
Causal Inference with Selectively Deconfounded Data

A The Generalization of Our Models

A.1 Multiple Confounders

In this section, we show that because we do not impose any independence assumption on the set of confounder,
revealing the values of all confounders offers maximal information on the joint distribution of the confounders. In
particular, we will illustrate through the case where we have two binary confounders. The extension to multiple
categorical confounders is straight forward.

In the case where we have two binary confounders Z1 and Z2, we can express the ATE as follows:

ATE =
X

z1,z2

⇣
PY |T,Z1,Z2

(1|1, z1, z2)� PY |T,Z1,Z2
(1|0, z1, z2)

⌘
PZ1,Z2(z1, z2).

With an infinite amount of confounded data, we are provided with the joint distribution PY,T (y, t). Thus, it
remains to estimate the conditional distributions PZ1,Z2|Y,T . In our paper, we consider only the non-adaptive
policies, i.e., the number of samples to deconfound in each group (y, t) is fixed a priori. In the case where the costs
of revealing the values of Z1 and Z2 are the same and we do not have any prior knowledge on the distributions of
Z1 and Z2, the variables Z1 and Z2 becomes exchangeable. In the case where the sample selection policies are
completely non-adaptive (which is the case that we consider in this paper), by the symmetry of the variables Z1

and Z2, we have that sampling from the joint distribution of Z1 and Z2 yields the maximum expected information
on the value of the ATE. (Note that if the confounders take categorical values of different sizes and we allow
adaptive policies, then we might be able to reduce the total cost of deconfounding to estimate the ATE to within
a desired accuracy level.)

A.2 Pretreatment Covariates

In the case where we have known pretreatment covariates X, our model can be applied in estimating the individual
treatment effect where we make the common ignorability assumption on the pretreatment covariates X and the
confounder Z: given pretreatment covariates X and the confounder Z, the values of outcome variable, Y = 0 and
Y = 1, are independent of treatment assignment. In this case, the distributions PY,T (y, t) and PX(x) are known
and the Individual Treatment Effect (ITE):

ITE =
X

z,x

⇣
PY |T,Z,X(1|1, z, x)� PY |T,Z,X(1|0, z, x)

⌘
PZ,X(z, x)

=
X

z,x

⇣
PY |T,Z,X(1|1, z, x)� PY |T,Z,X(1|0, z, x)

⌘
PZ|X(z|x)PX(x). (3)

Note that in Equation (3) the only distributions we need to estimate are the conditional distributions PZ|Y,T,X .
The values of PY |T,Z,X and PZ|X can be calculated from PZ|Y,T,X by first conditioning the confounded distributions
PY,T on the values of the pretreatment covariates X, i.e., we first subsample all confounded (outcome, treatment)
pairs for a fixed value of X, X = x, and then within each subsample, estimate the conditional distributions
PZ|Y,T,X by applying our methods. To obtain ITE, we weight the estimates we obtain from all subsamples by
PX(x).

B Proofs

B.1 Review of Classical Results in Concentration Inequalities

Before embarking on our proofs, we state some classic results that we will use frequently. The following
concentration inequalities are part of a family of results collectively referred to as Hoeffding’s inequality (e.g., see
Vershynin (2018)).
Lemma 1 (Hoeffding’s Lemma). Let X be any real-valued random variable with expected value E[X] = 0, such

that a  X  b almost surely. Then, for all � 2 R, E [exp(�X)]  exp
⇣

�2(b�a)2

8

⌘
.

Theorem 7 (Hoeffding’s inequality for general bounded r.v.s). Let X1, ..., XN be independent random variables

such that Xi 2 [mi,Mi], 8i. Then, for t > 0, we have P

⇣���
PN

i=1 (Xi � E[Xi])
��� � t

⌘
 2 exp

⇣
� 2t2PN

i=1(Mi�mi)2

⌘
.



Kyra Gan, Andrew A. Li, Zachary C. Lipton, Sridhar Tayur

To begin, recall the notation introduced in Section 3: we model the binary-valued treatment, the binary-valued
outcome, and the categorical confounder as the random variables T 2 {0, 1}, Y 2 {0, 1}, and Z 2 {1, . . . , k},
respectively. The underlying joint distribution of these three random variables is represented as PY,T,Z(·, ·, ·). To
save on space for terms that are used frequently, we define the following shorthand notation:

p
z
yt = PY,T,Z(y, t, z),

ayt = PY,T (y, t),

q
z
yt = PZ|Y,T (z|y, t).

These terms appear frequently because, to estimate the entire joint distribution on Y, T, Z (the p
z
yt’s), it suffices to

estimate the joint distribution on Y, T (the ayt’s), along with the conditional distribution of Z on Y, T (the q
z
yt’s):

p
z
yt = aytq

z
yt.

Finally, let p̂
z
yt, â

z
yt, and q̂

z
yt be the empirical estimates of pzyt, azyt, and q

z
yt, respectively, using the MLE.

B.2 Proof of Theorem 1

Theorem 1. (Upper Bound) Using deconfounded data alone, P

⇣���[ATE�ATE
��� � ✏

⌘
< � is satisfied if the

deconfounded sample size m is at least

mbase := max
t,z

C

 
X

y

p
z
yt

!�2

= max
t,z

1

PT,Z(t, z)2
C.

Proof of Theorem 1. This proof proceeds as follows: first, we prove a sufficient (deterministic) condition, on the
errors of our estimates of pzyt’s, under which |[ATE � ATE| is small. Second, we show that the errors of our
estimates of pzyt’s are indeed small with high probability.

Step 1: First, we can write the ATE in terms of the p
z
yt’s as follows:

ATE =
X

z

�
PY |T,Z(1|1, z)� PY |T,Z(1|0, z)

�
PZ(z) =

X

z

0

B@

0

B@
p
z
11P

y
p
z
y1

� p
z
10P

y
p
z
y0

1

CA

 
X

y,t

p
z
yt

!1

CA .

In order for the ATE to be well-defined, we assume
P

y p
z
yt 2 (0, 1) for all t, z throughout. We can then decompose

|[ATE�ATE|:

|[ATE�ATE| =

�������

X

z

0

B@

0

B@
p̂
z
11P

y
p̂
z
y1

� p̂
z
10P

y
p̂
z
y0

1

CA

 
X

y,t

p̂
z
yt

!
�

0

B@
p
z
11P

y
p
z
y1

� p
z
10P

y
p
z
y0

1

CA

 
X

y,t

p
z
yt

!1

CA

�������


X

z

�������

0

B@
p̂
z
11P

y
p̂
z
y1

� p̂
z
10P

y
p̂
z
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1

CA

 
X

y,t

p̂
z
yt

!
�

0

B@
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z
11P

y
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z
y1
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z
10P

y
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z
y0

1
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X

y,t

p
z
yt

!�������
.

