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A Derivation of γ-divergence Estimator

We show how to derive the k-NN based γ-divergence estimator in (7). The k-NN based γ-divergence estimator and its
derivation is as follows.
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where γ(∈ R) > 0.

We rewrite Eq. (3) as
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whereM andM′ are the supports of p and q. By simply plugging Eqs. (4) and (5) into Eq. (10), we estimate Dγ(p‖q) with
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In second equation, because of logarithm, k/c̄ in first term is vanished. The third equation holds because kγ/c̄γ · c̄γ/kγ = 1.

Therefore, the definition holds.

B Robust properties on ABC with our method

We investigate the behavior of the sensitivity curve (SC), which is an empirical analogue of influence function (IF) both of
which are used in quantifying the robustness of statistics. The analysis corresponds to a finite-sample analogue of what
is called redescending property [55] in the context of influence function analysis. Note that we refer to the redescending
property in the asymptotic sense, where some authors use the term redescending only when there exists a finite threshold
ρ > 0 such that the influence function ψ satisfies ∀|x| > ρ,ψ(x) = 0 [36].

B.1 Notation

Let R,N, and R≥0 denote the set of real numbers, positive integers, and non-negative real numbers, respectively. Let 1{·}
denote the indicator function. For m ∈ N, define [m] := {1, . . . ,m}.
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We fix Xn := (X1, . . . , Xn). For Y m = (Y1, . . . , Ym) ∈ Rm×d, define ‖Y m‖col,∞ := maxj∈[m] ‖Yj‖. Let Θ be the
parameter space, dGmθ (Y m) :=

∏m
j=1 pθ(Yj)dYj , and define Pθ(A) :=

∫
1{Y m ∈ A}dGmθ (Y m) for (Borel) measurable

set A ⊂ Rm×d.

Definition 1 (Population pseudo-posterior). The population pseudo-posterior for D̂, ε, π is defined as

π̂(θ|Xn) :=
π(θ)Pθ(D̂(Xn ‖ Y m) < ε)∫
π(θ′)Pθ′(D̂(Xn ‖ Y m) < ε)dθ′

.

For convenience of notation, we define Xn
[X0] as Xn

[X0]
:= (X0, X1, . . . , Xn), i.e., the data Xn combined with the

contamination X0. We consider the behavior of π̂ under a contamination X0, i.e., the properties of π̂(θ|Xn
[X0]).

Definition 3 (Sensitivity curve [36, 2.1e]). The sensitivity curve of π̂ is defined as

SCθn+1(X0) := (n+ 1)
(
π̂(θ|Xn

[X0])− π̂(θ|Xn)
)
.

B.2 Theorem and Proof

In the following theorem, we will see how SCθn+1 behaves when the outlier X0 goes far away from the origin.

Theorem 1 (Sensitivity curve analysis). Assume k < min{n,m}. Also assume that Fθ(ε) := Pθ(D̂(Xn ‖ Y m) < ε) is
β-Lipschitz continuous for all θ ∈ Θ. Let D̂ be the γ-divergence estimator in Eq. (7). Then we have

lim
‖X0‖→∞

SCθn+1(X0) ≤ − βπ(θ)

Λn(1 + γ)
log

(
1− 1

n2

)n+1

,

where Λn :=
∫
π(θ′)Fθ′(ε)dθ

′. Furthermore, if Λn converges to Λ 6= 0 for n→∞, then the right-hand side expression
converges to 0.

Proof. For simplicity, define D̂n,m := D̂(Xn ‖ Y m) and D̂n,m
[X0]

:= D̂(Xn
[X0] ‖ Y

m). Let us start by considering

lim‖X0‖→∞
∫
1{D̂n,m

[X0] < ε}dGmθ (Y m). To obtain this limit, observe that we only need to take an arbitrary sequence

{X ′j}∞j=1 satisfying ‖X ′j‖ → ∞ and calculate limj→∞
∫
1{D̂n,m

[X′j ]
< ε}dGmθ (Y m) (see Remark 3). Fix such a sequence

{X ′j}∞i=1.

We first consider the point-wise limit limj→∞ 1{D̂n,m
[X′j ]

< ε} for each value of Y m because we later interchange the limit

and the integration by applying the bounded convergence theorem [67, 11.32]: limj→∞
∫
1{D̂n,m

[X′j ]
< ε}dGmθ (Y m) =∫

limj→∞ 1{D̂n,m
[X′j ]

< ε}dGmθ (Y m) using the boundedness of |1{D̂n,m
[X′j ]

< ε}| (bounded by 1) and the finiteness of the

measure dGmθ (Y m).

Fix Y m. Since {X ′j}∞i=1 is diverging, if j is large enough, X ′j is never within the k-nearest neighbors of any of the points
in Xn or Y m (here, we used the assumption k < n,m), hence ρdk(i) and νdk(i) (i = 1, . . . , n) do not depend on X ′j if j is

large enough. Let A1 :=
∑n
i=1

(
1

ρdk(i)

)γ
and A2 :=

∑n
i=1

(
1

νdk(i)

)γ
, and by abuse of notation, substitute X0 := X ′j so as

to enable using the convenient notation ρk(0) and νk(0). We can rewrite the event {D̂n,m
[X′j ]

< ε} in terms of D̂n,m based on
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the following calculation:
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= γ log(1− 1
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log
(
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1 ρ−dγk (0) + 1
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− (1 + γ) log
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.

Therefore, D̂n,m
[X′j ]

< ε⇔ D̂n,m < ε̃+ φ(X ′j) if j is large enough, where

ε̃ := ε− 1

1 + γ
log(1− 1

n2
), φ(X ′j) := log

(
A−1

1 ρ−dγk (0) + 1
)
− (1 + γ) log

(
A−1

2 ν−dγk (0) + 1
)

and ρk(i), νk(i) are based on the temporary notation X0 = X ′j . In terms of indicator functions, we have just shown that

1{D̂n,m
[X′j ]

< ε} = 1{D̂n,m < ε̃+ φ(X ′j)} (11)

holds if j is large enough. We have limj→∞ φ(X ′j) = 0 as well.

Now we show that, for each fixed distinct set of points (Y2, . . . , Ym), we have limj→∞ 1{D̂n,m < ε̃ + φ(X ′j)} =

1{D̂n,m < ε̃} for almost all Y1. Fix distinct points Y2, . . . , Ym. First, we can show that

1{D̂n,m < ε̃} ≤ 1{D̂n,m < ε̃+ φ(X ′j)} ≤ 1{D̂n,m < ε̃}+
(
1{D̂n,m = ε̃} − 1{D̂n,m = ε̃+ φ(X ′j)}

)
(12)

holds if j is large enough. To see the first inequality, observe the following: if Y1 is such that D̂n,m < ε̃, there exists J such
that for all j > J it holds that |φ(X ′j)| < ε̃− D̂n,m, and hence D̂n,m < ε̃− |φ(X ′j)| ≤ ε̃+ φ(X ′j). Therefore, if j is large
enough, 1{D̂n,m < ε̃} ≤ 1{D̂n,m < ε̃ + φ(X ′j)} as functions of Y1. The second inequality can be shown by similarly
obtaining 1{D̂n,m > ε̃} ≤ 1{D̂n,m > ε̃+φ(X ′j)} for large enough j and rearranging the terms. By Equation (12), defining

Z := {Y1 : D̂n,m = ε̃} ∪
(⋃

j{Y1 : D̂n,m = ε̃+ φ(X ′j)}
)

, we have 1{D̂n,m < ε̃+ φ(X ′j)} = 1{D̂n,m < ε̃} if j is large

enough, for each Y1 6∈ Z . On the other hand, by Proposition 1, each of (D̂n,m)−1({ε̃}) and (D̂n,m)−1({ε̃+ φ(X ′j)}) has
zero Lebesgue measure, hence their countable union Z also has zero Lebesgue measure. As a result,

lim
j→∞

1{D̂n,m < ε̃+ φ(X ′j)} = 1{D̂n,m < ε̃} a.e. Y1 (13)

holds for all (Y2, . . . , Ym).

Now, apply the bounded convergence theorem [67, 11.32], the Fubini-Tonelli theorem [9, Theorem 18.3], and Equation (13)
to obtain

lim
j→∞
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[X′j ]

< ε) = lim
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=

∫
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=
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) m∏
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dGθ(Yj) =

∫
1{D̂n,m < ε̃}dGmθ (Y m) = Pθ(D̂

n,m < ε̃),
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where we also took into account that the points Y2, . . . , Ym are almost surely distinct. Since the choice of {X ′j}∞i=1 was
arbitrary, the above calculation implies

lim
‖X0‖→∞

Pθ(D̂
n,m
[X0] < ε) = Pθ(D̂

n,m < ε̃).

Therefore, defining ηθ(ε) := π(θ)Pθ(D̂
n,m < ε),

lim
‖X0‖→∞

π̂(θ|Xn
[X0]) = lim

‖X0‖→∞

π(θ)Pθ(D̂
n,m
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=
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n,m
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)(
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∫
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)−1

= (ηθ(ε̃))

(∫
ηθ′(ε̃)dθ

′
)−1

where we applied the bounded convergence theorem [67, 11.32] to the integration in the denominator as Pθ ≤ 1. As a result,
denoting ∆θ,ε̃,ε := ηθ(ε̃)− ηθ(ε) and noting that ε̃ ≥ ε hence ∆θ,ε̃,ε ≥ 0,

lim
‖X0‖→∞

SCθn+1(X0) = (n+ 1)

(
lim

‖X0‖→∞
π̂(θ|Xn

[X0])− π̂(θ|Xn)

)
= (n+ 1)

(
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)
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(
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′)(
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)
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n

=
1

Λn
(n+ 1)(ηθ(ε̃)− ηθ(ε)).

Finally, applying ηθ(ε̃)− ηθ(ε) ≤ βπ(θ)(ε̃− ε), we obtain

lim
‖X0‖→∞

SCθn+1(X0) ≤ − βπ(θ)

Λn(1 + γ)
log

(
1− 1

n2

)n+1

as desired.

If Λn converges to a nonzero value H , we have

lim
n→∞

− βπ(θ)

Λn(1 + γ)
log

(
1− 1

n2

)n+1

= − βπ(θ)

Λ(1 + γ)
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log
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log
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(
1

e

)0
)

= 0.

The following Proposition 1 is used in the proof of Theorem 1. Proposition 1 reflects the smoothness of D̂n,m to show that
the transformation Y1 7→ D̂n,m results in a continuous random variable.

Proposition 1 ({D̂n,m = c} has zero measure.). Fix distinct points (Y2, . . . , Ym) and define f(Y1) := D̂n,m. Then, for
any c ∈ R, the set f−1({c}) has Lebesgue measure zero.

Proof. We start by observing that the space of Y1, namely Rd, can be split into a finite family of disjoint open sets {Ul}Ll=1

such that U c := Rd \
(⋃L

l=1 Ul

)
has measure zero and that for all Y1 ∈ Ul, the k-NN (more precisely, the index of the

k-NN point) of Xi (i ∈ [n]) among {Yj}mj=1 and that of Yj among {Yj′}j′ 6=j are identical. Such a partition makes the
problem easier because within each partition cell, Ul, the k-NN distances νk(i) and µk(j) take the simple form as mere
Euclidean distances between two predetermined points.
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Such {Ul}Ll=1 can be constructed as follows. Define Aji = ‖Yj −Xi‖ and Bjj′ = ‖Yj − Yj′‖ and consider the distance
matrices

A =


A11 · · · · · · A1n

... A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn

 , B =


B11 · · · · · · B1m

... B22 · · · B2m

...
...

. . .
...

Bm1 Bm2 · · · Bmm

 .

For each point Xi or Yj′ , the corresponding k-NN points are determined by the order of the elements in the corresponding
columns A·,i and B·,j′ . In A, the only variables with respect to Y1 are the first row. Similarly, the variables in B are the first
row and the first column. In other words, the bottom-right blocks obtained by removing the first rows and first columns are
constant with respect to Y1.

