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A Complete Proofs for FedAvg

A.1 Proof of Theorem[Il

We prove with a reasoning by induction that:
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Proof. Server iteration ¢t = 1

Using the fair clients local model parameters evolution of
Section[2.3]and the server aggregation process expressed in
equation (T0), the global model can be written as
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Similarly, the global model for federated learning with plain
free-riders can be expressed as
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By subtracting equation (27) to equation (28), we obtain:
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Hence, 51 — 64 follows the formalization.
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We suppose the property true at a server iteration ¢. Hence,
we get:
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With the same reasoning as for ¢t = 1, we get:
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By subtracting equation (33)) to equation (31, we obtain:
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Given that —% Zje] N,L]\J/[K [77j (915 - 0;) + 9;] +
Mgt = f(6), we get:
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A.2 Proof of Theorem 2]

Proof. Expected Value

Let us first have a look at the expected value. By def-
inition, a sum of Gaussian distributions with 0 mean,
E [v;] = 0 and E [;] = 0. We also notice that E [f(0")] =
Me [E[0"] — E [9*+!]]. Hence, we obtain
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We consider that federated learning is converging, hence
|E[0'] —E [0"T] | L2922, 0, and for any positive a, there
exists Ny such that |E [§° — 0'7!] | < a. Since n; €]0, 1],
we have e €]0, Y=Y [and € + 2 €]0, 1[. Thus, we can
rewrite equation (38) as
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Using equation (@3) and (#7) in equation (#0), we get:
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Variance

The Wiener processes, v; and ; are independent from the
server models parameters 6°. Also, each Wiener process is
independent with the other Wiener processes. Hence, we
get:
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We define by R = max;ep,n) | E[607] — E [#"7] |, and
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Expressing . Before getting a simpler expression for E,
we need to consider Cov [ f(6), f(6™)]. To do so, we first

consider f(6") — E [£(6")]
(6" —E[£(67)]
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We can prove with a reasoning by induction that
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We define G/ = G? dies (NJ%WK pj> . Given that € €
10, 1[, we get the following upper bound on E:
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By denoting H = € + %, we can rewrite F as:
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Considering that min{l, m} <, we get:
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Considering the power series Zz:of) nz" = ﬁ, we get
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that Z;Zé H = (1_127,1)2 . Hence, E’s upper bound
goes to 0. Given that I is non-negative, we get:
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Expressing F'. Let us first consider the noise coming from
the SGD steps. All the 7; are independent with ;. Hence,
we have
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Replacing (64) in equation (50), we can express the variance
as
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By replacing F' and H with their respective expression, we
can conclude that
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Note 1: The asymptotic variance is strictly increasing with
the number of data points declared by the free-riders M.

While M; and p; are constants and independent from the
number of free-riders and from their respective number
of data points, N and e depend on the total number of
free-riders’ samples My . We first rewrite € = %a with

a = ZjeJ M ;n; not depending on Mg and we get:
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with M; — a > 0 because n; €0, 1[.

Also, considering that
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As the numerator is a polynomial of order 2 in Mk and
the denominator is a polynomial of order 1 in Mg, the
asymptotic variance is increasing with M.

Note 2: When considering that the SGD noise variance is
different for federated learning with and without free-riders,
we get:
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A.3 Proof of Theorem[3

Proof. Relation between federated learning with and
without free-riders global model

With a reasoning by induction similar to Proof [A.T] we get:
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Expected value

€; 18 a delta-correlated Gaussian White noise which implies
that E [¢;] = 0. Following the same reasoning steps as in

Proof[A.2] we get:
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Variance

All the ¢, are independent Gaussian white noises implying
Var [¢;] = 1. Following the same reasoning steps as in

Proof[A.2] we get:
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As for equation (50), all the ¢, are independent from v,
from #;, and from the global model parameters §¢. Hence,
for one disguised free-rider we get the following asymptotic
variance:
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A.4 Proof of Corollary ]|

Proof. Relation between federated learning with and
without free-riders global model

With a reasoning by induction similar to Proof we get:
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€x,¢ are delta-correlated Gaussian White noises which im-
plies that E [e;, ;] = 0. Following the same reasoning steps

as in Proof we get:
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All the €, are independent Gaussian white noises over
server iterations ¢ and free-riders indices k implying

Var [e;] = 1. Following the same reasoning steps as in
Proof[A.2] we get:
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Like for equation (50), all the e ¢ are independent from
v;, U; and the global model parameters *. Hence, for mul-
tiple disguised free-rider we get the following asymptotic
variance:
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A.5 Proof of Corollary 2]
Proof. Relation between federated learning with and
without free-riders global model

The relation remains the same for Theorem Theo-
rem [3| and Corollary [I| by replacing 7; with 7;(t) =

Sje N

Expected value

;i (t) and @y, by @y (¢) for disguised free-riding.