Thus, in order to upper bound
���[ATE�ATE

��� by some ✏, it suffices to show that

�������

0

B@
p̂
z
11P

y
p̂
z
y1

� p̂
z
10P

y
p̂
z
y0

1
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y,t
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z
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!
�
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X

y,t

p
z
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!�������
 ✏

k
, 8z. (4)
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Step 2: To bound the above terms, we first derive Lemma 2 for bounding the error of the product of two
estimates in terms of their two individual errors:

Lemma 2. For any u, û 2 [�1, 1], and v, v̂ 2 [0, 1], suppose there exists ✏, ✓ 2 (0, 1) such that all of the following

conditions hold:

1. |u� û|  (1� ✓)✏

2. |v � v̂|  ✓✏

3. u+ ✏  1

4. v + ✏  1

5. ✏  min(u, v)

Then, |uv � ûv̂|  ✏.

Proof of Lemma 2. Since |u� û|  (1�✓)✏, we have û 2 [u�(1�✓)✏, u+(1�✓)✏], and similarly, from |v� v̂|  ✓✏,
we have v̂ 2 [v � ✓✏, v + ✓✏]. Thus,

|uv � ûv̂|  max (|uv � (u+ (1� ✓)✏)(v + ✓✏)|, |uv � (u� (1� ✓)✏)(v � ✓✏)|) (because v, v̂ � 0)
= max(

��✓u✏+ (1� ✓)v✏+ (1� ✓)✓✏2
�� ,
��✓u✏+ (1� ✓)v✏� (1� ✓)✓✏2

��)
=
��✓u✏+ (1� ✓)v✏+ (1� ✓)✓✏2

�� (because (1� ✓)✓✏2 > 0)
 |✓(u+ ✏)✏+ (1� ✓)v✏| (because ✓✏

2
> (1� ✓)✓✏2)

 ✏ (because u+ ✏ 2 [�1, 1], and v  1).

We can apply Lemma 2 directly to the terms in (4) by setting

uz =
p
z
11P

y
p
z
y1

� p
z
10P

y
p
z
y0

,

ûz =
p̂
z
11P

y
p̂
z
y1

� p̂
z
10P

y
p̂
z
y0

,

vz =
X

y,t

p
z
yt,

v̂z =
X

y,t

p̂
z
yt,

and noting that uz, ûz 2 [�1, 1], and vz, v̂z 2 [0, 1]. Lemma 2 implies that the upper bound in (4) holds if, for
some ✓ 2 (0, 1), we have

|vz � v̂z| <
✓

k
✏ and |uz � ûz| <

1� ✓

k
✏.

While we can apply standard concentration results to the |vz � v̂z| terms, the |uz � ûz| terms will need to be
further decomposed:

|uz � ûz| =

�������

p
z
11P

y
p
z
y1

� p
z
10P

y
p
z
y0

� p̂
z
11P

y
p̂
z
y1

+
p̂
z
10P

y
p̂
z
y0

�������



�������

p
z
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y1

� p̂
z
11P

y
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�������
+

�������
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z
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y
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� p̂
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.
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It will suffice to show that for each t and z,
�������

p
z
1tP

y
p
z
yt

� p̂
z
1tP

y
p̂
z
yt

�������
<

1� ✓

2k
✏. (5)

Step 3: To bound these terms, we derive Lemma 3. Recall that p
z
1t + p

z
0t, p̂

z
1t + p̂

z
0t 2 (0, 1).

Lemma 3. For any w + s, ŵ + ŝ 2 (0, 1), if |w + s� ŵ � ŝ|  (w + s)✏ and |w � ŵ|  (w + s)✏, then

����
w

w + s
� ŵ

ŵ + ŝ

����  2✏.

Proof of Lemma 3. First, since |w + s� ŵ � ŝ|  (w + s)✏, we have that
����
w + s

ŵ + ŝ
� 1

���� 
w + s

ŵ + ŝ
✏,

or equivalently,
1� w + s

ŵ + ŝ
✏  w + s

ŵ + ŝ
 1 +

w + s

ŵ + ŝ
✏.

We can apply this inequality and rearrange terms as follows to conclude the proof:
����

w

w + s
� ŵ

ŵ + ŝ

���� =
����

1

w + s

����

����w � ŵ
w + s

ŵ + ŝ

����


����

1

w + s

����max

✓����w � ŵ

✓
1� w + s

ŵ + ŝ
✏

◆���� ,
����w � ŵ

✓
1 +

w + s

ŵ + ŝ
✏

◆����

◆

=

����
1

w + s

����max

✓����w � ŵ +
w + s

ŵ + ŝ
ŵ✏

���� ,
����w � ŵ � w + s

ŵ + ŝ
ŵ✏

����

◆

= max

✓����
w � ŵ

w + s
+

ŵ

ŵ + ŝ
✏

���� ,
����
w � ŵ

w + s
� ŵ

ŵ + ŝ
✏

����

◆


����
w � ŵ

w + s

����+
����

ŵ

ŵ + ŝ

���� ✏


����
w + s

w + s

���� ✏+
����

ŵ

ŵ + ŝ

���� ✏

 2✏.

The second to last inequality follows from the assumption that |w � ŵ|  (w + s)✏.

Lemma 3 implies that (5) is satisfied if

|pz1t � p̂
z
1t| <

(
P

y p
z
yt)(1� ✓)

4k
✏ and |pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| <

(
P

y p
z
yt)(1� ✓)

4k
✏.

Step 4: We’ve shown above that |[ATE�ATE|  ✏ is satisfied when

|vz � v̂z| <
✓

k
✏, |pz1t � p̂

z
1t| <

(
P

y p
z
yt)(1� ✓)

4k
✏,

and

|pz1t + p
z
0t � p̂

z
1t � p̂

z
0t| <

(
P

y p
z
yt)(1� ✓)

4k
✏, 8t, z.