Let us first consider A. The k-NN points for each Xi can be determined by finding where A1i is ranked among the ranking
of column i. Since the elements of column i except the first element, (A2i, . . . , Ami), is constant with respect to Y1, they can
be sorted as (A(2),i, . . . , A(m),i) in ascending order to define a partitioning of Rd in each of which A1i has the same ranking
among the elements in the column i: V ij = {Y1 ∈ Rd : ‖Y1 −Xi‖ ∈ (A(j),i, A(j+1),i)} (j ∈ [m]), where A(1),i = 0 and
A(m+1),i =∞. By taking the intersections of such partitions, V(j1,...,jn) = V 1

j1
∩ · · · ∩ V njn , we obtain a family of disjoint

open sets V := {V(j1,...,jn)}(j1,...,jn)∈[m]n that covers almost everywhere Rd because each V (i)c := Rd \
⋃
j∈[m] V

i
j has

Lebesgue measure zero and

Rd =
⋂
i

Rd =
⋂
i

V (i)c ∪
⋃
ji

V iji

 = V c ∪
⋂
i

⋃
ji

V iji

where V c is a set with less Lebesgue measure than the sum of the measures of V (i)c hence has zero measure.

Similarly, let us consider B. The second-to-last columns of B can be treated in the same way as A to obtain the almost-
everywhere finite partitionWj of Rd for each column j = 2, . . . ,m in which the ranking of B1j remains invariant for each
column (note that, although the diagonal elements of B are not used for determining the k-NN points, their existence does
not affect the above construction). Now we consider the first column and construct an almost-everywhere partition of Rd
in each of which the ordering of ‖Y2 − Y1‖, . . . , ‖Ym − Y1‖ does not change. The existence of such a finite partition is
guaranteed by the existence of l-th degree Voronoi diagrams for l = 1, . . . ,m− 1 [3, 26]. In l-th degree Voronoi diagram
{W (l)

a }a, each cell W (l)
a represents a region in which Y1 has the same set of points as the l-nearest neighbors. Therefore,

by taking the intersections W(a1,...,am−1) = W
(1)
a1 ∩ · · · ∩W

(m−1)
am−1 , we obtain regions in each of which the ordering of the

distances ‖Y2 − Y1‖, . . . , ‖Ym − Y1‖ remain the same. There are only finite regions in the l-th degree Voronoi diagram
for all l = 1, . . . ,m, hence the family of their intersections are also finite, and the boundaries of Voronoi cells have zero
Lebesgue measure as they correspond to the sets where two of the sites are at an equal distance. Therefore, we have obtained
the desired partition which we denote byW1.

By taking all intersections of the above partitions, V, {Wj}mj=1, we obtain the desired finite partition U = {Ul}Ll=1 that
covers almost everywhere Rd and in each Ul, the indices of the k-NN points remain the same.

Let us define fl := f |Ul . Now, we show that each f−1({c})∩Ul has zero measure. In each Ul, the distances νk(i) and µk(j)

are strictly positive as no two points overlap. Therefore, fl : Ul → R is a real analytic function since it is a composition of
analytic functions:

fl(Y1) = − 1

γ
log

(
n∑
i=1

(νk(i))−γd

)
+

1

1 + γ
log

 m∑
j=1

(µk(j))−γd

+ const.

= − 1

γ
log

(
n∑
i=1

exp

(
−γd1

2
log(νk(i))2

))
+

1

1 + γ
log

 m∑
j=1

exp

(
−γd1

2
log(µk(j))2

)+ const.,

and (νk(i))2, (µk(j))2 are either quadratic forms of Y1 or constants. As a result, f−1
l ({c}) = f−1({c}) ∩ Ul is a zero set

of a real analytic function fl − c that is not a constant function, hence has zero Lebesgue measure [23, Lemma 1.2], [56].
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Finally, the assertion of the proposition follows immediately from

λ(f−1({c})) = λ

(
f−1({c}) ∩

(
U c ∪

L⋃
l=1

Ul

))
≤ λ

(
f−1({c}) ∩ U c

)
+

L∑
l=1

λ
(
f−1({c}) ∩ Ul

)
,

where we denoted the Lebesgue measure by λ.

B.3 Remarks

Remark 1 (Relation to redescending property of influence functions). It should be noted that the above theorem is a
finite-sample analogue of the redescending property of influence functions. In the case of influence functions, redescending
property is defined as convergence to zero under ‖X0‖ → ∞ [55]. The discrepancy that the limit in our case is nonzero
(only converges to zero with n→∞) stems from the fact that we consider the finite sample analogue, namely, the sensitivity
curve. This is intuitively comprehensible since the influence function reflects the response to contamination in the underlying
distribution, i.e., a population quantity.

Remark 2 (The reason to consider sensitivity curve instead of influence functions.). The reason we consider SC instead
of IF is two-fold: (1) we are interested in the pseudo-posterior distribution π̂(θ|Xn) with respect to a finite sample Xn,
hence the SC can more precisely provide the information of our interest, and (2) the IF of the quantities based on the
considered divergence estimator may not even exist. The definition of the considered divergence estimator is based on k-NN
density estimators, and it does not have a straightforward representation as a statistical functional (i.e., a functional of the
underlying data distribution). Furthermore, even if we consider the divergence estimator as a functional of the underlying
probability density function of the data, the k-NN density estimator is not square-integrable if k = 1 [8, Proposition 3.1],
hence the standard definition of influence functions as a dual point in the Hilbert space L2 is not applicable. Therefore, we
consider the sensitivity curve for the theoretical analysis, which can directly reflect the detailed procedure to construct the
estimate from given data points.

Remark 3 (Diverging limit and diverging sequence limit). In the proof, we used the fact that if limi→∞ f(X ′j) = L for any
diverging sequence {X ′j}∞i=1 (i.e., ‖X ′j‖ → ∞), we have lim‖X0‖→∞ f(X0) = L. We show a proof by contradiction. First
recall that lim‖X0‖→∞ f(X0) = L means that for any ε > 0, there exists B > 0 such that for any X0 satisfying ‖X0‖ > B
it holds that |f(X0)− L| < ε. To show this by contradiction, assume that there exists ε > 0 such that for any B > 0 there
exists X0 satisfying ‖X0‖ > B and |f(X0) − L| ≥ ε. Now fix such an ε and define Bi := 2i for i ∈ N. By assumption,
there exist a sequence {xi}∞i=1 such that ‖xi‖ > Bi and |f(xi)− L| ≥ ε. Because {xi}∞i=1 is a diverging sequence, it has
to hold that limi→∞ f(xi) = L. This is a contradiction.

Remark 4 (Exchanging the limits). The current statement of the theorem takes the limit of lim‖X0‖→∞ for each fixed n.
One should note that A1 and A2 in the proof depend on n and the sample Xn. Similarly, ρ−dγk (0) and ν−dγk (0) depend on
the sample. Therefore, care should be taken if one wants to merge the two limit operations limn→∞ and lim‖X0‖→∞.

C Preliminaries for Asymptotic Analysis

In this section, we summarize several specific lemmas and theorems to show the asymptotic properties of the proposed
discrepancy in Eq. (7). Here, we denote→w,→d and→p as the weak convergence of distribution functions, the convergence
of random variables in distribution and the convergence of random variables in probability, respectively.

Remembering the fact that ρk(i) is a random variable, which is the measure of discrepancy between Xi and its k-th nearest
neighbor in Xn\Xi, the following lemmas and theorems hold.

Lemma 1. Let ζn,k,1 := log(n− 1)ρdk(1) be a random variable, and let Fn,k,x(u) := Pr(ζn,k,1 < u|X1 = x) denotes its
conditional distribution function. Then,

Fn,k,x(u) = 1−
k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j ,

where Pn,u,x :=
∫
M∩B(x,Rn(u))

p(t)dt and Rn(u) := (eu/(n− 1))1/d.
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Proof. We can obtain

Fn,k,x(u) = Pr(ζn,k,1 < u|X1 = x)

= Pr(log(n− 1)ρdk(1) < u|X1 = x) = Pr

(
ρk(1) <

(
eu

n− 1

)1/d

|X1 = x

)
= Pr

(
ρk(1) < Rn(u)|X1 = x

)
(because Rn(u) := (eu/(n− 1))1/d).

The last expression can be interpreted as the probability of k or more elements from {X2 . . . Xn} being contained in
M∩B(x,Rn(u)) given X1 = x. Since we have i.i.d. observations, this condition can be ignored. Therefore, we can see
this probability as binomial distribution and obtain

Fn,k,x(u) = Pr

(
ρk(1) < Rn(u)|X1 = x

)
=

n−1∑
j=k

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

= 1−
k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j ,

and the claim holds.

Lemma 2 (Log-Erlang distribution). Let u be a random variable from the Erlang distribution as

fx,k(u) =
1

Γ(k)
λ(x)kuk−1 exp(−λ(x)u),

where λ(x) > 0 and k ∈ Z+. Here, Z+ denotes the set of positive integer. Then, l = log u is a random variable from the
log-Erlang distribution as

gn,k(l) =
1

Γ(k)
λ(x)k(exp(l))k exp(−λ(x) exp(l)).

Proof. If we set l = log u, we obtain u = exp(l) and dl
du = 1

u = 1
exp(l) . When we denote the distribution of l as gn,k(l),

gn,k(l) = fn,k(u)

∣∣∣∣dudl
∣∣∣∣ =

1

Γ(k)
λ(x)kuk−1 exp(−λ(x)u) · exp(l)

=
1

Γ(k)
λ(x)k(exp(l))k−1 exp(−λ(x) exp(l)) · exp(l) =

1

Γ(k)
λ(x)k(exp(l))k exp(−λ(x) exp(l)).

This is the same as the definition of the log-Gamma distribution. Because of k ∈ Z+, we can see that gn,k(l) is the
log-Erlang distribution.

The claim is proved.

Lemma 3 (Expectation of log-Erlang distribution). Let fx,k(u) := 1
Γ(k)λ(x)k(exp(l))k exp(−λ(x) exp(l)) be the density

of the log-Erlang distribution with parameters λ(x) > 0 and k ∈ Z+. Then, the 1-th moments of the log-Erlang distribution
can be calculated as ∫ ∞

0

ufx,k(u)du = ψ(k)− log(λ(x)),

where ψ(·) is a digamma function.

Proof. Because the function fx,k(u) is the density of the log-Erlang distribution, we obtain∫
R

(exp(u))k exp(−λ(x) exp(u))du =

∫
R

exp(ku− λ(x) exp(u))du = Γ(k)λ(x)−k.
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Differentiating the inside of the above integration by k, we obtain

d

dk
exp(ku− λ(x) exp(u)) = u exp(ku− λ(x) exp(u)) = u · Γ(k)λ(x)−kfx,k(u).

Therefore, the expectation of u is written as

E[u] =

∫ ∞
0

ufx,k(u)du =

∫ ∞
0

u
1

Γ(k)
λ(x)k exp(ku− λ(x) exp(u))du

=
λ(x)k

Γ(k)

∫ ∞
0

u exp(ku− λ(x) exp(u))du =
λ(x)k

Γ(k)

∫ ∞
0

d

dk
exp(ku− λ(x) exp(u))du

=
λ(x)k

Γ(k)

d

dk

∫ ∞
0

exp(ku− λ(x) exp(u))du =
λ(x)k

Γ(k)

d

dk
Γ(k)λ(x)−k

=
λ(x)k

Γ(k)

(
d

dk
Γ(k) · λ(x)−k − Γ(k) · λ(x)−k log(λ(x))

)
=

1

Γ(k)

d

dk
Γ(k)− log(λ(x)) = ψ(k)− log(λ(x)).

The claim is hold.

