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Abstract

We consider the problem of learning the true
ordering of a set of alternatives from largely
incomplete and noisy rankings. We introduce
a natural generalization of both the classi-
cal Mallows model of ranking distributions
and the extensively studied model of noisy
pairwise comparisons. Our selective Mallows
model outputs a noisy ranking on any given
subset of alternatives, based on an underlying
Mallows distribution. Assuming a sequence
of subsets where each pair of alternatives ap-
pears frequently enough, we obtain strong
asymptotically tight upper and lower bounds
on the sample complexity of learning the un-
derlying complete ranking and the (identities
and the) ranking of the top-k alternatives
from selective Mallows rankings. Moreover,
building on the work of (Braverman and Mos-
sel, 2009), we show how to efficiently com-
pute the maximum likelihood complete rank-
ing from selective Mallows rankings.

1 Introduction

Aggregating a collection of (possibly noisy and incom-
plete) ranked preferences into a complete ranking over
a set of alternatives is a fundamental and extensively
studied problem with numerous applications. Ranking
aggregation has received considerable research atten-
tion in several fields, for decades and from virtually all
possible aspects.

Most relevant, Statistics investigates the properties of
ranking distributions, which provide principled ways
to generate noisy rankings from structural informa-
tion about the alternatives’ relative order. Best known
among them are the distance-based model of [Mallows
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[1957] and the parametric models of |Thurstone| [1927],
Smith! [1950], Bradley and Terry|[1952], [Plackett| [1975]
and Luce| [2012]. Moreover, Machine Learning and
Statistical Learning Theory aim to develop (statisti-
cally and computationally) efficient ways of retrieving
the true ordering of the alternatives from noisy (and
possibly incomplete) rankings (see e.g., [Xial2019] and
the references therein).

Virtually all previous work in the latter research di-
rection assumes that the input is a collection of either
complete rankings (chosen adversarially, e.g., |Ailon
et al.| [2008], Kenyon-Mathieu and Schudy| [2007], or
drawn from an unknown ranking distribution, e.g.,
|Caragiannis et al. 2013, Busa-Fekete et all 2019]),
or outcomes of noisy pairwise comparisons (see e.g.,
|[Feige et al., [1994) Mao et al., 2018a]). Due to a sig-
nificant volume of relatively recent research, the com-
putational and statistical complexity of determining
the best ranking based on either complete rankings or
pairwise comparisons are well understood.

However, in most modern applications of ranking ag-
gregation, the input consists of incomplete rankings of
more than two alternatives. E.g., think of e-commerce
or media streaming services, with a huge collection of
alternatives, which generate personalized recommen-
dations based on rankings aggregated by user ratings
(see also [Hajek et al|[2014]). Most users are able to
rank (by rating or reviewing) several alternatives, defi-
nitely much more than two, but it is not even a remote
possibility that a user is familiar with the entire inven-
tory (see also [Moreno-Centeno and Escobedol [2016]
for applications of incomplete rankings to ranked pref-
erence aggregation, and [Yildiz et al. 2020] on why
incomplete rankings are preferable in practice).

Motivated by the virtual impossibility of having access
to complete rankings in modern applications, we intro-
duce the selective Mallows model, generalizing both
the classical Mallows model of ranking distributions
and the extensively studied model of noisy pairwise
comparisons. Under the selective Mallows model, we
investigate the statistical complexity of learning the
central ranking and the (identities and the) ranking
of the top-k alternatives, and the computational com-
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plexity of maximum likelihood estimation.

1.1 The Selective Mallows Model

The Mallows model [Mallows, [1957] is a fundamental
and extensively studied family of ranking distributions
over the symmetric group &,,. A Mallows distribution
M,.5 on a set of n alternatives is parameterized by
the central ranking my € &,, and the spread param-
eter § > 0. The probability of observing a ranking
7w € &, is proportional to exp(—pBd(mg, )), where d is
a notion of ranking distance of mg to 7. In this work,
we consider the number of discordant pairs, a.k.a.
the Kendall tau distance, defined as dgr(mo,m) =

2ici Wm0 (@) = mo (7)) (m (i) — 7 () < 0}

The problem of aggregating a collection 71, ..., 7. €
G,, of complete rankings asks for the median ranking
™ = argmingee, Y, dxr(o, ;). Computing the
median is equivalent to a weighted version of Feed-
back Arc Set in tournaments, which is NP-hard |Ailon
et al., |2008] and admits a polynomial-time approxima-
tion scheme [Kenyon-Mathieu and Schudy, 2007]. If
the rankings are independent samples from a Mallows
distribution, the median coincides with the maximum
likelihood ranking and can be computed efficiently with
high probability [Braverman and Mossel, 2009)].