Note that if 8t, |pz1t + p
z
0t � p̂

z
1t � p̂

z
0t| =

���
P

y p
z
yt �

P
y p̂

z
yt

��� < (
P

y pz
yt)(1�✓)

4k ✏ then

|vz � v̂z| =

�����
X

y,t

p
z
yt �

X

y,t

p̂
z
yt

����� 
X

t

�����
X

y

p
z
yt �

X

y

p̂
z
yt

����� <
(
P

y,t p
z
yt)(1� ✓)

4k
✏  (1� ✓)

4k
✏.
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Thus, to remove the first constraint |vz � v̂z| < ✓
k ✏, we set

✓

k
✏ =

(1� ✓)

4k
✏,

and obtain ✓ = 1
5 .

Step 5: To summarize so far, Lemmas 2 and 3 allow us to upper bound the error of our estimated ATE in
terms of upper bounds on the error of our estimates of its constituent terms:

P

⇣
|[ATE�ATE| < ✏

⌘
� P

 
\

t,z

⇢
|pz1t � p̂

z
1t| <

P
y p

z
yt

5k
✏

�\

t,z

⇢
|pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| <

P
y p

z
yt

5k
✏

�!
,

or equivalently,

P

⇣
|[ATE�ATE| � ✏

⌘
 P

 
[

t,z

⇢
|pz1t � p̂

z
1t| �

P
y p

z
yt

5k
✏

�[

t,z

⇢
|pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| �

P
y p

z
yt

5k
✏

�!
.

Applying a union bound, we have

P

⇣
|[ATE�ATE| � ✏

⌘

X

t,z

P

✓
|pz1t � p̂

z
1t| �

P
y p

z
yt

5k
✏

◆
+ P

✓
|pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| �

P
y p

z
yt

5k
✏

◆
. (6)

Step 6: Finally, we can apply Hoeffding’s inequality (Theorem 7) to obtain the upper bound for the inequality
above. Let X

z
yt be the random variable that maps the event (Y = y, T = t, Z = z) 7! {0, 1}. Then, Xz

yt is a
Bernoulli random variable with parameter p

z
yt. Let m denote the total number of deconfounded samples that we

have. Since p̂yt is estimated through the MLE, we have p̂
z
yt =

Pm
i=1 Xz

yt

m . Applying Theorem 7, we obtain:

P

✓����

Pm
i=1 X

z
yt

m
� p

z
yt

���� �
P

y p
z
yt

5k
✏

◆
 2 exp

0

B@�2m

⇣P
y p

z
yt

⌘2
✏
2

25k2

1

CA , and (7)

P

✓����

Pm
i=1 X

z
1t +X

z
0t

m
� p

z
1t � p

z
0t

���� �
P

y p
z
yt

5k
✏

◆
 2 exp

0

B@�2m

⇣P
y p

z
yt

⌘2
✏
2

25k2

1

CA . (8)

Combining (6), (7), and (8), we have

P

⇣
|[ATE�ATE| � ✏

⌘

X

t,z

P

✓
|pz1t � p̂

z
1t| �

P
y p

z
yt

5k
✏

◆
+ P

✓
|pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| �

P
y p

z
yt

5k
✏

◆

 4kmax
t,z

0

B@2 exp

0

B@�2m

⇣P
y p

z
yt

⌘2
✏
2

25k2

1

CA

1

CA

= 8kmax
t,z

exp

0

B@�2m

⇣P
y p

z
yt

⌘2
✏
2

25k2

1

CA

 �,

where the second line follows from the fact that, since t is binary, there are 4k terms in total. Solving the above
equation, we conclude that P (|[ATE�ATE| � ✏) < � is satisfied when the sample size m is at least

m �
12.5k2 ln( 8k� )

✏2
max
t,z

1
⇣P

y p
z
yt

⌘2 .
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B.3 Proof of Proposition 1

Proposition 1. For every a, there exists some ✏, � such that for any fixed number of deconfounded samples

m, we can always construct a pair of q’s, say q1 and q2, such that no algorithm can distinguish these two

conditional distributions with probability more than 1 � �, and their corresponding ATE values are ✏ away:

|ATEa(q1)�ATEa(q2)| � ✏.

Proof of Proposition 1. It suffices to show for the case where confounder takes binary value. The extension
to categorical confounder is straightforward as illustrated in the proof of Theorem 6 in Appendix B.7. Let
qyt = P (Z = 1|Y = y, T = t). To show that Proposition 1 is true, it is sufficient to show that there exist
a positive constant c (that depends on a) such that for all fixed a, there exists a pair of q and q0 such that
kATEa(q) � ATEa(q0)k > c, with q and q0 close in distribution. We proceed by construction. For fixed a,
consider the following q pairs: q = (q00, 0, q10, �) and q0 = (q00, �, q10, 0). Then, we have

ATEa(q) = (a00q00 + a10q10 + a11�) +
a11(1� �)

a11(1� �) + a01
(1� a00q00 � a10q10 � a11�)�

a10q10

a10q10 + a00q00
(a00q00 + a10q10 + a11�)�

a10(1� q10)

a10(1� q10) + a00(1� q00)
(1� a00q00 � a10q10 � a11�),

and similarly, we have

ATEa(q
0) =

a11

a11 + a01(1� �)
(1� a00q00 � a01� � a10q10)�

a10q10

a10q10 + a00q00
(a00q00

+ a01� + a10q10)�
a10(1� q10)

a10(1� q10) + a00(1� q00)
(1� a00q00 � a01� � a10q10).

In particular,
lim
�!0

ATEa(q)�ATEa(q
0) = a00q00 + a10q10  a00 + a10, (9)

where we can choose q00 and q10 to be 1.

On the other hand, we can show that the number of samples needed to distinguish q from q0 is at least ⌦(1/�):
since q and q0 are the same in two of the entries and symmetric on the rest two, to distinguish q and q0

is to distinguish a Bernoulli random variable with parameter 0 (denoting this variable B0) from a Bernoulli
random variable with parameter � (denoting this random variable B�). Let f be any estimator of the Bernoulli
random variable, and xi, ..., xm be the sequence of m observations. Then we have |EX⇠Bm

0
[f ] � EX⇠Bm

�
[f ]| 

kBm
0 �B

m
� k1 

q
2(ln 2)KL(Bm

0 kBm
� )  2

p
(ln 2)�m, where the last inequality is because when given m samples,

KL(Bm
0 kBm

� )  (2� ln 2+(1�2�) ln 1�2�
1�� )m  2�m. On the other hand, any hypothesis test that takes n samples

and distinguishes between H0 : X1, ..., Xn ⇠ P0 and H1 : X1, ..., Xn ⇠ P1 has probability of error lower bounded
by max(P0(1), P1(0)) � 1

4e
�nKL(P0kP1), where P0(1) indicates the probability that we identify class H0 while the

true class is H1. Since P0(1) + P1(0)  �, by contradiction, we can show that m ⇠ ⌦(ln(��1)��1).