We show the following properties on the log-Erlang distribution according to standard proof techniques in [48].
Lemma 4. Suppose that Lebesgue-approximable function on p in Assumptions 2 and 3 holds. Let u be fixed. Then,
Fn,k,x(u)→w Fk,x(u) for almost all x ∈M, where

Fk,x(u) := 1− exp(−λ(x) exp(u))

k−1∑
j=0

1

j!
(λ(x) exp(u))j

is the log-Erlang distribution with λ(x) = c̄p(x).

Proof. According to Assumptions 2 and 3, we can see that for all δ > 0 and almost all x ∈M there exists n0(x, δ, u) ∈ Z+

such that if n > n0(x, δ, u), then B(x,Rn) = B(x,Rn) ∩M, and

p(x)− δ <

∫
B(x,Rn)∩M p(t)dt

exp(u)c̄
n−1

< p(x) + δ

(
V(B(x,Rn) ∩M) =

exp(u)c̄

n− 1

)
.

Therefore, if n > n0(x, δ, u),

Fn,k,u(u) = 1−
k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

= 1−
k−1∑
j=0

(
n− 1
j

)(∫
B(x,Rn)∩M

p(t)dt

)j(
1−

∫
B(x,Rn)∩M

p(t)dt

)n−1−j

≥ 1−
k−1∑
j=0

(
n− 1
j

)(
exp(u)

n− 1
c̄(p(x) + δ)

)j(
1− exp(u)

n− 1
c̄(p(x)− δ)

)n−1−j

= 1−
k−1∑
j=0

(n− 1)!

j!(n− 1− j)!

(
exp(u)

n− 1
c̄(p(x) + δ)

)j(
1− exp(u)

n− 1
c̄(p(x)− δ)

)n−1−j

= 1−
k−1∑
j=0

1

j!

(n− 1)!

(n− 1− j)!(n− 1)j

(
exp(u)c̄(p(x) + δ)

)j(
1− exp(u)

n− 1
c̄(p(x)− δ)

)n−1−j

.

Because of the fact that

lim
n→∞

(n− 1)!

(n− 1− j)!(n− 1)j
= 1,

lim
n→∞

(
1− exp(u)

n− 1
c̄(p(x)− δ)

)n−1−j

= exp(− exp(u)c̄(p(x)− δ)),
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we obtain for all δ > 0 and for almost all x ∈M,

lim inf
n→∞

Fn,k,u(u) ≥ 1−
k−1∑
j=0

1

j!

(
exp(u)c̄(p(x) + δ)

)j
exp(− exp(u)c̄(p(x)− δ)).

By choosing δ → 0, we can see that

lim inf
n→∞

Fn,k,u(u) ≥ 1−
k−1∑
j=0

1

j!
(exp(u)λ(x))j exp(− exp(u)λ(x)),

where λ(x) := c̄p(x).

In the same way, we can show that for almost all x ∈M

lim sup
n→∞

Fn,k,u(u) ≤ 1−
k−1∑
j=0

1

j!
(exp(u)λ(x))j exp(− exp(u)λ(x)).

When we define Fk,x(u) := 1−
∑k−1
j=0

1
j! (exp(u)λ(x))j exp(− exp(u)λ(x)), the claim is proved.

Lemma 5. Let ξn,k,x and ξk,x be random variables with Fn,k,x and Fk,x distribution functions, and let κ ∈ R be arbitrary.
Then for almost all x ∈M we have that ξκn,k,x →d ξ

κ
k,x, where fn →d f indicates convergence of random variable fn in

distribution.

Proof. According to Lemma 4, we obtain Fn,k,x(u) →w Fk,x(u) for almost all of x ∈ M. This is equal to the fact that
Fn,k,x(u)→d Fk,x(u) for almost all of x ∈M. Since the function of (·)κ is continuous on (0,∞) and Xi ∈ (0,∞) almost
surely, by using the continuous mapping theorem ([78]), the claim is proved.

For proving Corollary 1, we introduce the Lévy’s Upward Theorem as follow.
Theorem 4 (Lévy’s Upward Theorem). Let {Zn}n≥0 be a collection of random variables, and let Fn be a filtration
on the same probability space. If supn≥0 |Zn| is integrable, Zn → Z∞ almost surely as n → ∞ and Fn ↑ F∞, then
E[Zn|Fn]→ E[Z∞|F∞] both almost surely and in mean.

To show Theorem 2, we analyze the following asymptotic behavior of the logarithm of random variable.
Theorem 5 (Theorem 21 in Poczos and Schneider [64]). Suppose that the boundedness of an expectation on p in Assumptions
2 and 3 holds. If 0 ≤ κ and ξκn,k,x →d ξ

κ
k,x, or −k < κ < 0 and ξκn,k,x →d ξ

κ
k,x, then limn→∞ E[ξκn,k,x] = E[ξκk,x].

Theorem 6 (The asymptotic expectation). Suppose that the boundedness of an expectation on p in Assumptions 2 and 3
holds. If −k < κ < 0, or 0 ≤ κ, then we obtain

lim
n→∞

E
[

log(n− 1)κρdκk (1)|X1 = x

]
= κ(ψ(k)− log(c̄p(x))),

lim
m→∞

E
[

logmκνdκk (1)|X1 = x

]
= κ(ψ(k)− log(c̄q(x))).

Proof. It is enough to show the first equation because the second equation can be showed in the same way. According to
Lemma 5, we obtain ξκn,k,x →d ξ

κ
k,x for almost all x ∈M. Then,

lim
n→∞

E
[

log(n− 1)κρdκk (1)|X1 = x

]
= κ lim

n→∞
E
[

log(n− 1)ρdk(1)|X1 = x

]
= κ lim

n→∞
E
[
ζn,k,1|X1 = x

]
= κ lim

n→∞
E
[
ξn,k,x

]
= κE[ lim

n→∞
ξn,k,x] (ξκn,k,x →d ξ

κ
k,x by Lemma 5)

= κE[ξk,x] (by Theorem 5)

= κ

∫ ∞
0

ufx,k(u)du = κ(ψ(k)− log(λ(x))) (by Lemma 3)

= κ(ψ(k)− log(c̄p(x))).

Thus, the claim is proved.
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Theorem 7. Suppose that the boundedness of an expectation on q in Assumption 2-4 holds. If −k < κ < 0, or 0 ≤ κ, then
we obtain

lim
m→∞

E
[

log(m− 1)κρ̄dκk (1)|Y1 = y

]
= κ(ψ(k)− log(c̄q(y))).

Proof. We can show this in the same way of Theorem 6 by substituting n, ρdk, x to m, ρ̄dk, y.

To show Theorem 3, we focus on p̂γk(n)(x), q̂γk(n)(x) and q̂γk(m)(y) and guarantee the convergence in probability of each
estimators.

Lemma 6 (Moments of inverse Erlang distribution). Let fx,k = 1
Γ(k)λ

k(x)u−1−k exp(−λ(x)/u) be the density of inverse
Erlang distribution with parameters λ(x) > 0 and k ∈ Z+. Let κ ∈ R such that κ < k. Then, the κ-th moments of inverse
Erlang distribution can be calcurated as ∫ ∞

0

uκfx,k(u)du = λκ(x)
Γ(k − κ)

Γ(k)
.

Proof. The κ-th moments of fx,k is∫ ∞
0

uκfx,k(u)du =

∫ ∞
0

uκ
1

Γ(k)
λk(x)u−1−k exp(−λ(x)/u)du

=
λk(x)

Γ(k)

∫ ∞
0

u−1−(k−κ) exp(−λ(x)/u)du.

If k > κ, the integral term in the above equals to the marginalization of inverse gamma distribution. Thus,∫ ∞
0

uκfx,k(u)du =
λk(x)

Γ(k)

∫ ∞
0

u−1−(k−κ) exp(−λ(x)/u)du

=
λk(x)

Γ(k)

Γ(k − κ)

λk−κ(x)
= λκ(x)

Γ(k − κ)

Γ(k)
.

The claim is proved.

Lemma 7 (p̂γk(n)(x) converges to pγ(x) in probability). Suppose that Assumptions 2 and 3 are satisfied. Let κ = γ < k.
If k(n) denotes the number of neighbors applied at sample size n, limn→∞ k(n) = ∞ and limn→∞ n/k(n) = ∞, then
p̂γk(n)(x)→p p

γ
k(n)(x) for almost all x.

Proof. According to the Chebyshev’s inequality, if we set Xi = x, k(n) = k and ε > 0, we obtain

P(|p̂γk(x)− pγk(x)| > ε) ≤ 1

ε2
V[p̂γk(x)] =

1

ε2
V
[(

k

(n− 1)c̄ρdk(i)

)γ]
=

1

ε2

(
k

(n− 1)c̄

)2γ

V
[

1

ρdγk (i)

]
=

1

ε2

(
1

c̄

)2γ(
k

n− 1

)2γ

V
[

1

ρdγk (i)

]
.

According to Corollary 1 of Pérez-Cruz [61], the random variable ρdk(i) measures the waiting time between the origin
and the k-th event of a uniformly spaced distribution, and this waiting time is distributed as an Erlang distribution or a
unit-mean and 1/k variance gamma distribution. Therefore, the random variable 1/ρdk(i) is distributed as an inverse Erlang
distribution.

According to Lemma 6 and γ < k, the moments of 1/ρdγk (i) can be calculated. Therefore, we can see V
[

1

ρdγk (i)

]
< ∞.

According to the assumption that limn→∞ n/k(n) =∞, we obtain limn→∞ k(n)/n = 0 and therefore

lim
n→∞

P(|p̂γk(x)− pγk(x)| > ε) ≤ lim
n→∞

1

ε2

(
1

c̄

)2γ(
k

n− 1

)2γ

V
[

1

ρdγk (i)

]
= 0,

for any x in the support of p(x) and any ε. The claim is proved.
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Lemma 8 (q̂γk(n)(x) converges to qγ(x) in probability). Suppose that Assumptions 2 and 3 are satisfied. Let 0 < κ = γ < k.
If k(n) denotes the number of neighbors applied at sample size n, limn→∞ k(n) = ∞ and limn→∞ n/k(n) = ∞, then
q̂γk(n)(x)→p q

γ
k(n)(x) for almost all x.

Proof. It can be shown in the same way of Lemma 7.

Lemma 9 (q̂γk(m)(y) converges to qγ(y) in probability). Suppose that Assumptions 2-4 are satisfied. Let κ = γ < k. If
k(n) denotes the number of neighbors applied at sample size m, limm→∞ k(m) =∞ and limm→∞ n/k(m) =∞, then
q̂γk(m)(y)→p q

γ
k(m)(y) for almost all y.

Proof. It can be shown in the same way of Lemma 7 by substituting n, ρdk, x to m, ρ̄dk, y.

D Proofs for Asymptotic Analysis

In this section, we summarize the essential theoretical analysis for our estimator to guarantee the main characteristics.

D.1 Proof of Theorem 2

The following lemma is necessary to show Theorem 2.

Lemma 10 (Switching limit and expectation). Let κ > 0 or −k < κ < 0.Then, the following equality holds.

lim
n→∞

∫
M
fn(x)p(x)dx =

∫
M

lim
n→∞

fn(x)p(x)dx,

lim
m→∞

∫
M
gm(x)p(x)dx =

∫
M

lim
m→∞

gm(x)p(x)dx,

lim
m→∞

∫
M′

ḡm(y)q(y)dy =

∫
M′

lim
m→∞

ḡm(y)q(y)dy,

where

fn(x) := E
[

log(n− 1)κρdκk (1)|X1 = x

]
, gm(x) := E

[
logmκνdκk |X1 = x

]
, ḡm(y) := E

[
log(m− 1)κρ̄dκk |Y1 = y

]
.