The selective Mallows model provides a principled way
of generating noisy rankings over any given subset of
alternatives, based on an underlying Mallows distri-
bution My, 3. Given a central ranking 7y € &,,
a spread parameter S > 0 and a selection sequence
S = (51,...,5;), where each S; C [n], the selective
Mallows distribution Mfrm 5 assigns a probability of

1
Pr((my,...,m)|m0, 8,8 = _— o= Pdrr(mo,mi)
(1m0 = 1 7575
to each incomplete ranking profile (71,...,7.). In

the probability above, each 7; is a permutation of S,
dir(mo,m;) is the number of pairs in S; ranked re-
versely in mp and m; (which naturally generalizes the
Kendall tau distance to incomplete rankings), and the
normalization constants Z(.S;, 8) correspond to a Mal-
lows distribution on alternatives S; and depend only
on |S;| and B. The samples 71, ..., m, are independent,
conditioned on the selection sequence S. We refer to
IT = (m,...,7) as a sample profile of length r.

In a selective Mallows sample 7;, the probability that
two alternatives in S; are not ranked as in my depends
on their distance in the restriction of 7y to .S; (instead
of their original distance in 7). E.g., if mg is the iden-
tity permutation and S; = {1, n}, the probability that
m = (1,n) (resp. 7w = (n,1)) is the i-the sample

in I is 1/(1 4+ e™?) (vesp. e #/(1 4+ e~?)). Hence,

the selective Mallows model generalizes both the stan-
dard Mallows model (if each .S; = [n]) and the model
of noisy pairwise comparisons (if S consists entirely of
sets S; with |S;| = 2). Moreover, using sets S; of differ-
ent cardinality, one can smoothly interpolate between
complete rankings and pairwise comparisons.

The amount of information provided by a selective
Mallows model M3 ; about 7 is quantified by
how frequently different pairs of alternatives compete
against each other in II. We say that a selective Mal-
lows model /\/lfO”B is p-frequent, for some p € (0, 1], if
every pair of alternatives appears in at least a p frac-
tion of the sets in S (we assume that each pair appears
together at least once in S). E.g., for p = 1, we re-
cover the standard Mallows model, while p ~ 2/n?
corresponds to pairwise comparisons. The definition
of (p-frequent) selective Mallows model can be natu-
rally generalized to unbounded selection sequences S,
which however is beyond the scope of this work.

In this work, we investigate the statistical complex-
ity of retrieving either the central ranking my or its
top-k ranking from p-frequent selective Mallows sam-
ples, and the computational complexity of finding a
maximum likelihood ranking from a fixed number r of
p-frequent samples. In learning from incomplete rank-
ings, for any given p, 5, > 0, we aim to upper and
lower bound the least number of samples r*(p, 5, ¢)
(resp. 75(p,B,¢€)) from a selective Mallows distribu-
tion Mfo’ 5 required to learn mo (resp. the top-k rank-
ing of my) with probability at least 1 — e, where S is
any p-frequent selection sequence. In mazimum like-
lihood estimation, for any given p, 3, > 0, given a
sample profile IT of length r from a p-frequent selec-
tive Mallows distribution Mfm 5, we aim to efficiently
compute either a ranking that is at least as likely as
Ty, or even a maximum likelihood ranking 7*. The
interesting regime for maximum likelihood estimation
is when r is significantly smaller than r*(p, 5, ¢).

We shall note here that the p—frequent assumption
can be replaced by a milder one, where each selection
set is drawn independently from a given distribution
over the subsets of [n], such that the probability that
any specific pair of alternatives appears in a sampled
set is at least p. Although we focus (for simplicity) on
the deterministic p—frequent assumption, we expect
similar results to hold for the randomized case. For
an detailed discussion of the randomized p—frequent
assumption, we refer the reader to the supplementary
material.

1.2 Contribution

On the conceptual side, we introduce the selective Mal-
lows model, which allows for a smooth interpolation
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between learning from noisy complete rankings and
sorting from noisy pairwise comparisons. On the tech-
nical side, we practically settle the statistical complex-
ity of learning the central ranking and the top-k rank-
ing of a p-frequent selective Mallows model. Moreover,
we show how to efficiently compute a maximum likeli-
hood ranking from r selective samples.

We believe that a significant advantage of our work lies
in the simplicity and the uniformity of our approach.
Specifically, all our upper bounds are based on the so-
called positional estimator (Algorithm7 which ranks
an alternative i before any other alternative j ranked
after ¢ in the majority of the samples. The positional
estimator belongs to the class of pairwise majority con-
sistent rules |[Caragiannis et al.| [2013].

Generalizing the (result and the) approach of [Cara-
giannis et al.| [2013, Theorem 3.6], we show (Theo-
rem D that if pr = O(%)7 the central ranking
of a p-frequent selective Mallows model can be recov-
ered with probability at least 1 —e. Namely, observing
a logarithmic number of noisy comparisons per pair
of alternatives suffices for determining their true or-
der. Theorem [1| generalizes (and essentially matches)
the best known bounds on the number of (passively
ChOSGIEI) comparisons required for sorting [Mao et al.|
2018a].

Interestingly, we show that the above upper bound is
practically tight. Specifically, Theorem [2] shows that
for any p € (0,1/2], unless rp = Q(log(n/e)/B) noisy
comparisons per pair of alternatives are observed, any
estimator of the central ranking from p-frequent selec-
tive samples fails to recover my with probability larger
than ¢. Hence, observing incomplete rankings with
(possibly much) more than two alternatives may help
in terms of the number of samples, but it does not
improve the number of noisy comparisons per pair re-
quired to recover the true ordering of the alternatives.