Note that this lower bound on m can be arbitrarily large by choosing � to be sufficiently small. However their ATE
values stay constant away as observed in Equation (9). Thus, for every fixed confounded distribution encoded
by a and fixed number of deconfounded samples m, we can always construct a pair of conditional distributions
encoded by q and q0 such that their corresponding ATEs are constant away while the probability that we correctly
identify the true conditional distribution from q and q0 is less than 1� �. In particular, ✏ = c = a00 + a10 in the
above example. (Here, we implicitly assume that a00 + a10 is strictly greater than zero, i.e., a00 + a10 > 0.)

B.4 Proof of Theorem 2

Theorem 2. (Lower Bound) For any estimator and sample selection policy, the number of deconfounded samples

m needed to achieve P

⇣���[ATE�ATE
��� � ✏

⌘
< � is at least ⌦(✏�2 log(��1)).

Proof of Theorem 2. Again, it suffices to show for the case where the confounder is binary. The extension
to categorical confounder is straightforward as illustrated in the proof of Theorem 6 in Appendix B.7. Let
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qyt = P (Z = 1|Y = y, T = t). We will proceed by construction. Consider q = (q00, q01,�,� + �) and
q0 = (q00, q01,� + �,�), for some small �. Then

ATEa(q) =
a11(� + �)

a11(� + �) + a01q01
(a00q00 + a01q01 + a10� + a11(� + �)) +

a11(1� � � �)

a11(1� � � �) + a01(1� q01)

(1� a00q00 � a01q01 � a10� � a11(� + �))� a10�

a10� + a00q00
(a00q00 + a01q01 + a10� + a11(� + �))�

a10(1� �)

a10(1� �) + a00(1� q00)
(1� a00q00 � a01q01 � a10� � a11(� + �)),

and similarly, we have

ATEa(q
0) =

a11�

a11� + a01q01
(a00q00 + a01q01 + a10(� + �) + a11�) +

a11(1� �)

a11(1� �) + a01(1� q01)
(1� a00q00�

a01q01 � a10(� + �)� a11�)�
a10(� + �)

a10(� + �) + a00q00
(a00q00 + a01q01 + a10(� + �) + a11�)�

a10(1� � � �)

a10(1� � � �) + a00(1� q00)
(1� a00q00 � a01q01 � a10(� + �)� a11�).

Ignoring the � in the denominator, we have that

ATEa(q)�ATEa(q
0) = (

a11

a11� + a01q01
+

a10

a10� + a00q00
)(a00q00 + a01q01 + a10� + a11�)�

� (
a11

a11(1� �) + a01(1� q01)
+

a10

a10(1� �) + a00(1� q00)
)(1� a00q00 � a01q01 � a10� � a11�)�

+
a
2
11 � a11a10

a11� + a01q01
�� � a

2
11 � a11a10

a11(1� �) + a01(1� q01)
(1� �)�

+
a
2
10 � a11a10

a10� + a00q00
�� � a

2
10 � a11a10

a10(1� �) + a00(1� q00)
(1� �)�

+
a
2
11

a11� + a01q01
�
2 +

a
2
11

a11(1� �) + a01(1� q01)
�
2 +

a
2
10

a10� + a00q00
�
2 +

a
2
10

a10(1� �) + a00(1� q00)
�
2 (10)

Similar to the proof above, let B1 denote the Bernoulli random variable with parameter �, and let B2 denote the
Bernoulli random variable with parameter � + �. Then, given m deconfounded samples, we have KL(Bm

1 kBm
2 ) 

m� ln( �
�+� ) +m(1� �) ln( 1��

1���� )  m ln(1 + �
1���� )  m( �

1���� � �2

2(1����)2 ). Thus, we have m ⇠ ⌦( ln(�
�1)

�2 ).
From Equation (10), we observe that ✏ = kATEa(q) � ATEa(q0)k ⇠ ⌦(�). Combining above, we have m ⇠
⌦( ln(�

�1)
✏2 ).

B.5 Proof of Theorems 3 and 5

Theorem 3. (Upper Bound) When incorporating (infinite) confounded data, P (|[ATE � ATE| � ✏) < � is

satisfied if the number of deconfounded samples m is at least

mnsp := max
t,z

C
P

y ayt⇣P
y aytq

z
yt

⌘2 = max
t,z

PT (t)

PT,Z(t, z)2
C. (2)

Theorem 5. (Upper Bound) Under the uniform selection policy, with (infinite) confounded data incorporated,

P (|[ATE�ATE| � ✏) < � is satisfied if µusp is at least

musp := max
t,z

C
P

y 4a
2
yt

⇣P
y aytq

z
yt

⌘2 = max
t,z

4
P

y PY,T (y, t)2

PT,Z(t, z)2
C.
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Similarly, for the outcome-weighted selection policy:

mowsp := max
t,z

2C
⇣P

y ayt

⌘2

⇣P
y aytq

z
yt

⌘2 = max
t,z

2

PZ|T (z|t)2
C.

Proof of Theorems 3 and 5. In these theorems, we derive the concentration of the [ATE assuming infinite con-
founded data, and parametrize p

z
yt by p

z
yt = aytq

z
yt. Since under infinite confounded data, ayt’s are known, and

thus we only need to estimate the q
z
yt’s. The key difference between Theorem 5 and Theorem 1 is that now

we define the random variables X
z
yt to map the event (Z = z|Y = y, T = t) to {0, 1}. Thus, Xz

yt is distributed
according to Bernoulli(qzyt). Thus, to decompose |a1tqz1t + a0tq

z
0t � a1tq̂

z
1t � a0tq̂

z
0t|, we first show the following

lemma:

Lemma 4. Let X1, ..., Xx1m and Y1, ..., Yx2m be independent random variables in [0,1]. Then for any t > 0, we

have

P

 �����↵
Px1m

i=1 Xi � E [Xi]

x1m
+ �

Px2m
j=1 Yj � E [Yj ]

x2m

����� � ↵t+ �k

!
 2 exp

0

@�2m(↵t+ �k)2⇣
↵2

x1
+ �2

x2

⌘

1

A .

Proof of Lemma 4. First observe that

P

 
↵

Px1m
i=1 Xi � E [Xi]

x1m
+ �

Px2m
j=1 Yj � E [Yj ]

x2m
� ↵t+ �k

!

= P

✓
↵

x1

x1mX

i=1

(Xi � E [Xi]) +
�

x2

x2mX

j=1

(Yj � E [Yj ]) � m↵t+m�k

◆
.