With pz- and (t) the properties for &y, 14, €; and ¢, remain
identical. Hence, they still are delta-correlated Gaussian
White noises implying that E[2;] = E[»y] = Ele] =
E [ex,¢] = 0. Hence, for Theorem 2} Theorem 3] and Corol-
lary [T} we get:
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Variance asymptotic behaviour proven in Proof [A.2] [A3]
and [A.4] can be reduced to the one in Proof[A.2] Hence, F,
equation (64), need to be reexpressed to take into account
p;(t). All the 7; are still independent with v;. Hence, we
have:
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Considering that pz 12420 0, we get:
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Using the same reasoning as the one used for the expected
value convergence in Proof [A.2] we get that the SGD noise
contribution linked to F' goes to O at infinity.

For the disguised free-riders, €, ; are still independent Gaus-
sian white noises implying Var [ex ;] = 1. Hence, following
a reasoning similar to the on in Proof[A.2] we get:
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soning as for the proof of the expected value for free-riders,
Section XX, we get:
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B Complete Proofs for FedProx

FedProx is a generalization of FedAvg. As such, we use
the proof done for FedAvg to prove convergence of free-
riders attack using FedProx as an optimization solver. The
L2 norm monitored by p changes the gradient as g, (6;) ~
ril0; — 03] + plo; — 0°].

Using equation (7)), we then get:
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considering that 6;(0) = 6", Hj(Eg/Ij) = 9;-“, and
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0j(0;) = of, we get:
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where 7, = e 1= We can reformulate this as
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The SGD noise variance between two server iterations for
FedProx is:
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We also define 7} = v; + /i}ur
For FedAvg, y1 = 0, we get ; = 7); and §; = 1 — ;. By
property of the exponential, ; €]0, 1[. As r; and y are non

negative, then n; €]0, 1 like 7; for FedAvg.
Theorem [Il for FedProx
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Using the same reasoning by induction as in Proof we
get:
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Theorem 2] for FedProx

Like for FedAvg, we make the assumption that federated
learning without free-riders using FedProx converge. In
addition, 7; and v are also independent delta-correlated
Gaussian white noises. Following the same proof as in
Proof[A.2] we thus get:
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and
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The asymptotic variance still strictly increases with M.

Note: We introduce z = A(r; + p) Eg/[j. By taking the

partial derivative of p} with respect to u, we get:
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0 Ay 1 S+ (14 22)e%], (107

= —0 ———
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which is strictly negative for a positive u considering that
all the other constants are positive. Hence, the SGD noise
variance p; is inversely proportional with the regularization

factor p.

Similarly, for €', by considering that 7); can be rewritten

as n; = ; Tfi# + r»iu’ the partial derivative of 7; with
J J

respect to u can be expressed as:
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oMy 7"732[1 —(
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Which is strictly pqsitive. Henc.e 77§ is strictly increasing
with the regularization y and so is €.

—z)e” "], (108)

Considering the behaviours of €’ and p/; with respect to the
regularization term p, the more regularization is asked by
the server and the smaller the asymptotic variance is, leading
to more accurate free-riding attacks.

Theorem 3 for FedProx

The free-riders mimic the behaviour of the fair clients.
Hence, we get:
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For disguised free-riders, the variance is also inversely pro-
portional to the regularization parameter .

Corollary 1] for FedProx

Similarly, for many free-riders, we get:
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C Additional experimental results

C.1 Accuracy Performances
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Figure 3: Accuracy performances for FedAvg and 20 epochs in the different experimental scenarios.
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Figure 6: Accuracy performances for FedProx and 5 epochs in the different experimental scenarios.



Free-rider Attacks on Model Aggregation in Federated Learning

5 free-riders 1 free-rider

45 free-riders

1 free-rider

CIFAR-10

10

10"
0
0
0

07

10

0

0

0

10

0

0

&
<
&
&
8
8

MNIST-iid
— Only Fair o N
o Plain o
— Disguised o, _—
— Disguised 37, ’
. 22100
It
10
0
10" G107t
40 60 T 20 30 4 50 60 70 ) 20 30 40 50
102
0 10°
10°
i
10t
10!
S0 75 100 125 20 40 60 80 100 120 140 20 40 60 80 1
102
10
. 100
10
100
0
10 10!
10
0 .
102 10t
10"
20 40 60 80 100 120 140

Figure 7: Loss performances for FedAvg and 20 epochs in the different experimental scenarios.
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Figure 10: Loss performances for FedProx and 5 epochs in the different experimental scenarios.
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