Proof. Poczos and Schneider [64] proved in Theorem 37

f ′n(x) :=

∫ ∞
0

uκF ′n,k,x1
du ≤ κL(x, 1, κ, k, p, δ, δ1) <∞ (κ > 0),

f ′n(x) :=≤ κ

[
L̂(p̄, 1)

k + κ
− 1

κ

]
<∞ (−k < κ < 0),

where

L(x, ω, κ, k, p, δ, δ1) := δ1 + δ1

∫
‖x− y‖κp(y)dy + (c̄r(x))−κH(x, p, δ, ω),

and

f ′n(x) := E
[
(n− 1)κρdκk (1)|X1 = x

]
,

and F ′n,k,x1
is the conditional density function for ζ

′κ
n,k,x1

= (n− 1)ρdk(1). According to the fact that if a(x) ≤ b(x) then
E[a(x)] ≤ E[b(x)], we can obtain

fn(x) ≤ f ′n(x) <∞.

We can also obtain

g′m(x) <∞, ḡ′m(y) <∞,
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where

g′m(x) := E
[
mκνdκk (1)|X1 = x

]
, ḡ′m(y) := E

[
(m− 1)κρ̄dκk (1)|Y1 = y

]
,

In the same way as Theorem 37 of Poczos and Schneider [64]. Therefore, the following inequality holds:

gm(x) ≤ g′m(x) <∞, ḡm(y) ≤ ḡ′m(y) <∞.

From these, for 0 < κ < k or −k < κ < 0, we can see that under the conditions in Theorem 2, there exist some functions
J1, J2, J3 and threshold numbers Np,q,1, Np,q,2, Np,q,3 such that if n,m > Np,q,1, n,m > Np,q,2 and n,m > Np,q,3, then
for almost all x ∈ M and y ∈ M′, fn(x) ≤ J1(x), gm(x) ≤ J2(x) and ḡm(y) ≤ J3(y) and

∫
M
J1(x)p(x)dx < ∞,∫

M
J2(x)p(x)dx <∞ and

∫
M ′

J3(x)q(y)dy <∞. By applying the Lebesgue dominated convergence theorem, the claim
is proved.

By using these lemmas and theorem in Appendix C and Lemma 10, we show asymptotic unbiasedness of our estimator
claimed in Theorem 8 and 9.

Theorem 8 (Asymptotic unbiasedness). Let κ := γ and suppose 0 < γ < k. Suppose that Assumptions 2-4 are satisfied,
and that q is bounded from above. Then, D̂γ(Xn‖Y m) is asymptotically unbiased, i.e.,

lim
n,m→∞

E
[
D̂γ(Xn‖Y m)

]
= Dγ(p‖q),

where D̂γ(Xn‖Y m) is defined in Eq. (7).

Proof. Now, we want to show that

Dγ(p‖q) = lim
n,m→∞

E
[
D̂γ(p(Xn)‖q(Y m))

]
.

If we use Eq. (7) as the γ-divergence estimator, it can be rewritten as

D̂γ(p(Xn)‖q(Y m))

=
1

γ(1 + γ)

[
log

(
1

n

n∑
i=1

(
k

(n− 1)c̄ρdk(i)

)γ)
− (1 + γ) log

(
1

n

n∑
i=1

(
k

mc̄νdk(i)

)γ)

+ γ log

(
1

m

m∑
j=1

(
k

(m− 1)c̄ρ̄dk(j)

)γ)]

=
1

γ(1 + γ)

[
log

(
k

c̄

)γ
+ log

(
1

n

n∑
i=1

(
1

(n− 1)ρdk(i)

)γ)
− (1 + γ) log

(
k

c̄

)γ
− (1 + γ) log

(
1

n

n∑
i=1

(
1

mνdk(i)

)γ)
+ γ log

(
k

c̄

)γ
+ γ log

(
1

m

m∑
j=1

(
1

(m− 1)ρ̄dk(j)

)γ)]

=
1

γ(1 + γ)

[
log

(
1

n

n∑
i=1

(
1

(n− 1)ρdk(i)

)γ)
− (1 + γ) log

(
1

n

n∑
i=1

(
1

mνdk(i)

)γ)

+ γ log

(
1

m

m∑
j=1

(
1

(m− 1)ρ̄dk(j)

)γ)]
. (14)
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Taking expectation and a limit and switching the limit and expectation by using Lemma 10, we can obtain

lim
n,m→∞

E
[
D̂γ(p(Xn)‖q(Y m))

]
= lim
n,m→∞

1

γ(1 + γ)

[
log

(
1

n

n∑
i=1

(
1

(n− 1)ρdk(i)

)γ)
− (1 + γ) log

(
1

n

n∑
i=1

(
1

mνdk(i)

)γ)

+ γ log

(
1

m

m∑
j=1

(
1

(m− 1)ρ̄dk(j)

)γ)]

= lim
n,m→∞

1

γ(1 + γ)
EX1∼p

[
E
[

log

(
1

(n− 1)γρdγk (1)

)∣∣∣∣X1 = x

]
− (1 + γ)E

[
log

(
1

mγνdγk (1)

)∣∣∣∣X1 = x

]]

+
1

1 + γ
EY1∼q

[
E
[

log

(
1

(m− 1)γ ρ̄dγk (j)

)∣∣∣∣Y1 = y

]]

=
1

γ(1 + γ)
EX1∼p

[
lim
n→∞

E
[

log

(
1

(n− 1)γρdγk (1)

)∣∣∣∣X1 = x

]
− (1 + γ) lim

m→∞
E
[

log

(
1

mγνdγk (1)

)∣∣∣∣X1 = x

]]

+
1

1 + γ
EY1∼q

[
lim
m→∞

E
[

log

(
1

(m− 1)γ ρ̄dγk (j)

)∣∣∣∣Y1 = y

]]
.

According to Theorem 7, we obtain

lim
n,m→∞

E
[
D̂γ(p(Xn)‖q(Y m))

]
=

1

γ(1 + γ)
EX1∼p

[
− γ(ψ(k)− log(c̄p(X1))) + γ(1 + γ)(ψ(k)− log(c̄q(X1)))

]

− 1

1 + γ
EY1∼q

[
γ(ψ(k)− log(c̄q(Y1)))

]

=
1

γ(1 + γ)
EX1∼p

[
γ log c̄+ γ log p(X1)− γ(1 + γ) log c̄− γ(1 + γ) log q(X1) + γ2ψ(k)

]

− 1

1 + γ
EY1∼q

[
γψ(k)− γ log c̄− γ log q(Y1)

]

=
1

γ(1 + γ)
EX1∼p

[
log pγ(X1)− (1 + γ) log qγ(X1)

]
+

1

1 + γ
EY1∼q

[
log qγ(Y1)

]
− γ

(1 + γ)
log c̄+

γ

(1 + γ)
ψ(k) +

γ

(1 + γ)
log c̄− γ

(1 + γ)
ψ(k)

=
1

γ(1 + γ)
EX1∼p

[
log pγ(X1)

]
− 1

γ
EX1∼p

[
log qγ(X1)

]
+

1

1 + γ
EY1∼q

[
log qγ(Y1)

]
.

Therefore, Eq. (14) is asymptotically unbiased. The claim is proved.

If −k < κ := γ < 0, the asymptotic unbiasedness also holds.

Theorem 9 (Asymptotic unbiasedness). Let −k < κ := γ < 0. Suppose that Assumptions 2-4 are satisfied. Let ∃δ0
s.t. ∀δ ∈ (0, δ0),

∫
MH(x, p, δ, 1)q(x)dx < ∞, and that p is bounded from above. Let supp(p) ⊇ supp(q). Then, the

estimator in Eq. (7) is asymptotically unbiased.

Proof. This theorem can be shown in the same way as Theorem 2.

By combining the results of Theorem 8 and 9, Theorem 2 can be shown.
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D.2 Proofs of Theorem 3

Proof. Recalling the default formulation of γ-divergence estimator in Eq. (7), we can see

D̂γ(Xn‖Y m)

=
1

γ(1 + γ)
log

(
1

n

n∑
i=1

p̂γk(Xi)

)
− 1

γ
log

(
1

n

n∑
i=1

q̂γk (Xi)

)
+

1

1 + γ
log

(
1

m

m∑
j=1

q̂γk (Yj)

)

=
1

γ(1 + γ)
log

(
1

n

n∑
i=1

pγ(Xi)

)
− 1

γ
log

(
1

n

n∑
i=1

qγ(Xi)

)
+

1

1 + γ
log

(
1

m

m∑
j=1

qγk (Yj)

)

− 1

γ(1 + γ)
log

(
1

n

n∑
i=1

pγ(Xi)

)
+

1

γ
log

(
1

n

n∑
i=1

qγ(Xi)

)
− 1

1 + γ
log

(
1

m

m∑
j=1

qγk (Yj)

)

+
1

γ(1 + γ)
log

(
1

n

n∑
i=1

p̂γk(Xi)

)
− 1

γ
log

(
1

n

n∑
i=1

q̂γk (Xi)

)
+

1

1 + γ
log

(
1

m

m∑
j=1

q̂γk (Yj)

)

=
1

γ(1 + γ)
log

(
1

n

n∑
i=1

pγ(Xi)

)
− 1

γ
log

(
1

n

n∑
i=1

qγ(Xi)

)
+

1

1 + γ
log

(
1

m

m∑
j=1

qγk (Yj)

)

+
1

γ(1 + γ)
log

1
n

∑n
i=1 p̂

γ
k(Xi)

1
n

∑n
i=1 p

γ(Xi)
− 1

γ
log

1
n

∑n
i=1 q̂

γ
k (Xi)

1
n

∑n
i=1 q

γ(Xi)
+

1

1 + γ
log

1
m

∑m
j=1 q̂

γ
k (Yj)

1
m

∑m
j=1 q

γ
k (Yj)

.

The first, second and third terms converge to the expectation of pγ(x), qγ(x) and qγ(y), and therefore these terms converge
to Dγ(p‖q) almost surely because the sum of almost surely convergence terms also converges almost surely [34].

(i) According to Lemma 7, p̂γk(x)→p p
γ(x) for almost all of x. In addition, according to the fact that the sum of random

variables that converge in probability converges almost surely [34], we obtain

1

n

n∑
i=1

p̂γk(Xi)
a.s.→ Ep(x)[p

γ(x)].

Therefore,

1

γ(1 + γ)
log

1
n

∑n
i=1 p̂

γ
k(Xi)

1
n

∑n
i=1 p

γ(Xi)

a.s.→ 1

γ(1 + γ)
log

Ep(x)[p
γ(x)]

Ep(x)[pγ(x)]
= 0.

(ii) According to Lemma 8, q̂γk (x)→p q
γ(x) for almost all of x. In the same way of (i), we obtain

1

γ(1 + γ)
log

1
n

∑n
i=1 q̂

γ
k (Xi)

1
n

∑n
i=1 q

γ(Xi)

a.s.→ 1

γ(1 + γ)
log

Ep(x)[q
γ(x)]

Ep(x)[qγ(x)]
= 0.

(iii) According to Lemma 9, we obtain

1

1 + γ
log

1
m

∑m
j=1 q̂

γ
k (Yi)

1
m

∑m
j=1 q

γ(Yi)

a.s.→ 1

1 + γ
log

Eq(y)[q
γ(y)]

Eq(y)[qγ(y)]
= 0

From (i) to (iii), we obtain

D̂γ(Xn‖Y m)
a.s.→ Dγ(p‖q),

and the claim is proved.

E Detail of Data Discrepancy Measure

In this section, we introduce data discrepancy measures.
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E.1 Distance between Summary Statistics

An ABC often uses the distance between the summary statistics: S(Xn) and S(Y m) as the discrepancy measure. If we use
the Euclidian distance, the discrepancy measure can be expressed as

DS(Xn, Y m) = ‖S(Xn)− S(Y m)‖.

However, it is difficult to choose the summary statistic S for each task properly. One way to bypass this difficulty is the
Bayesian indirect inference method [24, 25].