Now, let Zi =
↵
x1
Xi if i 2 [1, x1m], and Zi =

�
x2
Yi if i 2 [x1m+ 1, (x1 + x2)m]. Then applying Theorem 7, we

have

P

0

@

������

(x1+x2)mX

i=1

(Zi � E[Zi])

������
� m↵t+m�k

1

A  2 exp

 
� 2m2(↵t+ �k)2
P(x1+x2)m

i=1 (Mi �mi)2

!

= 2 exp

 
�2m(↵t+ �k)2

↵2

x1
+ �2

x2

!
.

As defined in Section 3, let xyt denote the percentage data we sample from the group yt.

Recall that from the proof of Theorem 1, we have

P

⇣
|[ATE�ATE| � ✏

⌘

X

t,z

P

✓
|pz1t � p̂

z
1t| �

P
y p

z
yt

5k
✏

◆
+ P

✓
|pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| �

P
y p

z
yt

5k
✏

◆

=
X

t,z

P

✓
|a1tqz1t � a1tq̂

z
1t| �

P
y aytq

z
yt

5k
✏

◆
+ P

✓
|a1tqz1t + a0tq

z
0t � a1tq̂

z
1t � a0tq̂

z
0t| �

P
y aytq

z
yt

5k
✏

◆

=
X

t,z

P

✓
|qz1t � q̂

z
1t| �

P
y aytq

z
yt

5ka1t
✏

◆
+ P

✓
|a1tqz1t + a0tq

z
0t � a1tq̂

z
1t � a0tq̂

z
0t| �

P
y aytq

z
yt

5k
✏

◆

 4kmax
t,z

0

B@2 exp

0

B@�2x1tm

⇣P
y aytq

z
yt

⌘2
✏
2

25k2a21t

1

CA , 2 exp

0

B@�2m

⇣P
y aytq

z
yt

⌘2
✏
2

25k2
P

y
a2
yt

xyt

1

CA

1

CA

 �,

where the second to last line follows from applying Lemma 4 to the second half of the line above it.
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Solving the equation above, we have

m �
12.5k2 ln( 8k� )

✏2
max
t,z

0

B@
a
2
1t/x1t⇣P
y aytq

z
yt

⌘2 ,
P

y

�
a
2
yt/xyt

�

⇣P
y aytq

z
yt

⌘2

1

CA =
12.5k2 ln( 8k� )

✏2
max
t,z

P
y

�
a
2
yt/xyt

�

⇣P
y aytq

z
yt

⌘2 .

The last equality is because a
2
2/x2, a

2
1/x1 > 0. Under NSP, xyt = ayt. Thus, we have

mnsp :=
12.5k2 ln( 8k� )

✏2
max
t,z

P
y ayt⇣P

y aytq
z
yt

⌘2 .

Similarly, under USP, xyt =
1
4 , and we have

musp :=
12.5k2 ln( 8k� )

✏2
max
t,z

P
y 4a

2
yt

⇣P
y aytq

z
yt

⌘2 .

Lastly, under OWSP, xyt =
ayt

2
P

y ayt
, and we have

mowsp :=
12.5k2 ln( 8k� )

✏2
max
t,z

2(
P

y ayt)
2

⇣P
y aytq

z
yt

⌘2 .

B.6 Proof of Theorem 4

Theorem 4. For any fixed ✏ 2 [0, 0.5� 2�(1� �)] and any fixed � < 1, there exist distributions where µowsp/µnsp

is arbitrarily close to zero. In addition, for any estimator and every distribution, µowsp/µnsp  2.

Proof of Theorem 4. We proceed by construction. For simplicity, we illustrate the correctness of Theorem 4 for
binary confounders. The extension to the multi-valued confounder is straightforward and will be demonstrated in
the proof of Theorem 6.

Consider the following example: a01 = a10 = a11 = ⌘, a00 = 1 � 3⌘, and consider the following pair of q’s:
q = (�,�,�, c�) and q0 = (�,�,�,�), where c  1��

� is some constant. Here, one of the q and q0 represents the
true ATE, and the other represents the estimated ATE using the best estimator. Without loss of generality, we
assume that we have already identified three components of the true conditional distribution. (In general, we can
always construct an instance by modifying the values of a01 and a10 so that the majority error is induced by
estimation error on q11.) Then, we have ATEa(q) =

c�
1+c +

(1�c�)(1��)
2�c��� � ⌘

1�2⌘ , and ATEa(q0) = 1
2 � ⌘

1�2⌘ . Thus,
�ATE := |ATEa(q)�ATEa(q0)|:

�ATE =

����
1

2
� c�

c+ 1
� (1� c�)(1� �)

2� c� � �

���� .

Note that when c = 1��
� , �ATE = 0.5� 2�(1� �) ⇡ 0.5. Thus, for any ✏ 2 [0, 0.5� 2�(1� �)], there exists some

c such that ✏ = �ATE. Then, for any �, let µ denote the minimum expected number of samples that we need to
distinguish q from q0 under the best estimator. Then under NSP, the minimum number of samples that we need
under the best estimator equals to µnsp := µ/⌘, and under OWSP, the minimum number of samples that we need
under the best estimator equals to µoswp = 4µ. (Note that xyt = ( 1�3⌘

2(1�2⌘) ,
1
4 ,

⌘
2(1�2⌘) ,

1
4 ) under OWSP in this

example.) Thus, µowsp/µnsp = 4⌘. Since in this example, ⌘ is at most 1/4, µowsp/µnsp  1 and can be arbitrarily
close to 0 as ⌘ ! 0. (Intuitively, the first statement is true because when

P
t a0t ⌧

P
t a1t and a00 ⇡ a01, it is

equally important to estimate q
z
0t’s and q

z
1t’s according to the ATE expression. However, under this setup, the

number of samples allocated to groups (0, t)’s decreases as a0,t’s approach to 0 under NSP, while under OWSP,
half of the deconfounded samples are always dedicated to estimate the q

z
0t’s.)
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Next, we show the last sentence in Theorem 4 is true. For any fixed ✏, � < 1, let µnsp be the minimum expected
number of samples needed to achieve P (|[ATE � ATE| � ✏) < � under natural selection policy for the best
estimator, then when wowsp := 2µnsp maxt

P
y ayt also achieves P (|[ATE � ATE| � ✏) < � under the outcome-

weighted selection policy. The reason is that when using wowsp number of deconfounded samples, the number
of deconfounded data allocated to each yt group is at least as much as those under the natural selection policy.
Thus, we have µowsp  wowsp  2µnsp, where the last inequality is because maxt

P
y ayt < 1.