In Section[3] we generalize the proof of Theorem [3and
show that the positional estimator smoothly (and uni-
formly wrt different alternatives) converges to the cen-
tral ranking 7y of a p-frequent selective Mallows model
/\/lf;o’ s as the number of samples r (and the number
of noisy comparisons pr per pair) increase. Specifi-
cally, Theorem [3] shows that the positional estimator
has a remarkable property of the average position es-
timator |Braverman and Mossel, 2008, Lemma 18] : as
r increases, the position of any alternative ¢ in the
estimated ranking converges fast to m(¢), with high
probability. Since we cannot use the average posi-

'If the algorithm can actively select which pairs of al-
ternatives to compare, O(nlogn) noisy comparisons suffice
for sorting, e.g., [Braverman and Mossel| [2008], [Feige et al.
[1994].

tion estimator, due to our incomplete rankings, where
the positions of the alternatives are necessarily rela-
tive, we need to extend |Braverman and Mossel, [2008]
Lemma 18] to the positional estimator.

Combining Theorem [If and Theorem [3| we show (Sec-
tion that for any k& = Q(1/(pf)), we can recover
the identities and the true ranking of the top-k alter-
natives in my, with probability at least 1 — ¢, given
r = O(pé(ig_(:—/g))z + loig’[;{j)) p-frequent selective sam-
ples. The second term accounts for learning the identi-
ties of the top O(k) elements in 7w (Theorem [3)), while
the first term accounts for learning the true ranking
of these O(k) elements (Theorem [I)). For sufficiently
large k, the first term becomes dominant. Applying
the approach of Theorem [2] we show that such a sam-
ple complexity is practically best possible.

Moreover, building on the approach of Braverman and
Mossel| [2008, Lemma 18] and exploiting Theorem
we show how to compute a maximum likelihood rank-
ing (resp. a ranking that is at least as likely as ),
given r samples of a p-frequent selective Mallows dis-
tribution Mﬁo,ﬂ’ in time roughly n®1/8p") (resp.
no/ (Tﬁpz))), with high probability (see also Theo-
rem [| for the exact running time). The interesting
regime for maximum likelihood estimation is when r
is much smaller than the sample complexity of learn-
ing g in Theorem Our result compares favorably
against the results of Braverman and Mossel| [2008]
if pr is small. E.g., consider the extreme case where
pr =1 (i.e., each pair is compared once in II). Then,
for small values of 3, the running time of [Braverman
and Mossel, 2008, Theorem 8] becomes no/ '64), while
the running time of maximum likelihood estimation
from p-frequent selective samples becomes n©(/ (P°8)).
Thus, large incomplete rankings mitigate the difficulty
of maximum likelihood estimation (compared against
noisy pairwise comparisons), if rp = O(1), 3 is small,
and 1/8 is much smaller than 1/p.

In the following, we provide the intuition and proof
sketches for our main results. Due to lack of space,
the full proofs of all our technical claims are deferred
to the supplementary material.

Notation. We conclude this section with some ad-
ditional notation required in the technical part of the
paper. For any ranking 7 of some S C [n] and any
pair of alternatives i,j € S, we let i >, j denote that
i preceeds j in m, i.e., that 7(¢) < m(j). For any object
B, we use the notation B = BI[II] to denote that B
depends on a sample profile II. Moreover, for simplic-
ity and brevity, we use the asymptotic notation Og (or
Qg) to hide polynomial terms in 1/4.
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1.3 Related Work

There has been a huge volume of research work on sta-

hood maximization through either gradient descent or
majorize-maximization (MM) methods (see e.g.,
inovic et al. [2020]). Such works on learning from pair-

tistical models over rankings (see e.g., |Fligner and Ver-
|duccil [1993], Marden| [1996], [2019] and the refer-

ences therein). The [Mallows model plays a cen-
tral role in the aforementioned literature. A significant
part of this work concerns either extensions and gener-
alizations of the Mallows model (see e.g., |Fligner and

erducci, [1986], Murphy and Martin|, 2003, [Lebanon
and Lafferty| [2003], and also [Lebanon and Mao, 2008

wise comparisons are also closely related to our work
from a graph-theoretic viewpoint, since they naturally
correspond to weighted graph topologies, whose prop-
erties (e.g., Fiedler eigenvalue of the comparison ma-
trix [Hajek et al., 2014] |Shah et al.| [2016| [Khetan and|
OLl 2016, [Vojnovic and Yun| [2016, [Negahban et al.,
2017, [Vojnovic et al.,[2020] or degree sequence [Panan-
jady et al.| [2020]) characterize the sample complexity

Lu and Boutilier| 2014, Busa-Fekete et al.| 2014] more
closely related to partial rankings) or statistically and
computationally efficient methods for recovering the
parameters of Mallows distributions (see e.g., [Adkins

and Fligner| [1998| [Caragiannis et all [2013] [Liu and
Moitra), 2018], [Busa-Fekete et al., [2019]).