Bayesian Indirect method The aim of the Bayesian indirect method is to construct the summary statistics from an
auxiliary model: {pA(x|φ) : φ ∈ Φ} (see Drovandi et al. [25] for general review). Drovandi and Pettitt [24] proposed to use
the maximum likelihood estimation (MLE) of the auxiliary model as summary statistics. Formally,

S(Y m) = φ̂(Y m) = argmax
φ∈Φ

m∏
j=1

pA(Yj |φ).

We set pA(x|φ) as d-dimensional Gaussian with parameter φ in our experiments. In this setting, the summary statistics are
merely the sample mean and covariance of Y m. Furthermore, we adopted the auxiliary likelihood (AL) proposed by Gleim
and Pigorsch [31] as a data discrepancy:

DAL(Xn, Y m) =
1

m
log pA(Y m|φ̂(Y m))− 1

m
log pA(Y m|φ̂(Xn)).

Outlier-Robust Function as Summary Statistics Ruli et al. [68] proposed the robust M-estimator Ψ as the summary
statistics to deal with the outliers in the observed data. For example, we can use the Huber function as

Ψ(x− µ) =


−c (x− µ < −c),
x− µ (|x− µ| ≤ 0),

c (x− µ > c),

where µ is a mean of x. We adopted this function as the summary statistics and applied for the AL in the above. Formally,

DALH(Xn, Y m) =
1

m
log pA(SΦ(Y m)|φ̂(SΦ(Y m)))− 1

m
log pA(SΦ(Y m)|φ̂(SΦ(Xn))).

Further, we set c1 = 1.345 for mean and c2 = 2.07 for covariance (see Huber et al. [39]).

E.2 Maximum Mean Discrepancy (MMD) based Approach

MMD method Smola et al. [73] and Berlinet and Thomas-Agnan [6] defined the kernel embedding for a probability
distribution g(x) as

µg =

∫
k(·, x)g(x)dx,

where k is a positive definite kernel k : X × X → R. Therefore, µg is an element in the reproducing kernel Hilbert space
(RKHS):H.

The maximum mean discrepancy (MMD) [33] between the probability distributions g0 and g1 is the distance between the
kernel embeddings µg0 and µg1 in RKHSH, defined as

MMD2(g0, g1) = ‖µg0 − µg1‖2H.

Park et al. [60] applied an unbiased estimator of MMD2(pθ∗ , qθ) as the data discrepancy in ABC. The squared estimator of
MMD is defined as

D2
MM(Xn, Y m) =

∑
1≤i 6=j≤n k(Xi, Xj)

n(n− 1)
+

∑
1≤i 6=j≤m k(Yi, Yj)

m(m− 1)
−

2
∑n
i=1

∑m
j=1 k(Xi, Yj)

nm
. (15)

In the same way of Park et al. [60] and Jiang et al. [42], we chose a Gaussian kernel with the bandwidth being the median
of {‖Xi −Xj : 1 ≤ i 6= j ≤ n‖} in our experiments. Then, the time cost of DMM is O((n + m)2) which is caused to
compute the (n+m)× (n+m) pairwise distance matrix.
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Median-of-mean to Kernel (MONK) method Lerasle et al. [49] proposed the outlier-robust MMD estimator computed
by using the median-of-mean (MON) estimator. MON estimators are expected to enjoy the outlier-robustness thanks to the
median step.

For any mapping function h : X 7→ R and any non-empty subset S ⊆ {1, 2, . . . , n}, denote by PS = |S|−1
∑
i∈S δXi the

empirical measure associated to the subset xS and PSh = |S|−1
∑
i∈S h(Xi). For simplification, we express µS = µPS .

Let n is divisible by Q ∈ Z+ and let (Sq)q∈Q denote a partition of {1, 2, . . . , n} into subsets with the same cardinality
|Sq| = N/Q. We also mention that q is different from the distribution of Y m with parameter θ defined as qθ. Then, the
MON is defined as

MONQ[h] = medq{PSq , h} = medq{k(h, µSq )},

where h ∈ H in the second equality is a consequence of the mean-reproducing property of µP. When we choose Q = 1, the
MON estimator is equal to the classical mean as MON1 = n−1

∑n
i=1 h(Xi).

Lerasle et al. [49] defined the minimax MON-based estimator associated with Kernel k (MONK) as

µ̂P,Q = µ̂P,Q(Xn) ∈ argmin
f∈H

sup
g∈H

J̃(f, g),

where for all f, g ∈ H

J̃(f, g) = MONQ

[
x 7→ ‖f − k(·, x)‖2H − ‖g − k(·, x)‖2H

]
.

When we choose Q = 1, we obtain the classical empirical mean based estimator as µP,1 = n−1
∑n
i=1 k(·, Xi).

The MON-based MMD estimator on Xn ∼ g0 and Y m ∼ g1 is defined as

M̂MDQ(g0, g1) = sup
f

medq∈Q{k(f, µSq,g0 − µSq,g1 )},

where µSq,g0 = µPSq,Xi and µSq,g1 = µPSq,Yi . Again, when we choose Q = 1, this is equal to the classical V-statistic-based
MMD estimator [33] in the previous paragraph. The (unbiased) U-statistic based MONK estimator also could be obtained in
the same way as Eq. (15) (see Lerasle et al. [49]).

The MONK estimator has the time cost O(n3) and therefore O((n+m)3) when we use it as the data discrepancy in ABC.
It is too expensive to apply for a large sample size. Leonenko et al. [48] also proposed the faster algorithm to compute
the MONK estimator, called MONK BCD-Fast, which has O((n+m)3/Q2) time cost. We adopted this algorithm in our
experiments and set Q = 11. Furthermore, we adopted the RBF kernel with bandwidth σ = 1, which is also used in Lerasle
et al. [49].

E.3 Wasserstein Distance

Jiang et al. [42] mentioned that the estimator of the q-Wasserstein distance could be used as a data discrepancy for ABC. Let
ψ be a distance on X ⊆ Rd. The q-Wasserstein distance between g0 and g1 is defined as

Wq(g0, g1) =

[
inf

τ∈Γ(g0,g1)

∫
X×X

ψ(x, y)qdτ(x, y)

]1/q

,

where Γ(g0, g1) is the set of all joint distribution τ(x, y) on X × X such that τ has marginals g0 and g1. We also mention
that q is different from the distribution of Y m with parameter θ defined as qθ. When we set q = 2 and ψ be the Euclidean
distance, the data discrepancy based on the q-Wasserstein distance is given by

DW2(Xn, Y m) = min
τ

[
n∑
i=1

m∑
j=1

τij‖Xi − Yj‖2
]1/2

s.t. τ1m = 1n, τ
>1n = 1m, 0 ≤ τij ≤ 1,

where τ = {τij ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a n×m matrix and 1n,1m are vectors filled with n pieces or m pieces of 1,
respectively.
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When we want to solve the optimization problem of DW2 exactly on multivariate distributions (d > 1), we have the time
cost O((n + m)3 log(n + m)) [14]. It is a high cost significantly and therefore Cuturi [21] and Cuturi and Doucet [22]
proposed approximate optimization algorithms which reduce the time cost to O((n+m)2. We used this algorithm in our
experiments. For univariate distributions, i.e., d = 1, if n = m and ψ(x, y) = |x− y|, the q-Wasserstein distance has an
explicit form as (

1

n

n∑
i=1

|Xi − Yi|q
)1/q

,

and in this special case, the time cost is O(n log n) [42].

E.4 Classification Accuracy Method

The classification accuracy discrepancy (CAD) has been proposed by Gutmann et al. [35]. The idea of this method is on
the basis of the belief that it is easier to distinguish the observed data Xn and the synthetic data Y m when θ is different
significantly to the true parameter θ∗ than to do so when θ resembles θ∗.

The CAD sets the labels of {Xi}ni=1 as class 0 and {Yj}mj=1 as class 1 at first. In short, it yields an augmented data set as

D = {(X1, 0), (X2, 0), . . . , (Xn, 0), (Y1, 1), (Y2, 1), . . . , (Ym, 1)},

and then trains a prediction classifier h : x 7→ {0, 1}.

Gutmann et al. [35] defined classifiability between Xn and Y m as the K-fold cross-validation classification accuracy and
proposed to use it for ABC as a data discrepancy. The data discrepancy based on the CAD is defined as

DCAD(Xn, Y m) =
1

K

K∑
k=1

1

|Dk|

[ ∑
i:(Xi,0)∈Dk

(1− ĥk(Xi)) +
∑

j:(Yj ,1)∈Dk

ĥk(Yj)

]
,

where Dk is the k-fold subset of D, |Dk| is the size of Dk and ĥk is the trained predictor on the data set D \ Dk.

The discrepancy via linear Discriminant Analysis (LDA) is computationally cheaper than other classifiers, which isO(n+m);
however, Gutmann et al. [35] explicitly noted that LDA does not work for some models, e.g., the moving average models
(see Figure 2 in Gutmann et al. [35]). Therefore, in our experiments, we set K = 5 and h to be the logistic regression with
L1 regularization and the gradient boosting classifier.

E.5 KL-divergence estimation via k-NN

KL-divergence between the density functions p and q is defined as

DKL(p‖q) =

∫
M
p(x) log

p(x)

q(x)
dx, (16)

whereM is a support of p. It indicates zero if and only if p = q for almost everywhere. Pérez-Cruz [61] proposed to
estimate the density firstly by using k-NN density estimation and plug these estimators into Eq. (16). Given i.i.d. samples,
Xn and Y m, we can estimate DKL(p‖q) by using the k-NN density estimator expressed in Eqs. (4) and (5) as follows:

D̂KL(p‖q) =
1

n

n∑
i=1

log
p̂k(Xi)

q̂k(Xi)
=
d

n

n∑
i=1

log
ρk(i)

νk(i)
+ log

m

n− 1
. (17)

This estimator enjoys asymptotical properties such as asymptotical unbiasedness, L2-consistency and almost sure conver-
gence ([61, 79]). If we use 1-NN density estimation, the above estimator (17) can be expressed as

D̂KL(p‖q) =
d

n

n∑
i=1

log
minj ‖Xi − Yj‖2

minnj 6=i ‖Xi −Xj‖2
+ log

m

n− 1
, (18)

where ‖ · ‖2 means l2-norm.



Masahiro Fujisawa, Takeshi Teshima, Issei Sato, Masashi Sugiyama

Jiang et al. [42] proposed to use this estimator (18) as the data discrepancy in the ABC framework. As ABC involves
2n operations of nearest neighbor search, Jiang et al. [42] also proposed to use KD trees [5, 52]. The time cost thus is
O((n ∨m) log(n ∨m)) on average, where we denote max{a, b} as a ∨ b.

According to Theorem 1 in [42], the asymptotic ABC posterior is a restriction of the prior π on the region {θ ∈ Θ :
D(gθ∗‖gθ) < ε}.

Theorem 10 (Theorem 1 in [42]). Let the data discrepancy measure D(Xn, Y m) in Algorithm 1 converges to some
real number D(pθ∗ , qθ) almost surely as the data size n → ∞, m/n → α > 0. Then, the ABC posterior distribution
π(θ|Xn;D, ε) defined by (1) converges to π(θ|D(pθ∗ , qθ) < ε) for any θ. That is,

lim
n→∞

π(θ|Xn;D, ε) = π(θ|D(pθ∗ , qθ) < ε) ∝ π(θ)1{D(pθ∗ , qθ) < ε}.

Jiang et al. [42] also showed the behavior of the ABC posterior based on KL-divergence estimator.

Corollary 2 (Corollary 1 in [42]). Let the data size n→∞, m/n→ α > 0. Let us define π(θ|DKL(pθ∗ , qθ) < ε) as the
posterior under DKL(pθ∗ , qθ) < ε). If Algorithm 1 uses D̂KL defined by Eq. (18) as the data discrepancy measure, then the
ABC posterior distribution π(θ|Xn; D̂KL, ε) defined by Eq. (1) converges to π(θ|DKL(pθ∗ , qθ) < ε) for any θ. That is,

lim
n→∞

π(θ|Xn;DKL, ε) = π(θ|DKL(pθ∗ , qθ) < ε) ∝ π(θ)1{DKL(pθ∗ , qθ) < ε}.