B.7 Proof of Theorem 6

Theorem 6. (Lower Bound) For every a, there exists a q such that µnsp is at least

wnsp :=
C1

�2
max

t

 
a1t(

P
y ayt̄)

2

(
P

y ayt)
2

,
a0t(

P
y ayt̄)

2

(
P

y ayt)
2

!
;

similarly for uniform selection policy:

wusp :=
C1

�2
max

t

 
4
a
2
1t(
P

y ayt̄)
2

(
P

y ayt)
2

, 4
a
2
0t(
P

y ayt̄)
2

(
P

y ayt)
2

!
;

similarly for outcome-weighted sample selection policy:

wowsp :=
C1

�2
max

t

 
2
a1t(

P
y ayt̄)

2

P
y ayt

, 2
a0t(

P
y ayt̄)

2

P
y ayt

!
,

where t̄ = 1� t and C1 / (k� � 1)2 ln(��1)✏�2
.

Proof. Consider q = (qz00, q
z
01, q

z
10, q

z
11) where q

1
01 = �, q111 = � + �, and q

z
11 = q

z
01 � �/(k � 1) for z = 2, ..., k,

with
P

z q
z
01 =

P
z q

z
11 = 1. We assume that q

z
11, q

z
01 2 [�, 1 � �] for some suitable � and � for all values of Z.

Similarly, we consider the q0 where the entries of qz01 and q
z
11 are flipped, i.e., q0 = (qz00, q

z
11, q

z
10, q

z
01), for some

small �, where the q
z
yt’s are defined above. Then,

ATEa(q) =
X

z

  
a11q

z
11P

y ay1q
z
y1

� a10q
z
10P

y ay0q
z
y0

!
X

y,t

aytq
z
yt

!

=
a11(� + �)

a11(� + �) + a01�
(a00q

1
00 + a01� + a10q

1
10 + a11(� + �))� a10q

1
10

a10q
1
10 + a00q

1
00

(a00q
1
00 + a01� + a10q

1
10+

a11(� + �)) +
kX

z=2

a11

⇣
q
z
01 �

�
k�1

⌘

a11

⇣
q
z
01 �

�
k�1

⌘
+ a01q

z
01

✓
a00q

z
00 + a01q

z
01 + a10q

z
10 + a11

✓
q
z
01 �

�

k � 1

◆◆
�

kX

z=2

a10q
z
10

a10q
z
10 + a00q

z
00

✓
a00q

z
00 + a01q

z
01 + a10q

z
10 + a11

✓
q
z
01 �

�

k � 1

◆◆
,

and similarly, we have

ATEa(q
0) =

a11�

a11� + a01(� + �)
(a00q

1
00 + a01(� + �) + a10q

1
10 + a11�)�

a10q
1
10

a10q
1
10 + a00q

1
00

(a00q
1
00 + a01(� + �)+

a10q
1
10 + a11�) +

kX

z=2

a11q
z
01

a11q
z
01 + a01

⇣
q
z
01 �

�
k�1

⌘
✓
a00q

z
00 + a01

✓
q
z
01 �

�

k � 1

◆
+ a10q

z
10 + a11q

z
01

◆
�

kX

z=2

a10q
z
10

a10q
z
10 + a00q

z
00

✓
a00q

z
00 + a01

✓
q
z
01 �

�

k � 1

◆
+ a10q

z
10 + a11q

z
01

◆
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Ignoring the � in the denominator, we have that

ATEa(q)�ATEa(q
0) ⇡ a11

a11� + a01�
(a00q

1
00 + a01� + a10q

1
10 + a11�)� +

a10q
1
10(a01 � a11)

a10q
1
10 + a00q

1
00

�

�
 

kX

z=2

✓
a11/k � 1

a11q
z
01 + a01q

z
01

(a00q
z
00 + a10q

z
10 + (a01 + a11)q

z
10)

◆!
� �

kX

z=2

a10q
z
10(a01 � a11)

a10q
z
10 + a00q

z
00

1

k � 1
�

+
a
2
11

a11� + a01�
�
2 +

kX

z=2

a
2
11

a11q
z
01 + a01q

z
01

�
2

(k � 1)2

=
a11

a11� + a01�
(a00q

1
00 + a10q

1
10)� +

a10q
1
10(a01 � a11)

a10q
1
10 + a00q

1
00

� � a11

k � 1

kX

z=2

✓
a00q

z
00 + a10q

z
10

a11q
z
01 + a01q

z
01

◆
�

� 1

k � 1

kX

z=2

a10q
z
10(a01 � a11)

a10q
z
10 + a00q

z
00

� +
a
2
11

a11� + a01�
�
2 +

kX

z=2

a
2
11

a11q
z
01 + a01q

z
01

�
2

(k � 1)2
(11)

Since the second order terms in � is dominated by the first order terms in �, thus to find the highest lower bound
for sample complexity in this instance is to find the largest coefficient in front of �.

Assuming that � ⌧ k and k� < 1, then the maximum of Equation (11) is achieved when q
z
00 = q

z
10 = � ,

q
1
00 = q

1
10 = 1� k�, and q

z
01 = (1� �)/(k � 1), and the coefficient in front of � is

a11

a11 + a01
(a00 + a10)(

1

�
� k � �

1� �
) ⇡ a11

a11 + a01
(a00 + a10)

✓
1

�
� k

◆
.

Similar to the proof of Theorem 2, we have m ⇠ ⌦( ln(�
�1)

�2 ). From Equation (10), we observe that ✏ = kATEa(q)�
ATEa(q0)k ⇠ ⌦(�). Combining above, we have m ⇠ ⌦( ln(�

�1)
✏2 ). In the case above, ✏ ⇡ a11

a11+a01
(a00 + a10)

1
� �,

thus, the number of deconfounded samples needed is approximately

m / ln(��1)a211(a00 + a10)2

✏2(a11 + a01)2

✓
1

�
� k

◆2

.

Let C1 / (k� � 1)2 ln(��1)✏�2. Then m ⇠ ⌦
⇣

C1
�2

a2
11(a00+a2

10)
(a11+a01)2

⌘
.

If we flip the values of qz01 and q
z
11 with the values of qz00 and q

z
10 in both q and q0, then we have m ⇠ C1

�2
a2
10(a01+a11)

2

(a10+a00)2
.