From a conceptual viewpoint, the work of [Hajek et al.|
is closest to ours. Hajek et al| [2014] intro-
duce a model of selective incomplete Thurstone and
Plackett-Luce rankings, where the selection sequence
consists of sets of k alternatives selected uniformly at
random. They provide upper and lower bounds on
how fast optimizing the log-likelihood function from
incomplete rankings (which in their case is concave in
the parameters of the model and can be optimized via
e.g., gradient descent) converges to the model’s true
parameters. In our case, however, computing a max-
imum likelihood ranking is not convex and cannot be
tackled with convex optimization methods. From a
technical viewpoint, our work builds on previous work
by Braverman and Mossel [2008], |Caragiannis et al.|
[2013] and Busa-Fekete et al.| [2019).

For almost three decades, there has been a significant
interest in ranked preference aggregation and sorting
from noisy pairwise comparisons. One branch of this
research direction assumes that the algorithm actively
selects which pair of alternatives to compare in each
step and aims to minimize the number of compar-
isons required for sorting (see e.g., [Feige et al., (1994,
Braverman and Mossel, [2008], or [Ailon, 2012] for sort-
ing with few errors, or |[Braverman et al. 2016] for
parallel algorithms). A second branch, closest to our
work, studies how many passively (see e.g., [Mao et al.|
a)) or randomly (see e.g., [Wauthier et al.,[2013|)
selected noisy comparisons are required for ranked
preference aggregation and sorting. A more general
problem concerns the design of efficient approxima-
tion algorithms (based on either sorting algorithms or
common voting rules) for aggregating certain types of
incomplete rankings, such as top-k rankings, into a
complete ranking (see e.g., |Ailon| [2010], [Mathieu and|
[2020]). Moreover, there has been recent work
on assigning ranking scores to the alternatives based
on the results of noisy pairwise comparisons, by likeli-

and convergence rate of various learning approaches.
The comparison graph of p-frequent Mallows is the
clique.

Another related line of research (which goes back at
least to |Conitzer and Sandholm| [2005]) investigates
how well popular voting rules (e.g., Borda count, Ke-
meny ranking, approval voting) behave as maximum
likelihood estimators for either the complete central
ranking of the alternatives, or the identities of the top-
k alternatives, or the top alternative (a.k.a. the win-
ner). In this line of work, the input may consist of com-
plete or incomplete noisy rankings [Xia and Conitzer]
[2011], [Procaccia et all) [2012], the results of noisy pair-
wise comparisons [Shah and Wainwright) [2017], or
noisy k-approval votes |[Caragiannis and Micha, |2017].

2 Retrieving the Central Ranking

In this section, we settle the sample complexity of
learning the central ranking 7y under the selective
Mallows model. We show that a practically optimal
strategy is to neglect the concentration of alternatives’
positions around their initial positions in 79 and act as
if the samples are a set of pairwise comparisons with
common probability of error only depending on §.

Positional Estimator. Given a sample profile IT =
(m,...,m) corresponding to a selection sequence S =
(S1,...,5r), we denote with & = 7#[II] the permutation
of [n] output by Algorithm

Algorithm 1 Positional Estimator of profile IT

1: procedure PosEsT(II)

2 T+ 0,

3 for i € [n] do

4 for j € [n] do

5: IL j < {mell:i,jen}
6.

7

8

Njwi |{7T S Hi,j B Z}l
if Vi > |Hz,]|/2 then
(1) + 7(i) + 1
9: Break ties in 7 uniformly at random
10: return 7

Algorithm [I]first calculates the pairwise majority posi-
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tion of each alternative, by comparing each i € [n] with
any other j € [n] in the joint subspace of the sample
profile where ¢ and j appear together. Intuitively, 7(7)
equals [{j : j ranked before i most times}|. The al-
gorithm, after breaking ties uniformly at random, out-
puts 7. We call 7 the positional estimator (of the sam-
ple profile IT), which belongs to the class of pairwise
majority consistent rules, introduced by |Caragiannis
et al. [2013].

Sample Complexity. Motivated by the algorithm
of |Caragiannis et al.| [2013] for retrieving the central
ranking from complete rankings, we utilize the Pos-
EsT (Algorithm (1) and establish an upper bound on
the sample complexity of learning the central ranking
in the selective Mallows case.

Theorem 1. For any ¢ € (0,1), mg € &,,, 8 > 0,
p € (0,1], there exists an algorithm such that, given
a sample profile from ./\/lfoﬁ, where S is a p-frequent
selection sequence of length O(m log(n/e)), Al-
gorithm[1] retrieves mo with probability at least 1 — e.