It is known that the maximum likelihood estimator minimizes the KL-divergence between the empirical distribution of pθ∗
and qθ. ABC with DKL shares the same idea to find θ with small KL-divergence.

F Details of Experimental Settings

In this section, we summarize the details of the model settings we used in experiments.

F.1 Gaussian Mixture Model (GM)

The univariate Gaussian mixture model is the most fundamental benchmark model in ABC literature [71, 81, 42]. We
adopted a bivariate Gaussian mixture model with the true parameters p∗ = 0.3, µ∗0 = (0.7, 0.7) and µ∗1 = (−0.7,−0.7),
where p∗ means the mixture ratio and µ∗0, µ

∗
1 are sub-population means of Gaussian distribution. Therefore, the set of the

true parameter is θ∗ = (p∗, µ∗0, µ
∗
1) The generative process of data is as follows:

Z ∼ Bernoulli(p),

[X|Z = 0] ∼ N (µ0, [0.5,−0.3;−0.3, 0.5]),

[X|Z = 1] ∼ N (µ1, [0.25, 0; 0, 0.25]).

We set the n = 500 observed data and the prior on the unknown parameter θ = (p, µ0, µ1) as p ∼ Uniform[0, 1] and
µ0, µ1 ∼ Uniform[−1, 1]2.

F.2 M/G/1-queueing Model (MG1)

Queuing models are usually easy to simulate from; however, it is difficult to conduct inference because these have no
intractable likelihoods. The M /G/1-queuing model well has been studied in ABC context [13, 27, 42]. The M , G and 1
means Memoryless which follows some arrival process, General holding time distribution and single server, respectively.
In this model, the service times follows Uniform[θ1, θ2] and the inter arrival times are exponentially distributed with rate
θ3. Each datum is a 5-dimensional vector consisting of the first five inter departure times x = (x1, x2, x3, x4, x5) after the
queue starts from empty [42].

We adopted this model with the true parameters θ∗ = (1, 5, 0.2). We set the n = 500 observed data and the prior on the
unknown parameter θ = (θ1, θ2, θ3) as θ1 ∼ Uniform[0, 10], θ2 − θ1 ∼ Uniform[0, 10] and θ3 ∼ Uniform[0, 0.5].
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F.3 Bivariate Beta Model (BB)

The bivariate beta model was proposed as a model with 8 parameters θ = (θ1, . . . , θ8) by Arnold and Ng [2]. The generative
process of data is as follows:

Ui ∼ Gamma(θi, 1) (i = 1, . . . , 8),

V1 =
U1 + U5 + U7

U3 + U6 + U8
,

V2 =
U2 + U5 + U8

U4 + U6 + U7
,

Z1 =
V1

1 + V1
,

Z2 =
V2

1 + V2
.

Then, Z = (Z1, Z2) follows a bivariate beta distribution. Crackel and Flegal [19] reconsidered as a 5-parameter sub-model
by restricting θ3, θ4, θ5 = 0. Jiang et al. [42] used the 5-parameter models for ABC experiments and therefore we also
adopted this with the true parameter θ∗ = (3, 2.5, 2, 1.5, 1) as a benchmark model.

We set the n = 500 observed data and the prior on the unknown parameter θ = (θ1, θ2, θ6, θ7, θ8) as θ1, θ2, θ6, θ7, θ8 ∼
Uniform[0, 5]5.

F.4 Moving-average Model of Order 2 (MA2)

Marin et al. [53] used the moving-average model of order 2 as a benchmark model. We adopted this model with 10-length
time series and unobserved noise error term Zj , which follows Student’s t-distribution with 5 degrees of freedom. Therefore,
the generative process of data is

Yj = Yj + θ1Yj−1 + θ2Yj−2 (j = 1, 2, . . . , 10).

We also assumed this model has the true parameter θ∗ = (0.6, 0.2). We then set the n = 200 observed data and the prior on
the unknown parameter θ = (θ1, θ2) as θ1, θ2 ∼ Uniform[−2, 2]×Uniform[−1, 1].

F.5 Multivariate g-and-k Distribution (GK)

The univariate g-and-k distribution is defined by its inverse distribution function as

F−1(x) = A+B

[
1 + c

1− exp(−gzx)

1 + exp(−gzx)

]
(1 + z2

x)kzx,

where zx is the x-th quantile of the standard normal distribution, and the parameters A,B, g, k are related to location, scale,
skewness and kurtosis, respectively. The hyper-parameter c is conventionally chose as c = 0.8 [27]. As the inversion
transform method can conveniently sample from this distribution by drawing Z ∼ N(0, 1) i.i.d. and then transforming them
to be g-and-k distributed random variables. Rayner and Macgillivray [66] mentioned that the univariate g-and-k distribution
had no analytical form of the density function, and the numerical evaluation of the likelihood function is costly. Therefore,
ABC is often used on it [62, 27, 1]. Furthermore, Drovandi and Pettitt [24] and [50] has also considered the multivariate
g-and-k distribution.

In our experiments, we set a 5-dimensional g-and-k distribution. The generative steps are as follows:

Draw: Z = (Z1, . . . , Z5) ∼ N (0,Σ),

Transform: Z,

where Σ is sparse matrix which has Σii = 1 and Σii = ρ if |i− j| = 1 or 0 otherwise. We used the transformation for Z
that changes marginally as the univariate g-and-k distribution does. We also adopted this model with the true parameters
θ∗ = (A∗, B∗, g∗, k∗, ρ∗), where A∗ = 3, B∗ = 1, g∗ = 2, k∗ = 0.5 and ρ∗ = −0.3. We set the n = 500 observed
data and the prior on the unknown parameter θ = (A,B, g, k, ρ) as A,B, g, k ∼ Uniform[0, 4] and ρ is sampled from
Uniform[0, 1] and is transformed by 2

√
3(ρ− 0.5)/3.
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G Additional Results for Experiments in Section 5

We summarize the additional mean-squared-error (MSE) results for the experiments in Section 5. Furthermore, we report
the simulation error results based on the energy distance.

G.1 MSEs for All Parameters

The following table shows the experimental results of MSEs for all parameters in the experiments of Section 5. From
these results, our method almost outperforms the other baseline methods, especially when the observed data have heavy
contamination.

Table 2: Experimental results of 8 baseline methods for 5 benchmark models on MSE and standard error of all parameters.
We performed ABC over 10 trials on 10 different datasets. Lower values are better. The scores of γ-divergence estimator are
picked up from the all of experimental results in Figure 6-10. Bold-faces indicate the best score per contamination rate.

Discrepancy measure Outlier GM MG1 BB MA2 GK

AL (Indirect)
0% 0.350 (0.419) 0.940 (0.851) 0.946 (0.412) 0.006 (0.004) 0.155 (0.144)
10% 0.805 (0.669) 0.556 (0.448) 1.538 (0.251) 1.094 (0.033) 0.870 (0.275)
20% 0.734 (0.882) 2.888 (1.222) 1.557 (0.229) 1.125 (0.022) 1.374 (0.439)

AL with Huber (Robust Indirect)
0% 0.097 (0.261) 0.734 (1.369) 1.092 (0.456) 0.029 (0.030) 0.199 (0.116)
10% 0.920 (0.033) 0.370 (0.369) 1.948 (0.140) 1.017 (0.154) 1.066 (0.180)
20% 1.000 (0.025) 0.836 (0.567) 2.441 (0.700) 2.275 (0.998) 0.872 (0.300)

Classification (L1 + Logistic)
0% 1.324 (0.088) 4.018 (0.664) 1.076 (0.430) 0.459 (0.410) 1.076 (0.384)
10% 0.270 (0.242) 6.422 (0.554) 0.680 (0.213) 0.757 (0.138) 1.240 (0.290)
20% 0.212 (0.250) 8.394 (0.051) 0.709 (0.276) 0.810 (0.112) 1.477 (0.145)

Classification (Boosting)
0% 1.564 (0.075) 0.022 (0.033) 0.204 (0.123) 0.004 (0.002) 0.074 (0.076)
10% 1.495 (0.218) 0.005 (0.006) 0.315 (0.334) 0.005 (0.005) 0.187 (0.121)
20% 0.639 (0.686) 0.017 (0.017) 0.346 (0.136) 0.008 (0.007) 0.179 (0.090)

MMD
0% 0.054 (0.105) 0.617 (0.413) 0.326 (0.179) 0.004 (0.003) 0.240 (0.141)
10% 0.760 (0.500) 0.333 (0.229) 0.366 (0.253) 0.079 (0.024) 0.165 (0.094)
20% 1.342 (0.339) 1.237 (0.764) 0.823 (0.175) 0.382 (0.054) 0.559 (0.281)

MONK-BCD Fast
0% 0.647 (0.203) 0.113 (0.115) 0.424 (0.205) 0.049 (0.040) 0.362 (0.348)
10% 0.719 (0.164) 0.114 (0.145) 0.524 (0.243) 0.054 (0.060) 0.326 (0.110)
20% 0.714 (0.211) 0.160 (0.204) 0.753 (0.403) 0.102 (0.077) 0.282 (0.139)

q-Wasserstein
0% 0.009 (0.011) 0.419 (0.235) 0.317 (0.210) 0.009 (0.006) 0.189 (0.153)
10% 1.349 (0.311) 0.188 (0.110) 1.880 (0.165) 0.255 (0.051) 0.305 (0.129)
20% 1.371 (0.296) 3.384 (1.116) 1.967 (0.257) 0.432 (0.104) 0.585 (0.252)

KL-divergence
0% 0.005 (0.003) 0.089 (0.058) 0.406 (0.129) 0.004 (0.004) 0.240 (0.152)
10% 0.007 (0.004) 0.102 (0.064) 0.346 (0.123) 0.012 (0.006) 0.377 (0.159)
20% 0.004 (0.003) 0.113 (0.069) 0.270 (0.132) 0.051 (0.027) 0.578 (0.290)

γ-divergence (proposed)
0% 0.002 (0.006) 0.003 (0.025) 0.405 (0.194) 0.005 (0.008) 0.260 (0.140)
10% 0.004 (0.002) 0.001 (0.025) 0.418 (0.150) 0.005 (0.080) 0.228 (0.140)
20% 0.004 (0.002) 0.003 (0.017) 0.314 (0.296) 0.004 (0.010) 0.170 (0.146)



γ-ABC: Outlier-Robust Approximate Bayesian Computation Based on a Robust Divergence Estimator

Figure 6: All of the experimental results of our method for the GM model based on MSE.

Figure 7: All of the experimental results of our method for the MG1 model based on MSE.

Figure 8: All of the experimental results of our method for the BB model based on MSE.
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Figure 9: All of the experimental results of our method for the MA2 model based on MSE.

Figure 10: All of the experimental results of our method for the GK model based on MSE.
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Figure 11: Experimental results for the GM and the MG1 model based on MSE.

Figure 12: Experimental results for the BB, the MA2, and the GK model based on MSE.
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G.2 MSEs for Individual Parameters and Simulation Error

Here, we report the MSE results for each parameter and simulation error in all experiments in Section 5.

G.2.1 Gaussian Mixture Model (GM)

The following table shows the experimental results of MSEs for each parameter in Gaussian mixture experiments. From
these results, our method achieves almost a better performance than that of the other baseline methods, especially when the
observed data have heavy contamination.

Table 3: Experimental results of 8 baseline methods for Gaussian mixture model on MSE and standard error of each parameter.
We performed ABC over 10 trials on 10 different datasets. Lower values are better. The scores for γ-divergence estimator
are picked up from the all of experimental results in Figure 6-10. Bold-faces indicate the best score per contamination rate.