Note that this is because that the estimation error on ATE and 1�ATE is symmetric. In addition, under natural
selection policy, we need at least m

a11
samples; uniform selection policy, we need at least 4m deconfounded samples;

under outcome-weighted selection policy, we need at least 2a11+a01
a11

m deconfounded samples. Combining all of
the above, we obtained Theorem 6.

C Finite Confounded Data

In this case, deconfounding reveals the value of Z for one (initially confounded) sample, and thus we gain no
additional information about PY,T . Thus, these n confounded data provide us with an estimate of the confounded
distribution, P̂Y,T (y, t), which we denote âyt, and thus provide us an estimated OWSP. Similarly, we estimate âyt

using the MLE from the confounded data. To check the robustness of OWSP, we extend our analysis to handle
finite confounded data. With xyt defined as in Section 3.2, we can derive a theorem analogous to Theorems 1-5:

Theorem 8. (Upper Bound) Given n confounded and m deconfounded samples, with n � m, P (|ATE� [ATE| �
✏)  � is satisfied when

min
y,t,z

⇣P
y aytq

z
yt

⌘2

1
xytm

+
(qzyt)

2

n

= min
y,t,z

0

@ PT,Z(t, z)2

1
xytm

+
(qzyt)

2

n

1

A � 4C. (12)
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The proof of Theorem 8 (Appendix C.1) requires a bound we derive (Appendix, Lemma 5) for the product of two
independent random variables. A few results follow from Theorem 8. First, a quick calculation shows that when
m is held constant, P (|ATE� [ATE| � ✏) remains positive as n ! 1. This means that for a certain combinations
of ✏, �, n, there does not necessarily exist a sufficiently large m s.t. P (|ATE � [ATE| � ✏)  � can be satisfied.
However, when there exists such an m, then

m � max
y,t,z

x
�1
yt

 
PT,Z(t, z)2

4C
�

(qzyt)
2

n

!�1

.

Although Theorem 8 does not recover Theorems 3 and 5 exactly when n ! 1,1 it provides us with insights into
relative performance of our sampling policies. Theorem 8 implies that when n � (qzyt)

2
xytm 8y, t, the majority of

the estimation error comes from not deconfounding enough data. This is because when the number of confounded
data that we have is more than ⌦(m), the error on the ATE in Equation (12) is dominated by fact that we have
not deconfounded enough data. To put it another way, for a given m, having n = ⌦(m) confounded samples is
sufficient.

C.1 Proof of Theorem 8

Theorem 8. (Upper Bound) Given n confounded and m deconfounded samples, with n � m, P (|ATE� [ATE| �
✏)  � is satisfied when

min
y,t,z

⇣P
y aytq

z
yt

⌘2

1
xytm

+
(qzyt)

2

n

= min
y,t,z

0

@ PT,Z(t, z)2

1
xytm

+
(qzyt)

2

n

1

A � 4C. (12)

Proof of Theorem 8. In this theorem, we derive the concentration for the [ATE under finite confounded data. The
difference between Theorem 5 and Theorem 8 is that now we need to estimate ayt in addition to q

z
yt. Thus, to

decompose |aytqzyt � âytq̂
z
yt|, we first derive Lemma 5.

C.1.1 Lemma 5

Lemma 5 (Sample complexity for two independent r.v.s with two independent sampling processes). Let X1, ..., Xn

and Y1, ..., Ym be two sequences of Bernoulli random variables independently drawn from distribution p1 and p2,

respectively. Let SX =
nP

i=1
Xi, SY =

mP
i=1

Yi. Then,

P

⇣���SXSY � E [SX ]E [SY ]
��� � nmt

⌘
 2 exp

 
�2t2

1
m + p2

2
n

!
.

1
We could apply Lemma 2 (Appendix B) to obtain a bound that recovers Theorems 3 and 5 exactly as n ! 1. However,

this method does not give us sufficient insights into the comparative performance of our sampling policies.
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Proof of Lemma 5. The proof follows the proof of Hoeffding’s inequality:

P

⇣
SXSY � E[SX ]E[SY ] � nmt

⌘
= P

�
exp(aSXSY � aE[SX ]E[SY ])) � exp(anmt)

�
(13)

 exp(�anmt)E [exp(aSXSY � aE[SX ]E[SY ]))] , (because of Markov’s inequality) (14)
= exp(�anmt)E [exp(aSX(SY � E[SY ]) + aE[SY ](SX � E[SX ])]

 exp(�anmt)E [exp(amax(SX)(SY � E[SY ]) + aE[SY ](SX � E[SX ]))] (because SX � 0) (15)
= exp(�anmt)E [exp(an(SY � E[SY ]) + aE[SY ](SX � E[SX ]))]

= exp (�anmt)E [exp (an(SY � E[SY ]))]E [exp(aE[SY ](SX � E[SX ]))] (becauseX |= Y ) (16)

= exp(�anmt)
mY

i=1

nY

j=1

E [exp(an(Yi � E[Yi]))]E [exp(aE[SY ](Xj � E[Xj ]))]

 exp(�anmt)
mY

i=1

exp

✓
a
2

8
n
2

◆ nY

j=1

exp

✓
a
2

8
E[SY ]

2

◆
(17)

= exp

✓
�anmt+

a
2

8
mn

2 +
a
2

8
nm

2
p
2
2

◆
(because the minimum is achieved at a =

4t

n+mp
2
2

) (18)

 exp

✓
� 2mnt

2

n+mp
2
2

◆
= exp

 
� 2t2

1
m + p2

2
n

!
.

Line (17) is because Yi�E[Yi] 2 {�E[Yi], 1�E[Yi]), and thus n(Yi�E(Yi)) 2 [�nE[Yi], n(1�E[Yi])]. Furthermore,
E[SY ](Xi�E[Xi]) 2 (�E[X]E[SY ], (1�E[X])E[SY ]). Finally, applying Hoeffding’s Lemma (Lemma 1), we obtain
line (17).

Now we are ready to prove Theorem 8.

C.1.2 Proof of Theorem 8

In this theorem, we assume that the number of confounded data is finite. Thus, instead of ayt, we have estimates
of them, namely âyt. Let nyt denote the number of samples in the confounded data such that (Y = y, T = t).
Let m

z
yt be the number of samples in the deconfounded data such that (Y = y, T = t, Z = z). Furthermore, let

n =
P

y,t nyt,m =
P

y,t,z m
z
yt. Then, under our setup, we estimate ayt and q

z
yt as follows:

âyt =
nyt

n
, and q̂

z
yt =

m
z
ytP

z m
z
yt

.