Proof (Sketch). If we have enough samples so that
every pair of alternatives is ranked correctly in the
majority of its comparisons, with probability at least
1—e/n?, then, by union bound, all pairs are ranked cor-
rectly in the majority of their comparisons with prob-
ability at least 1 — ¢, which, in turn, would imply the
theorem. If the number of samples is r, then each pair
is compared at least pr times in the sample. The Ho-
effding bound implies that the probability that a pair
is swapped in the majority of its appearances decays
exponentially with pr. O

In fact, the positional estimator is an optimal strategy
with respect to the sample complexity of retrieving the
central ranking. This stems from the fact that if for
some pair, the total number of its comparisons in the
sample is small, then there exists a family of possible
central rankings where different alternatives cannot be
easily ranked, due to lack of information. We continue
with an essentially matching lower bound:

Theorem 2. For any p € (0,1], € € (0,1/2], 8 > 0
and r = o(é log(n/e)) there exists a p-frequent selec-
tion sequence S with |S| = r, such that for any central
ranking estimator, there exists a w9 € S, such that
the estimator, given a sample profile from Mﬁo,ﬁ’ fails
to retrieve wy with probability more than .

Proof (Sketch). Let S contain p|S| sets with all alter-

natives and (1—p)|S| sets of size at most ny/p/(1 — p).

For any ¢,j € [n], let W;;(S) be the number of sets of
S containing both ¢ and j, that is, the number of the

appearances of pair (¢, 7). Clearly, S is p-frequent and:

> Wi(S) < pn?lS. (1)

1<J

Assume that |S| < Sp%ﬁ log("(izé)). We will show
that there exists a set of n/2 disjoint pairs of al-
ternatives which we observe only a few times in the
samples. Assume that n is even. We design a fam-
ily {Pi}ie[n/2) of perfect matchings on the set of al-
ternatives [n]. Specifically, we consider n/2 sets of
n/2 disjoint pairs P; = {(1,2),(3,4),...,(n — 1,n)},
P, = {(1,4),(3,6),...,(n — 1,2)} and, in general,
P, ={(1,(2t) modn),...,(n—1,(2t + n — 2) modn)}
for ¢t € [n/2].

Observe that no pair of alternatives appears in more
than one perfect matching of the above family. There-

fore:
oY WY W) (@

te[n/2] (i,j)EP, 1<j

Combining (T]), the bound for |S| and (2], we get that:

Jt e [n/2] : Z Wl](S) < %log (n(le))

4e
(i,7)EP:
Hence, since | P;| = [n/2], there exist at least n/4 pairs
(i,) € P, with Wi;(S) < 5 log (mié_e))

We conclude the proof with an information-theoretic
argument based on the observation that if the pairs of
P;, n/4 of which are observed few times, are adjacent
in the central ranking, then the probability of swap is
maximized for each pair. Moreover, the knowledge of
the relative order of the elements in some pairs in the
matching does not provide any information about the
relative order of the elements in any of the remaining
pairs. Intuitively, since each of n/4 pairs is observed
only a few times, no central ranking estimator can be
confident enough about the relative order of the ele-
ments in all these pairs. O

3 Approximating the Central Ranking
with Few Samples

We show next that the positional estimator smoothly
approximates the position of each alternative in the
central ranking, within an additive term that dimin-
ishes as the number of samples r increases.

The average position estimation approximates the po-
sitions of the alternatives under the Mallows model, as
shown by [Braverman and Mossel| [2009]. However, the
average position is not meaningful under the selective
Mallows model, because the lengths of the selective
ranking may vary.
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Also, although under the Mallows model, the prob-
ability of displacement of an alternative decays ex-
ponentially in the length of the displacement, under
the selective Mallows model, distant elements might
be easily swapped in a sample containing only a small
number of the alternatives that are ranked between
them in the central ranking. For example, denoting
with id the identity permutation (1 > 2 > --- > n),
ifmein),m>1m~ M;{d[nﬁ]} and oy ~ Mi{ilﬁ’m}},
then:
Pr[m >, 1] < 2e7m/2)

since in order for 1 and m to be swapped, either has
to be displaced at least m/2 places, and as shown by
Bhatnagar and Peled| [2015], under Mallows model,
the probability of displacement of an alternative by
t places is bounded by 2e~#*. However:

Pr[m >, 1] > e /(1 4+e77),

using the bound for swap probability provided by
Chierichetti et al.| [2014].

Since m > 1: Pr[m =, 1] < Pr[m >, 1].

However, even though some selection sets may weaken
the concentration property of the positions of the alter-
natives, we show that the positional estimator works
under the selective Mallows model. This happens due
to the requirement that each pair of alternatives should
appear frequently: the majority of distant (in mg) al-
ternatives remain distant in the majority of the result-
ing incomplete rankings obtained by restricting 7y to
the selection sets. This is summarized by the follow-
ing:

Theorem 3. Let IT ~ Mﬁo@ where my € &, B> 0,

|S| = r and S is p-frequent, for some p € (0,1], and

e € (0,1). Then, for the positional estimator # = (1],

there exists some N = O(% log(n/e)) such that:
Pr[3i € [n] : |7(i) — mo(7)] > N] <

Proof (Sketch). We show that with high probability,
for any alternative ¢ € [n], only N = O(%(% +
% log 2)) other alternatives j are ranked incorrectly
pr €
relatively to 7 in the majority of the samples of IT where
both i and j appear. Therefore, by the definition of
the POSEST, even after tie braking, each alternative is
ranked by the output ranking within an O(N) margin

from its original position in .