Discrepancy measure Outlier p µ0{0} µ0{1} µ1{0} µ1{1}

AL (Indirect)
0% 0.024 (0.028) 0.868 (1.047) 0.851 (1.027) 0.003 (0.004) 0.001 (0.001)
10% 0.060 (0.030) 0.898 (1.093) 0.867 (1.046) 0.912 (1.107) 1.290 (1.047)
20% 0.044 (0.021) 0.879 (1.067) 0.924 (1.129) 0.907 (1.100) 0.915 (1.122)

AL with Huber (Robust Indirect)
0% 0.008 (0.008) 0.252 (0.697) 0.223 (0.608) 0.002 (0.002) 0.001 (0.002)
10% 0.112 (0.141) 0.007 (0.006) 0.006 (0.004) 2.225 (0.159) 2.252 (0.055)
20% 0.169 (0.151) 0.025 (0.003) 0.020 (0.006) 2.399 (0.058) 2.387 (0.078)

Classification (L1 + Logistic)
0% 0.060 (0.023) 2.249 (0.152) 2.224 (0.139) 1.015 (0.333) 1.070 (0.351)
10% 0.047 (0.024) 0.187 (0.545) 0.005 (0.006) 0.951 (0.945) 0.158 (0.468)
20% 0.079 (0.046) 0.219 (0.609) 0.014 (0.007) 0.545 (0.829) 0.206 (0.613)

Classification (Boosting)
0% 0.179 (0.021) 2.010 (0.169) 2.026 (0.128) 1.802 (0.273) 1.804 (0.216)
10% 0.162 (0.034) 2.031 (0.107) 1.952 (0.103) 1.668 (0.581) 1.663 (0.570)
20% 0.067 (0.039) 0.955 (0.963) 0.959 (0.962) 0.603 (0.924) 0.610 (0.934)

MMD
0% 0.005 (0.004) 0.247 (0.529) 0.013 (0.008) 0.001 (0.001) 0.002 (0.002)
10% 0.082 (0.061) 1.657 (0.831) 1.402 (0.920) 0.320 (0.637) 0.340 (0.675)
20% 0.114 (0.041) 2.141 (0.116) 2.130 (0.138) 1.241 (0.835) 1.084 (0.897)

MONK-Fast
0% 0.009 (0.005) 1.592 (0.577) 1.620 (0.494) 0.007 (0.011) 0.005 (0.008)
10% 0.013 (0.011) 1.699 (0.227) 1.689 (0.383) 0.002 (0.002) 0.192 (0.562)
20% 0.032 (0.042) 1.792 (0.268) 1.547 (0.556) 0.193 (0.561) 0.007 (0.006)

q-Wasserstein
0% 0.001 (0.001) 0.023 (0.032) 0.018 (0.029) 0.001 (0.001) 0.003 (0.004)
10% 0.044 (0.026) 0.978 (0.777) 0.880 (0.859) 2.411 (0.058) 2.430 (0.049)
20% 0.018 (0.018) 1.004 (0.804) 0.767 (0.654) 2.550 (0.050) 2.518 (0.068)

KL-divergence
0% 0.003 (0.002) 0.010 (0.018) 0.003 (0.003) 0.002 (0.003) 0.007 (0.005)
10% 0.007 (0.018) 0.010 (0.013) 0.011 (0.010) 0.004 (0.004) 0.004 (0.005)
20% 0.004 (0.003) 0.004 (0.004) 0.006 (0.013) 0.003 (0.006) 0.002 (0.004)

γ-divergence (proposed)
0% 0.003 (0.002) 0.006 (0.007) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
10% 0.002 (0.004) 0.006 (0.007) 0.007 (0.008) 0.002 (0.002) 0.003 (0.004)
20% 0.001 (0.001) 0.005 (0.006) 0.009 (0.018) 0.002 (0.002) 0.002 (0.003)
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G.2.2 M/G/1-queueing Model (MG1)

The following table shows the experimental results of MSEs for each parameter in M/G/1-queueing Model experiments.
From these results, our method achieves almost a better performance than that of the other baseline methods, especially
when the observed data have heavy contamination.

Table 4: Experimental results of 8 baseline methods for M/G/1-queueing model on MSE and standard error of each
parameter. We performed ABC over 10 trials on 10 different datasets. Lower values are better. The scores for γ-divergence
estimator are picked up from the all of experimental results in Figure 6-10. Bold-faces indicate the best score per
contamination rate.

Discrepancy measure Outlier θ1 θ2 θ3

AL (Indirect)
0% 0.083 (0.069) 2.737 (2.547) 0.0001 (0.0002)
10% 1.008 (0.749) 0.660 (0.845) 0.0009 (0.0008)
20% 4.804 (3.593) 3.859 (2.911) 0.003 (0.001)

AL with Huber (Robust Indirect)
0% 0.202 (0.242) 2.001 (4.142) 0.0001 (0.0002)
10% 0.998 (1.802) 0.113 (0.118) 0.0007 (0.0003)
20% 1.339 (1.221) 1.167 (1.119) 0.001 (0.0007)

Classification (L1 + Logistic)
0% 0.078 (0.082) 11.961 (1.990) 0.016 (0.015)
10% 0.078 (0.077) 19.180 (1.692) 0.009 (0.010)
20% 0.308 (0.429) 24.861 (0.414) 0.013 (0.015)

Classification (Boosting)
0% 0.015 (0.022) 0.051 (0.081) 0.0002 (0.0002)
10% 0.013 (0.018) 0.002 (0.006) 0.0008 (0.0006)
20% 0.022 (0.038) 0.027 (0.049) 0.0009 (0.0004)

MMD
0% 0.528 (0.567) 1.323 (0.873) 0.0001 (> 1e− 6)
10% 0.630 (0.667) 0.368 (0.346) 0.0004 (0.0003)
20% 0.655 (0.732) 3.053 (2.477) 0.002 (0.0004)

MONK-BCD Fast
0% 0.019 (0.024) 0.318 (0.335) 0.003 (0.004)
10% 0.043 (0.031) 0.298 (0.447) 0.001 (0.002)
20% 0.182 (0.284) 0.295 (0.579) 0.004 (0.005)

q-Wasserstein
0% 0.174 (0.221) 1.082 (0.772) 0.0001 (> 1e− 6)
10% 0.175 (0.201) 0.389 (0.321) 0.00009 (> 1e− 6)
20% 0.393 (0.547) 9.758 (3.177) 0.0008 (> 1e− 6)

KL-divergence
0% 0.124 (0.186) 0.145 (0.139) 0.0001 (0.0002)
10% 0.160 (0.132) 0.147 (0.142) 0.0002 (0.0003)
20% 0.249 (0.185) 0.090 (0.060) 0.001 (0.0008)

γ-divergence
0% 0.009 (0.007) > 1e− 5 (0.0001) 0.001 (0.002)
10% 0.005 (0.007) > 1e− 5 (0.0002) 0.0003 (0.0002)
20% 0.008 (0.010) 0.002 (0.003) 0.0002 (0.0003)
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G.2.3 Bivariate Beta Model (BB)

The following table shows the experimental results of MSEs for each parameter in bivariate-beta model experiments. From
these results, our method fails to reduce the effects of outliers. Furthermore, the KL-divergence method works well, even if
the observed data are heavily contaminated. We will investigate the reason why this phenomenon occurs as future work. We
believe this may be due to the way the contamination of the data occurs.

Table 5: Experimental results of 8 baseline methods for the Bivariate-Beta model on MSE and standard error of each
parameter. We performed ABC over 10 trials on 10 different datasets. Lower values are better. The scores for γ-divergence
estimator are picked up from the all of experimental results in Figure 6-10. Bold-faces indicate the best score per
contamination rate.

Discrepancy measure Outlier θ1 θ2 θ6 θ7 θ8

AL (Indirect)
0% 1.065 (0.538) 1.304 (0.927) 1.365 (1.228) 0.823 (0.617) 0.175 (0.092)
10% 0.852 (0.645) 1.713 (1.110) 3.066 (0.245) 1.621 (0.086) 0.438 (0.156)
20% 0.768 (0.419) 2.044 (1.026) 2.908 (0.159) 1.618 (0.185) 0.446 (0.142)

AL with Huber (Robust Indirect)
0% 0.788 (0.466) 1.763 (0.770) 2.038 (1.576) 0.800 (0.799) 0.071 (0.082)
10% 1.917 (0.546) 3.883 (0.503) 2.279 (0.462) 0.992 (0.266) 0.668 (0.092)
20% 2.125 (2.138) 1.504 (1.028) 2.028 (1.549) 2.892 (3.149) 3.656 (2.863)

Classification (L1 + Logistic)
0% 1.135 (0.464) 1.757 (1.118) 1.918 (1.291) 0.412 (0.397) 0.158 (0.235)
10% 0.833 (0.668) 0.848 (0.692) 0.589 (0.669) 0.687 (0.358) 0.443 (0.143)
20% 0.715 (0.451) 1.994 (1.213) 0.141 (0.149) 0.312 (0.266) 0.381 (0.148)

Classification (Boosting)
0% 0.309 (0.396) 0.482 (0.460) 0.113 (0.138) 0.036 (0.034) 0.080 (0.049)
10% 0.622 (1.000) 0.328 (0.530) 0.268 (0.287) 0.315 (0.251) 0.044 (0.071)
20% 0.571 (0.461) 0.307 (0.337) 0.210 (0.145) 0.546 (0.470) 0.095 (0.129)

MMD
0% 0.756 (0.593) 0.668 (0.370) 0.085 (0.094) 0.059 (0.073) 0.061 (0.064)
10% 0.653 (0.984) 0.458 (0.527) 0.245 (0.267) 0.391 (0.247) 0.081 (0.100)
20% 0.774 (0.581) 0.980 (0.784) 1.320 (0.517) 0.796 (0.431) 0.246 (0.163)

MONK-BCD Fast
0% 0.729 (0.365) 0.564 (0.611) 0.538 (0.896) 0.220 (0.128) 0.071 (0.109)
10% 0.792 (0.638) 0.931 (0.916) 0.678 (0.898) 0.138 (0.146) 0.079 (0.084)
20% 0.851 (0.709) 1.270 (0.950) 1.189 (1.080) 0.359 (0.802) 0.096 (0.073)

q-Wasserstein
0% 0.373 (0.414) 0.635 (0.622) 0.379 (0.331) 0.128 (0.116) 0.070 (0.106)
10% 1.663 (0.553) 3.042 (0.736) 2.774 (0.320) 1.364 (0.206) 0.559 (0.139)
20% 1.871 (0.322) 3.255 (1.137) 2.688 (0.322) 1.392 (0.127) 0.629 (0.079)

KL-divergence
0% 0.794 (0.503) 0.871 (0.408) 0.214 (0.207) 0.065 (0.064) 0.086 (0.090)
10% 0.323 (0.341) 0.911 (0.734) 0.238 (0.323) 0.205 (0.206) 0.055 (0.090)
20% 0.568 (0.344) 0.439 (0.383) 0.222 (0.257) 0.049 (0.050) 0.074 (0.085)

γ-divergence
0% 0.639 (0.599) 1.114 (0.632) 0.169 (0.255) 0.051 (0.050) 0.052 (0.101)
10% 0.897 (0.500) 0.551 (0.581) 0.377 (0.514) 0.162 (0.205) 0.102 (0.133)
20% 0.350 (0.356) 0.689 (0.552) 0.359 (0.314) 0.096 (0.114) 0.074 (0.082)
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G.2.4 Moving-average Model of Order 2 (MA2)

The following table shows the experimental results of MSEs for each parameter in the Moving-average Model of Order 2
experiments. From these results, our method achieves almost a better performance than that of the other baseline methods,
especially when the observed data have heavy contamination.