Thus, following the proof of Theorem 1, we have

P

⇣
|[ATE�ATE| < ✏

⌘
� P

 
\

t,z

⇢
|pz1t � p̂

z
1t| <

P
y p

z
yt

5k
✏

�\

t,z

⇢
|pz1t + p

z
0t � p̂

z
1t � p̂

z
0t| <

P
y p

z
yt

5k
✏

�!

= P

 
\

t,z

⇢
|a1tqz1t � â1tq̂

z
1t| <

P
y aytq

z
yt

5k
✏

�\

t,z

⇢
|a1tqz1t + a0tq

z
0t � â1tq̂

z
1t � â0tq̂

z
0t| <

P
y aytq

z
yt

5k
✏

�!
.

Notice that |a1tqz1t + a0tq
z
0t � â1tq̂

z
1t � â0tq̂

z
0t| <

P
y aytq

z
yt

5k ✏ is satisfied when both

|a1tqz1t � â1tq̂
z
1t| <

P
y aytq

z
yt

10k
✏, and |a0tqz0t � â0tq̂

z
0t| <

P
y aytq

z
yt

10k
✏.

We have:

P

⇣
|[ATE�ATE| < ✏

⌘
� P

 
\

t,z

⇢
|a1tqz1t � â1tq̂

z
1t| <

P
y aytq

z
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10k
✏

�\
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⇢
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z
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P
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z
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10k
✏

�!

= P

 
\
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⇢��aytqzyt � âytq̂
z
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�� <
P

y aytq
z
yt

10k
✏

�!
.
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Lemma 5 suggests that

P (|aytqzyt � âytq̂
z
yt| � t)  2 exp

0

@� 2t2

1
xytm

+
(qzyt)

2

n

1

A .

Thus, applying a union bound and Lemma 5, we have

P

⇣
|[ATE�ATE| � ✏

⌘

X

y,t,z

P

✓��aytqzyt � âytq̂
z
yt

�� <
P

y aytq
z
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10k
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exp
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2

( 1
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2

n )100k2

1
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 �.

Simplifying the equations above, we have

min
y,t,z

⇣P
y aytq

z
yt

⌘2

( 1
xytm

+
(qzyt)

2

n )
�

50k2 ln
�
8k
�

�

✏2
.

D Corresponding Stories

In this section, we will provide an example for each selection method such that this particular sampling performs
the worst when compared with the other two methods. For the purpose of illustration, we consider binary
confounder throughout this section. To ease notation, let qyt denote q

1
yt.

A Scenario in Which NSP Performs the Worst A drug repositioning start-up discovered that drug T

can potentially cure a disease �. which has no known drug cure and goes away without treatments once a while.
Since drug T is commonly used to treat another disease ⌘, the majority patients who has disease � do not
receive any treatment. Among the ones who received drug T , the start-up discovered that the health outcomes
of the majority of patients have improved. The start-up proposes to bring drug T to an observational study to
verify whether drug T could treat disease � while not controlling for patient’s treatment adherence levels. As in
most cases, patient’s treatment adherence levels could influence doctors’ decision of whether to prescribe drug
T and whether the treatment for disease � will be successful. Translating this scenario into our notations, we
have a01 = ✏1, a10 = ✏2, a11 = ✏3, and a00 = 1 �

P3
i=1 ✏i, say a = (0.9, 0.02, 0.01, 0.07). Now, imagine in the

clinical trial, the patients are given a drug case containing drug T such that the drug case automatically records
the frequency that the patient takes the drug. Somehow we know a priori that the patients who do not have
health improvement have on average poor treatment adherence, e.g., q00 = 0.9, q01 = 0.7; furthermore, those who
have health improvement on average have good treatment adherence, e.g., q10 = 0.01, q11 = 0.3. Deconfounding
according to NSP, i.e., x = (a00, a01, a10, a11), in this case, will select most samples from the group (Y = 0, T = 0).
Since the ATE depends on the estimation that relies on both T = 0, and T = 1, one would expect that NSP and
OWSP will outperform NSP. The left column in Figure 3 confirms this hypothesis.

A Scenario in Which USP Performs the Worst A group biostatisticians discovered that mutations on
gene T is likely to cause cancer Y in patients with a particular type of heart disease. In particular, they discovered
that among the those heart disease patients, 79% of patients have neither mutation on T nor cancer Y ; 18%
patients have both mutation on T and cancer Y . In other words, a00 = 0.79, a11 = 0.18. Furthermore, we have
a01 = 0.01, a10 = 0.02. This group of biostatisticians want to run a small experiment to confirm whether gene T

causes cancer Y . In particular, they are interested in knowing whether those patients also have mutations on
gene Z, which is also suspected by the same group of biostatisticians to cause cancer Y . Somehow, we know
a priori that q00 = 0.5, q01 = 0.01, q10 = 0.05, q11 = 0.5. From the calculation of the ATE, it is not difficult to
observe that the error on the ATE is dominated by the estimation errors on q00, q11. Thus, we should sample
more from the groups (Y = 0, T = 0) and (Y = 1, T = 1).
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A Scenario in Which OWSP Performs the Worst A team wants to reposition drug T to cure diabetes.
Drug T has been used to treat a common comorbid condition of diabetes that appears in 31% of the diabetic
patient population. Among those patients who receive drug T , about 97% has improved health, that is a01 = 0.01
and a11 = 0.3. Among the patients who have never received drug T , about 70% have no health improvement,
that is a00 = 0.5, and a10 = 0.19. Let q00 = 0.05, q01 = 0.5, q10 = 0.055, and q11 = 0.4. In the ATE, it is easy to
observe that a11q11

a11q11+a01q01
and a11(1�q11)

a11(1�q11)+a01(1�q01)
are both dominated by 1 regardless of the estimates of q11

and q01. In this case, USP outperforms OWSP and NSP when the sample size is larger than 200. On the other
hand, the bottom figure in the third column of Figure 3 shows that, when averaged over all possible values of q,
OWSP performs the best.

E Approximate Sampling Policies Under Finite Confounded Data

To deconfound according to NSP with finite confounded data is to deconfound the first m confounded data. For
USP, we split the samples to the 4 groups as evenly as possible. That is, we max out the bottleneck group/groups
and distribute the excess data as evenly as possible among the remaining groups.

For OWSP, we have xyt =
âytP
y âyt

, and when implementing OWSP, we will first ensure that the deconfounded
samples are split as evenly as possible across treatment groups, and then within the each group, we split the
samples close as possible to the outcome ratio.
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