If two alternatives i, j are ranked L positions away by
the reduced central ranking corresponding to a sample,
then the probability that they appear swapped in the
sample is at most 2e~#L/2. However, even if 7,j are
distant in g, they might be ranked close by a reduced
central ranking.

For any i € [n]|, we define a neighborhood N;(L,\)
containing the other alternatives j which appear less
than L positions away from ¢ in the corresponding re-
duced central rankings of at least r/\ samples. In-
tuitively, those alternatives j outside A;(L, \) are far
from ¢ in the corresponding reduced central ranking
of many samples. Hence, in these samples where 1, j
are initially far (according to L), the probability of
observing them swapped is small enough so that, with
high probability, the number of samples where they
are ranked correctly is dominant among all the ap-
pearances of the pair, since we have additionally forced
the number of samples where 7, j are initially close (in
which swaps are easy) to be small (according to \).

Additionally, we bound the size of the neighborhood
by |N;(L,\)| < 2L\, because in each sample there is
only a small number of candidate neighbors (according
to L) and an element of N;(L,)\) uses many of the
total number places. We conclude the proof by setting
L =0(4 + gy log 2)) and A = O(3). Intuitively, A
is chosen so that the number of samples where swaps
are difficult is comparable to pr (the minimum number
of samples where each pair appears). The margin of
error is N = O(L\). O

Remark 1. In Theorem[3, the margin of the approz-
imation accuracy N can be refined as follows:

O(ﬁ log(n/e)), when r = O(% log(n/e))
N = O(ﬁip)7 when r = w(%log(n/e))
0, when r = w(ﬁ log(n/e))

According to Remark [ the error margin of approxi-
mation for the POSEST provably diminishes inversely
proportionally to Bp?r, when r is sufficiently small and
eventually becomes zero when r exceeds the sample
complexity of Theorem

4 Applications of Approximation

Assume we are given a sample from Mfm , where S is
p-frequent for some p € (0, 1]. Unless |S| is sufficiently
large, we cannot find the central ranking with high
probability. However, due to Theorem [3| we know
that the positional estimator approximates the true
positions of the alternatives within a small margin.
This implies two possibilities which will be analyzed
shortly: First, in Section we present an algorithm
that finds the maximum likelihood estimation of the
central ranking with high probability. The algorithm is
quite efficient, assuming that the frequency p and the
spread parameter [ are not too small. In Section
we show how to retrieve the top-k ranking (assuming
we have enough samples to sort O(k) elements), when
k is sufficiently large.
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4.1 Maximum Likelihood Estimation of the
Central Ranking

We work in the regime where r is (typically much)
smaller than the sample complexity of Theorem[I] We
start with some necessary notation. For any A C &,
let 7% = 7% [II] be a mazimal likelihood estimation of
mo among elements of A, that is:

i € argmax Pr{lljm, 5, S] (3)

If A=6,, m = 7%, is a mazimum likelihood estima-
tion of my, while if my € A, 7% = 7° is a likelier than
nature estimation of 7y [Rubinstein and Vardil [2017].

The following lemma states that computing the max-
imum likelihood ranking (MLR) is equivalent to
maximizing the total number of pairwise agreements
(MPA) between the selected ranking and the samples.

Lemma 1. Let A be a subset of &,, and assume that
we draw a sample profile TI ~ Mﬁo,b" Consider the

following two problems:

(MLR) argmgj(Pr[Hhr,ﬁ,S] and (4)

’ . .
(MPA) ey 37 (' < i 0
Ret¥)

Then, the solutions of (MLR) and (MPA) coincide.

Proof. U TI = (mq,...,7) ~ Mfoﬁ, then, starting
from , we get that:
Pr[l|m, 8,S] = i d ,
arg max r[|r, 8, 8] argg{nelﬁzg] k1 (m, )

That is, maximizing the likelihood function is equiv-
alent to minimizing the total number of pairwise dis-
agreements. Equivalently, we have to maximize the to-
tal number of pairwise agreements and, hence, retriev-
ing . Note that the samples in II are incomplete and
therefore each pair of alternatives is compared only in
some of the samples. O

Let us consider a subset A of &,,. According to Lemma
there exists a function f = f[II] : [n] x [n] - N
such that solving (MLR) is equivalent to maximizing
a score function s : A — N of the form:

s(m) =Y f(i,]) (6)

Rty

Then, as shown by Braverman and Mossel| [2009], there
exists a dynamic programming, which given an initial
approximation of the maximizer of s, computes a rank-
ing that maximizes s in time linear in n, but exponen-
tial in the error of the initial approximation. More
specifically, [Braverman and Mossel [2009] show that:

Lemma 2 (Braverman and Mossel [2009]). Consider
a function f : [n] x [n] = N. Suppose that there exists
an optimal ordering m € S,, that maximizes the score
(6) such that |7(i)—i| < R,Vi € [n]. Then, there exists
an algorithm which computes 7 in time O(n- R?-26%).

