, D2 = {j ∈ D : j ∈ Ni(L, λ)},
D3 = {j ∈ D : j > i and j 6∈ Ni(L, λ)}. Apparently: D = D1 ∪ D2 ∪ D3.

Observe that since π∗ maximizes the following score function:

s : Sn → N

π → s(π) =
∑
i1�πi2

ni1�i2

It must hold that:
0 ≤

∑
j∈D

(nj�i − ni�j)

For any j ∈ D3, from item (1) it holds that:

nj�i ≤ cWij ⇒ nj�i − ni�j ≤ −(1− 2c)pr

Let |D1| = T . Furthermore: |D2| ≤ N and |D3| ≥ K −N − T ≥ (h− 1)N − T . Therefore, we have that:

0 ≤ rT + rN − (1− 2c)pr((h− 1)N − T )⇒

T ≥ (1− 2c)p(h− 1)− 1

1 + (1− 2c)p
N (8)
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Observe that, since there are at least T alternatives j < i such that π∗(j) ≥ i, say T1 ⊂ [n], there must be at
least T alternatives j ≥ i such that π∗(j) < i, say T2 ⊂ [n]. Let H1 = {1, ..., i − 1} and H2 = {i, ..., n}. We
construct σ0 ∈ Sn by concatenating π∗|H1

and π∗|H2
. It remains to select appropriate values for h (h does not

need to be constant) and c (must be constant) for which s(σ0) > s(π∗), which is a contradiction.

Create the following sets:

1. P1: The pairs of elements i1, i2 ∈ [n], i1 < i2 for which i2 ∈ Ni1(L, λ) and σ0, π
∗ disagree on their relative

ranking. Note that: |P1| ≤ 2TN .

2. P2: The pairs of elements i1, i2 ∈ [n], i1 < i2 for which σ0, π
∗ disagree, but i2 6∈ Ni1(L, λ) (and i1 6∈

Ni2(L, λ)). Note that σ0 has the right answer for this pair and q(i1 � i2) − q(i2 � i1) ≥ (1 − 2c)pr.
Also: |P2| ≥ T (T − N) (select an element of T1 and an element of T2 which is not in the first element’s
neighborhood).

Then: s(σ0)−s(π∗) =
∑

(i1,i2)∈P1
(ni1�i2−ni2�i1)+

∑
(i1,i2)∈P2

(ni1�i2−ni2�i1) ≥ −2rTN+(1−2c)prT (T−N) =

rT ((1− 2c)pT − ((1− 2c)p+ 2)N)

Using Ineq. (8), we get that:

s(σ0)− s(π∗) ≥ rTN
[

(1− 2c)p((1− 2c)p(h− 1)− 1)

1 + (1− 2c)p
− (2 + (1− 2c)p)

]

We search for values of c and h such that the quantity inside the brackets is positive. After some algebra, we
choose c < 1/4 (constant) and h = 2 + 8/p+ 8/p2 = O( 1

p2 ).

E Proof of Theorem 5

The proof we provide almost coincides with the sketch we provided in the main part. However, here we have
established the appropriate notation that enables us to be more formal.

Let Π ∼MSπ0,β
be our sample profile. We will make use of the PosEst π̂ = π̂[Π] and, without loss of generality,

assume that π0 is the identity permutation id. We will bound the probability that there exists some i ∈ [k] such
that π̂(i) 6= i.

For any i ∈ [k], we can partition the remaining alternatives into A1(i) = Ni(L, λ) and A2(i) = [n] \ (A1(i)∪{i}).

From Lemma C.2, it holds that for some L, λ such that |A1(i)| = O( 1
pβ + 1

p2β|S| log(n/ε)), with probability at

least 1− ε/2, for every i ∈ [n], for every alternative j ∈ A2(i) it holds: (ni�j − nj�i)(j − i) > 0.

Picking L, λ so that the above result holds, there exists some r1 = O( 1
p2βk log(n/ε)) such that, if |S| ≥ r1, then

|A1(i)| = O(k).

Furthermore, following the same technique used to prove Theorem 1, we get that, if |S| ≥ r2 for some r2 =
O( 1

p(1−e−b)2 log(k/ε)), then, with probability at least 1− ε/2, for every pair of alternatives (i, j) such that i ∈ [k]

and j ∈ A1(i) it holds that: (ni�j − nj�i)(j − i) > 0, since the total number of such pairs is O(k2).

Therefore, with probability at least 1 − ε, both events hold and for any fixed i ∈ [k], π̂(i) = i, because for all
j: (ni�j − nj�i)(j − i) > 0 and also because for every other alternative j > k, we have that π̂(j) > k, since
ni�j > nj�i,∀i ∈ [k].

F Randomized p−frequent assumption

In this section, we consider an alternative assumption to the p−frequent one, namely the randomized p−frequent
assumption and we present empirical data that indicate that at least some of our results under the p−frequent
assumption continue to hold under the randomized one.
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Figure 1: Estimated sample complexity of retrieving, with probability at least 0.95 and using PosEst, the
central ranking from selective Mallows samples, with n = 20, β = 2, over the randomized frequency parameter’s
inverse.

Definition. We say that a distribution D supported on 2[n] is p−frequent if for any i, j ∈ [n] it holds:

PrS∼D[S 3 i, j] ≥ p

If the selection sets are independently drawn according to some p−frequent distribution, then we say that the
selective Mallows model is randomly p−frequent. Note that the randomized p−frequent assumption, contrary
to the simple p−frequent assumption, permits the event that some pair of alternatives never appear together in
the samples, yet with small probability.

Empirical evaluation. We estimate the sample complexity of retrieving the central ranking from randomly
selective Mallows samples where n = 20 and β = 2, with probability at least 0.95, using PosEst by performing
binary search over the size of the sample profile. During a binary search, for every value, say r, of the sample
profile size we examine, we estimate the probability that PosEst outputs the central ranking by drawing 100
independent randomly p−frequent selective Mallows profiles of size r, computing PosEst for each one of them
and counting successes. We then compare the empirical success rate to 0.95 and proceed with our binary
search accordingly. For a specific value of p, we estimate the corresponding sample complexity, by performing
50 independent binary searches and computing the average value. The results, which are shown in Figure 1,
indicate that the dependence of sample complexity on the frequency parameter p is indeed Θ(1/p).
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