Table 6: Experimental results of 8 baseline methods for the Moving-average model of order 2 on MSE and standard error
of each parameter. We performed ABC over 10 trials in 10 different datasets. Lower values are better. The scores for
γ-divergence estimator are picked up the best score from all of the experimental results in Figure 6-10. Bold-faces indicate
the best score per contamination rate.

Discrepancy measure Outlier θ1 θ2

Indirect
0% 0.008 (0.008) 0.004 (0.002)
10% 1.679 (0.060) 0.508 (0.029)
20% 1.737 (0.047) 0.514 (0.018)

Robust Indirect
0% 0.035 (0.032) 0.023 (0.030)
10% 1.563 (0.100) 0.470 (0.270)
20% 4.251 (1.966) 0.299 (0.189)

Classification (L1 + Logistic)
0% 0.775 (0.772) 0.143 (0.119)
10% 1.023 (0.127) 0.491 (0.271)
20% 1.395 (0.134) 0.226 (0.151)

Classification (Boosting)
0% 0.004 (0.002) 0.004 (0.003)
10% 0.004 (0.005) 0.007 (0.008)
20% 0.006 (0.006) 0.009 (0.015)

MMD
0% 0.006 (0.006) 0.002 (0.002)
10% 0.121 (0.025) 0.038 (0.036)
20% 0.547 (0.089) 0.218 (0.063)

MONK-BCD Fast
0% 0.063 (0.064) 0.035 (0.047)
10% 0.086 (0.110) 0.022 (0.032)
20% 0.170 (0.151) 0.034 (0.028)

q-Wasserstein
0% 0.017 (0.013) 0.002 (0.004)
10% 0.153 (0.050) 0.357 (0.088)
20% 0.423 (0.134) 0.442 (0.102)

KL-divergence
0% 0.004 (0.005) 0.004 (0.004)
10% 0.007 (0.008) 0.016 (0.007)
20% 0.045 (0.025) 0.058 (0.034)

γ-divergence (proposed)
0% 0.003 (0.005) 0.008 (0.009)
10% 0.008 (0.006) 0.002 (0.002)
20% 0.006 (0.005) 0.003 (0.003)
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G.2.5 Multivariate g-and-k Distribution (GK)

The following table shows the experimental results of MSEs for each parameter in Multivariate g-and-k Distribution model
experiments. From these results, our method achieves almost a better performance than that of the other baseline methods,
especially when the observed data have heavy contamination.

Table 7: Experimental results of 8 baseline methods for the Multivariate g-and-k distribution model on MSE and standard
error of each parameter. We performed ABC over 10 trials on 10 different datasets. Lower values are better. The scores for
γ-divergence estimator are picked up the best score from all of the experimental results in Figure 6-10. Bold-faces indicate
the best score per contamination rate.

Discrepancy measure Outlier A B g k ρ

AL (Indirect)
0% 0.080 (0.116) 0.119 (0.116) 0.505 (0.697) 0.063 (0.030) 0.009 (0.013)
10% 0.294 (0.537) 3.135 (1.220) 0.796 (0.584) 0.088 (0.026) 0.039 (0.007)
20% 1.209 (1.668) 4.985 (1.142) 0.600 (0.569) 0.039 (0.036) 0.039 (0.005)

AL with Huber (Robust Indirect)
0% 0.052 (0.053) 0.151 (0.172) 0.763 (0.534) 0.020 (0.016) 0.008 (0.010)
10% 0.150 (0.099) 4.531 (0.899) 0.606 (0.556) 0.003 (0.006) 0.039 (0.003)
20% 0.248 (0.121) 3.439 (1.686) 0.546 (0.399) 0.110 (0.074) 0.017 (0.004)

Classification (L1 + Logistic)
0% 0.109 (0.045) 0.340 (0.083) 1.732 (0.739) 2.910 (1.808) 0.290 (0.232)
10% 0.397 (0.131) 3.217 (1.354) 2.362 (0.215) 0.016 (0.012) 0.209 (0.144)
20% 0.201 (0.113) 5.401 (0.802) 1.632 (0.591) 0.019 (0.023) 0.130 (0.089)

Classification (Boosting)
0% 0.009 (0.009) 0.016 (0.014) 0.317 (0.382) 0.020 (0.022) 0.008 (0.004)
10% 0.024 (0.028) 0.285 (0.279) 0.588 (0.511) 0.020 (0.017) 0.017 (0.008)
20% 0.035 (0.036) 0.377 (0.312) 0.447 (0.448) 0.014 (0.018) 0.020 (0.005)

MMD
0% 0.021 (0.019) 0.130 (0.128) 0.958 (0.711) 0.063 (0.122) 0.026 (0.053)
10% 0.054 (0.028) 0.190 (0.196) 0.526 (0.441) 0.040 (0.041) 0.018 (0.005)
20% 0.299 (0.166) 1.729 (1.117) 0.714 (0.483) 0.021 (0.024) 0.033 (0.006)

MONK-BCD Fast
0% 0.009 (0.011) 0.071 (0.146) 0.593 (0.457) 1.063 (1.919) 0.076 (0.143)
10% 0.009 (0.008) 0.114 (0.160) 1.175 (0.402) 0.316 (0.253) 0.018 (0.025)
20% 0.016 (0.013) 0.195 (0.494) 0.842 (0.526) 0.222 (0.237) 0.133 (0.162)

q-Wasserstein
0% 0.028 (0.037) 0.025 (0.022) 0.859 (0.769) 0.028 (0.030) 0.006 (0.010)
10% 0.190 (0.156) 0.502 (0.414) 0.722 (0.675) 0.087 (0.035) 0.023 (0.010)
20% 0.530 (0.133) 1.474 (0.769) 0.790 (0.827) 0.109 (0.038) 0.022 (0.007)

KL-divergence
0% 0.007 (0.006) 0.042 (0.040) 1.103 (0.752) 0.040 (0.032) 0.006 (0.006)
10% 0.015 (0.022) 0.149 (0.348) 1.663 (0.545) 0.038 (0.028) 0.018 (0.010)
20% 0.066 (0.069) 0.993 (1.128) 1.766 (0.732) 0.030 (0.024) 0.033 (0.004)

γ-divergence
0% 0.046 (0.016) 0.065 (0.038) 1.105 (0.591) 0.080 (0.135) 0.006 (0.005)
10% 0.033 (0.014) 0.041 (0.039) 1.028 (0.757) 0.030 (0.029) 0.007 (0.006)
20% 0.008 (0.008) 0.020 (0.016) 0.809 (0.575) 0.007 (0.008) 0.009 (0.004)
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G.2.6 All of Simulation Error

The following table shows the experimental results of simulation errors (energy distance) in the experiments of Section 5.
From these results, our method also outperforms the other baseline methods, especially when the observed data have heavy
contamination.

Table 8: Experimental results of 8 baseline methods for 5 benchmark models on simulation error (energy distance) and
its standard error. We performed ABC over 10 trials on 10 different datasets. Lower values are better. The scores of
γ-divergence estimator are picked up from the all of experimental results in Figure 13-17. Bold-faces indicate the best score
per contamination rate.

Discrepancy measure Outlier GM MG1 BB MA2 GK

AL (Indirect)
0% 0.199 (0.169) 0.270 (0.114) 0.070 (0.030) 0.056 (0.017) 0.260 (0.093)
10% 0.349 (0.244) 0.408 (0.182) 0.254 (0.034) 0.475 (0.014) 0.460 (0.211)
20% 0.263 (0.082) 0.906 (0.225) 0.251 (0.026) 0.501 (0.022) 0.724 (0.351)

AL with Huber (Robust Indirect)
0% 0.200 (0.221) 0.223 (0.090) 0.063 (0.019) 0.064 (0.015) 0.300 (0.144)
10% 0.966 (0.040) 0.345 (0.101) 0.300 (0.018) 0.466 (0.033) 0.470 (0.038)
20% 1.005 (0.043) 0.509 (0.168) 0.232 (0.061) 0.403 (0.028) 0.689 (0.124)

Classification (L1 + Logistic)
0% 0.157 (0.027) 0.453 (0.019) 0.066 (0.021) 0.180 (0.065) 0.422 (0.086)
10% 0.434 (0.148) 0.605 (0.049) 0.132 (0.039) 0.354 (0.028) 0.678 (0.124)
20% 0.443 (0.125) 0.779 (0.079) 0.142 (0.028) 0.413 (0.040) 0.873 (0.058)

Classification (Boosting)
0% 0.112 (0.006) 0.169 (0.104) 0.042 (0.030) 0.048 (0.018) 0.138 (0.048)
10% 0.150 (0.062) 0.359 (0.130) 0.049 (0.023) 0.052 (0.015) 0.193 (0.068)
20% 0.273 (0.100) 0.293 (0.106) 0.052 (0.024) 0.062 (0.024) 0.181 (0.069)

MMD
0% 0.059 (0.042) 0.233 (0.075) 0.055 (0.026) 0.055 (0.024) 0.231 (0.076)
10% 0.249 (0.120) 0.275 (0.098) 0.048 (0.023) 0.121 (0.026) 0.317 (0.093)
20% 0.229 (0.119) 0.593 (0.084) 0.070 (0.025) 0.262 (0.031) 0.419 (0.116)

MONK-BCD Fast
0% 0.283 (0.069) 0.312 (0.130) 0.049 (0.030) 0.066 (0.017) 0.393 (0.402)
10% 0.279 (0.086) 0.266 (0.189) 0.069 (0.041) 0.073 (0.032) 0.295 (0.156)
20% 0.262 (0.091) 0.362 (0.251) 0.075 (0.040) 0.094 (0.031) 0.245 (0.174)

q-Wasserstein
0% 0.051 (0.021) 0.200 (0.060) 0.037 (0.018) 0.066 (0.027) 0.215 (0.082)
10% 0.671 (0.289) 0.175 (0.041) 0.298 (0.020) 0.238 (0.035) 0.344 (0.088)
20% 0.755 (0.213) 0.599 (0.098) 0.307 (0.018) 0.320 (0.051) 0.587 (0.067)

KL-divergence
0% 0.066 (0.024) 0.125 (0.050) 0.055 (0.024) 0.064 (0.016) 0.198 (0.074)
10% 0.098 (0.079) 0.178 (0.094) 0.041 (0.015) 0.073 (0.027) 0.155 (0.081)
20% 0.085 (0.044) 0.322 (0.123) 0.038 (0.025) 0.117 (0.022) 0.271 (0.100)

γ-divergence (proposed)
0% 0.060 (0.028) 0.096 (0.042) 0.066 (0.026) 0.049 (0.018) 0.195 (0.030)
10% 0.076 (0.044) 0.099 (0.041) 0.048 (0.022) 0.055 (0.018) 0.138 (0.047)
20% 0.060 (0.018) 0.121 (0.085) 0.043 (0.019) 0.060 (0.017) 0.140 (0.439)
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Figure 13: All of the experimental results of our method for the GM model based on simulation error.

Figure 14: All of the experimental results of our method for the MG1 model based on simulation error.

Figure 15: All of the experimental results of our method for the BB model based on simulation error.
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Figure 16: All of the experimental results of our method for the MA2 model based on simulation error.

Figure 17: All of the experimental results of our method for the GK model based on simulation error.
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G.3 ABC posterior via our method and the second-best method

In this section, we report the ABC posterior distributions of our method for all experiments in Section 5 when η = 0.2, and
compare them with those of the second-best method.

G.3.1 Gaussian Mixture Model (GM)

Figure 18: ABC posterior via our method and KL method.

G.3.2 M/G/1-queueing Model (MG1)

Figure 19: ABC posterior via our method and classification method with boosting.

G.3.3 Bivariate Beta Model (BB)

Figure 20: ABC posterior via our method and KL method.
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G.3.4 Moving-average Model of Order 2 (MA2)

Figure 21: ABC posterior via our method and classification method with boosting.

G.3.5 Multivariate g-and-k Distribution (GK)

Figure 22: ABC posterior via our method and classification method with boosting.