Recall that the positional estimator finds such an ap-
proximation @ of the central ranking. Also, a care-
ful examination of the proof of Lemma [2| shows that
given any initial permutation ¢ € &,,, the dynamic
programming algorithm finds, in time O(n - R? - 267%),
a maximizer (of the score function s) in A C &,,, where
A contains all the permutations that are R-pointwise
closdEI to the initial permutation o. Therefore, we im-
mediately get an algorithm that computes a likelier
than nature estimation 7° by finding 7%, for A such
that 7,7 € A.

Furthermore, if 7* is an approximation of my, then 7
is an approximation of 7*. Hence, we get an algorithm
for computing a maximum likelihood estimation 7*. It
turns out that 7* approximates 7y, but with a larger
margin of error. Thus, we obtain the following;:

Theorem 4. Let II be a sample profile from Mﬁo-ﬂ’
where S is a p-frequent selection sequence, p € (0,1],

|S| =71, mg € &, 8 >0 and let « > 0. Then:

1. There exists an algorithm that finds a likelier than
nature estimation of my with input 11 with proba-
bility at least 1 — n™% and in time:

1+0( 2

T=0mn*+n w521 20(55) log? n)

2. There exists an algorithm that finds a maximum
likelihood estimation of mg with input IT with prob-
ability at least 1 —n~—% and in time:

24«

T=0(n*+ nTOGE1) 90GH5) log® n)

To summarize the algorithm of Theorem |4 we note
that it consists of two main parts. First, using the
fact that our samples are drawn from a selective Mal-
lows distribution, in which the positions of the alterna-
tives exhibit some notion of locality, we approximate
the central ranking within some error margin for the
positions of alternatives. Second, beginning from the
approximation we obtained at the previous step, we
explore (using dynamic programming instead of ex-
haustive search, see Lemma [2)) a subset of &,, which
is reasonably small and provably contains with high
probability either 7y (for finding a likelier than nature
ranking) or 7* (for finding a maximum likelihood one).

2We say that 7,0 € &,, are R-pointwise close, if it holds
that: |7(i) — o(¢)] < R for all i € [n].
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4.2 Retrieving the Top-k Ranking

In this section, we deal with the problem of retrieving
the top-k sequence and their ranking in 7. In this
problem, we are given a sample profile from a selective
Mallows model and a positive integer k. We aim to
compute the (identities and the) order of the top-k
sequence in the central ranking .

Based on the properties of the positional estimator, it
suffices to show that (after sufficiently many selective
samples) any of the alternatives of the top-k sequence
1 in g is ranked correctly with respect to any other
alternative j in the majority of samples where both i
and j appear. Then, every other alternative will be
ranked after the top-k by the POSEST.

The claim above follows from the approximation prop-
erty of the POSEsST. Theorem [3] ensures that for any
alternative of the top-k sequence 7, the correct major-
ity order against most other alternatives (those that
are far from 4 in most reduced central rankings). So,
we can focus on only O(k) pairs, which could appear
swapped with noticeable probability.

To formalize the intuition above, we can restrict our
attention to the regime where the number of alterna-
tives n is sufficiently large and k = w(1/(pB)). By Re-
mark [I} this ensures that the accuracy of the approx-
imation of POSEST diminishes inversely proportional
to Bp?r, since we only aim to ensure that the accuracy
is O(k). Specifically, Theorem [5| provides an upper
bound on the estimation in that regime and Corol-
lary [1} gives a general lower bound for the case where

k= 0(n).

Theorem 5. Let k = w(1/(pB)) be a positive integer.
For any € € (0,1) and p € (0,1], there exists an algo-
rithm which given a sample profile from ./\/lfoﬁ, where
S is a p-frequent selection sequence with:

log(k/e log(n/e
510y + )

retrieves the top-k ranking of the alternatives of mo,
with probability at least 1 — €.

Proof (Sketch). Let II ~ MSO be our sample pro-
file. We will make use of the POSEST o = 7[II] and,
without loss of generality, assume that 7y is the iden-
tity permutation. We will bound the probability that
there exists some i € [k] such that (i) # 4.

For any i € [k], we can partition the remaining alter-
natives into A; (¢) = N;(L, A) and A3 () = [n]\ (41 (:)U
{i}). From the proof sketch of Theorem 3| we recall
that NV;(L, A) contains the alternatives that are ranked
no more than L places away from 7 in the reduced cen-
tral rankings corresponding to at least r/\ samples.

From an intermediate result occurring during the proof
of Theorem (3| it holds that for some L, A such that
|A1(2)| = O(i + #ISI log(n/e)), with probability at
least 1 — €/2, for every i € [n], for every alternative
J € Az(7) (distant from ¢ in most samples), j is ranked
in the correct order relatively to ¢ in the majority of
the samples where they both appear.

Picking L, A so that the above result holds, there exists
some 1, = O(ﬁ log(n/e)) such that, if |S| > 71, then

|41(8)] = O(k).

Furthermore, following the same technique used to
prove Theorem [[] we get that for some ry =
O(p(1 —oyz log(k/e)), if |S| > 72, then, with proba-
bility at least 1 — ¢/2, every pair of alternatives (i, j)
such that ¢ € [k] and j € A;(¢) is ranked correctly by
the majority of samples where both ¢ and j appear,
since the total number of such pairs is O(k?).

Therefore, with probability at least 1 — €, both events
hold and for any fixed ¢ € [k], 7(i) = 4, because 7 is
ranked correctly relatively to every other alternative
in the majority of their pairwise appearances and also
because for every other alternative j > k: 7(j) > k,
since each of the alternatives in [k] appear before it in
the majority of samples where they both appear. [

From a macroscopic and simplistic perspective, the
sample complexity of learning the top-k ranking
can be interpreted as follows. The first term, i.e.,
05( log(k/€)), accounts for learning the ranking of
the top—k sequence (as well as some O(k) other al-
ternatives), since each of them is close to the oth-
ers in the central ranking (and in each reduced rank-
ings where they appear). Hence, it is probable that
their pairs appear swapped. The second term, i.e.,
Og(p%k log(n/€)), accounts for identifying the top-k se-
quence, by approximating their positions. Intuitively,
the required accuracy of the approximation diminishes
to the value of k, since we aim to keep O(k) prob-
able swaps for each of the alternatives of the top-
k sequence. Combining the two parts, we conclude
that given enough samples, POSEST outputs a rank-
ing where the top-k ranking coincides with the top-k
ranking of 7.

We conclude with the lower bound, followed by a dis-
cussion about the tightness of our results.

Corollary 1. For any k < n, p € (0,1], € € (0,1/2],
B>0andr= 0(6—117 log(k/€)), there exists a p-frequent
selection sequence S with |S| = r, such that for any
central ranking estimator, there exists a mg € &,, such
that the estimator, given a sample profile from ./\/lﬁ0 s
fails to retrieve the top—k ranking of o with probabil-
ity at least €.
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Corollary[T)is an immediate consequence of Theorem [2]
The bounds we provided in Theorem[5land Corollary|[l]
become essentially tight if k = Q(% log(n/e)), since the
term Og(l% log(k/€)) becomes dominant in the upper
bound, which then essentially coincides with the lower
bound. In the intuitive interpretation we provided for
the two terms of the sample complexity in Theorem
this observation suggests that when k is sufficiently
large, the sample complexity of identifying the top-k
ranking under the selective Mallows model is domi-
nated by the sample complexity of sorting them.

We conclude with an informative example, where we
compare the sample complexity of retrieving the com-
plete central ranking and the top-k ranking in an inter-
esting special case. Let us assume that p = 1/loglogn
and that £ = ©g(log(n/e)). Then we only need
Og(loglogn - log lo%) samples to retrieve the top-k
ranking, while learning the complete central ranking
requires 23(log(n/€)) samples. Namely, we have an
almost exponential improvement in the sample com-
plexity, for values of k that suffice for most practical
applications.

5 Experiments

In this section, we present some experimental evalua-
tion of our main results, using synthetic data. First, we
empirically verify that the sample complexity of learn-
ing the central ranking from p—frequent selective Mal-
lows samples using POSEST is ©(1/p), assuming every
other parameter to be fixed. Furthermore, we illus-
trate empirically that POSEST is a smooth estimator
of the central ranking, in the sense that POSEST out-
puts rankings that are, on average, closer in Kendall
Tau distance to the central ranking as the size of the
sample profile grows.

5.1 Empirical sample complexity

We estimate the sample complexity of retrieving the
central ranking from selective Mallows samples where
n = 20 and § = 2, with probability at least 0.95, using
PoOsSEST by performing binary search over the size of
the sample profile. During a binary search, for every
value, say r, of the sample profile size we examine, we
estimate the probability that POSEST outputs the cen-
tral ranking by drawing 100 independent p—frequent
selective Mallows profiles of size r, computing POSEST
for each one of them and counting successes. We then
compare the empirical success rate to 0.95 and proceed
with our binary search accordingly. For a specific value
of p, we estimate the corresponding sample complexity,
by performing 100 independent binary searches and
computing the average value. The results, which are

120 1

100

Estimated Sample Complexity
£ D e ]
o o o
| | !

n
o
s

T u u T T T T
25 5.0 75 100 125 15.0 175
Inverse frequency parameter (1/p)

Figure 1: Estimated sample complexity of retrieving,
with probability at least 0.95 and using POSEST, the
central ranking from selective Mallows samples, with
n = 20, 8 = 2, over the frequency parameter’s inverse.
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Figure 2: Average Kendall Tau distance between the
output of POSEST and the central ranking with respect
to the size of the sample profile, for different values of
the frequency parameter p, when n = 20, 5 = 0.3.

shown in Figure indicate that the dependence of
sample complexity on the frequency parameter p is in-
deed ©(1/p).

5.2 Smoothness of PosEst

We plot, for different values of the frequency param-
eter p, the average Kendall Tau distance between the
central ranking and the output of POSEST with respect
to the size of the sample profile. For each value, say
r, of the sample profile size, considering = 0.3 and
n = 20, we draw 100 independent selective Mallows
sample profiles, each of size r, we compute the dis-
tance between the output of POSEST for each sample
profile and the central ranking and take the average of
these distances. The results are presented in Figure [2]
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