
vqSGD: Vector Quantized Stochastic Gradient Descent

vqSGD: Supplementary Material

A Experiments

We use our gradient quantization scheme to train a fully connected ReLU activated network with 1000 hidden
nodes using the MNIST [24] and the Fashion MNIST [38] dataset (60000 data points with 10 classes for each).
We use the cross-entropy loss function for the training the neural network with a total of d = 795010 parameters.

The dataset is divided equally among 100 workers. Each worker computes the local gradients and communicates
the quantized gradient to the master which then aggregates and send the updated parameters. We plot the error
at each iteration (Figure 1) and compare our results with QSGD quantization.

We use vqSGD with cross polytope scheme, QCcp
, along with the variance reduction technique with repetition

parameter s = 100. Therefore, each local machine sends about 2060 = 100 · log(2d) bits per iteration whereas,
QSGD requires 3825.05 bits for MNIST and 2266.79 bits for Fashion MNIST, of communication per iteration per
machine (computed by averaging over the total bits of communication over 50 iterations) to communicate the
quantized gradient. Our results indicate that vqSGD converges at a similar rate to QSGD while communicating
much lesser bits.

We also our vqSGD with the cross polytope scheme, QCcp
, to train a ReLU network with 4000 hidden nodes

using the CIFAR 10 dataset [23]. This dataset also has 10 classes, every other set up is same except now we have
d = 12332010 parameters.

The dataset is again equally divided among 100 users. Using vqSGD, each machine send 2455 bits per iteration
using the variance reduction scheme. On the other hand, for QSGD, the number of bits per machine per iteration
is 4096.9 (computed by averaging over the total bits of communication over 50 iterations). As is evident from the
plot in Figure 1, vqSGD communicates lesser number of bits to achieve similar performance.

(a) MNIST (b) Fashion MNIST (c) CIFAR10

Figure 1: Convergence for fully connected ReLU network compared to QSGD

Further we experimentally show the performance of vqSGD using the cross polytope Qcp, to solve the least
squares problem and logistic regression for binary classification.

Least Squares: In the least square problem, we solve for ✓⇤ = argmin✓ kA✓� bk22, where the matrix A 2 Rn⇥d

and ✓⇤ 2 Rd are generated by sampling each entry from N (0, 1) and we set b = A✓⇤.

In order to show the performance of vqSGD, we simulate the iterations of distributed SGD with n = 10000 data
samples distributed equally among N = 500 worker nodes. In every iteration of SGD, each worker node computes
the local gradient on individual data batch and communicates the quantized version of the local gradient to the
parameter server. The parameter server on receiving all the quantized gradients averages them and broadcasts
the updated model to all the workers. The convergence of SGD is measured by the error term k✓⇤ � ✓tk2, where
✓t is the computed parameter at the end of t-th iteration of distributed SGD.

We compare the convergence of the least square problem for d = 100, 200, 500 against the state-of-the-art
quantization schemes - DME [33] and QSGD [5]. The results are presented in Figure 2.

The results indicate that vqSGD achieves the same rate of convergence and accuracy as DME and QSGD while
communicating only log(2d) bits and one real (l2 norm of the vector form each server), whereas, DME (one bit
stochastic quantization) and QSGD both require communication of about

p
d bits and one real.

For the same problem setup, we also show the improvement in the performance of vqSGD using the repetition
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(a) d=100 (b) d=200 (c) d=500

Figure 2: Comparison of convergence for the least square problem with d = 100, 200, 500.

Figure 3: Convergence of ✓t for s = 1, 5, 10, 20 for least square problem

technique for variance reduction. Recall that using repetition technique, each worker now sends s di↵erent indices
instead of 1 which increases the communication to s log(2d) bits and 1 real. In Figure 3 we plot the convergence
of the lease square problem with d = 200 with di↵erent values of s = 1, 5, 10, 20. We see the evident improvement
in the convergence of vqSGD using this repetition scheme with increasing s.

Binary Classification: We compared the performance of vqSGD against DME and QSGD for the binary
classification problem with logistic regression using various datasets from the UCI repository [10]. The logistic
regression objective is defined as

1

n

nX

i=1

log(1 + exp(�biai
T✓) +

1

2n
k✓k22, (8)

where ✓ 2 Rd is the parameter, ai 2 Rd is the feature data and bi 2 {�1,+1} is its corresponding label.

We partition the data into 20 equal-sized batches, each assigned to a di↵erent worker node. We calculate the
classification error for di↵erent (test) datasets after training the parameter in the distributed settings (same as
described in least square problem). Results of the experiments are presented in Table 4, where each entry is
averaged over 20 di↵erent runs.

Method DME QSGD vqSGD
a5a (d = 122) 0.238± 0.0003 0.238± 0.0002 0.2368± 0.0029
a9a (d = 123) 0.234± 0.0003 0.234± 0.00017 0.234± 0.0015
gisset-scale (d = 5000) 0.0947± 0.00384 0.10475± 0.006 0.1480± 0.0174
splice (d = 60) 0.467± 0.017 0.4505± 0.0352 0.16618± 0.0054

Table 4: Comparison in classification error (mean± standard deviation) for various UCI datasets

We note that for most datasets, with the exception of gisset-scale, vqSGD withO(N log d) bits of communication per
iteration performs equally well or sometimes even better than QSGD and DME with O(Nd) bits of communication
per iteration.
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B Missing proofs from Section 4

Proof of Lemma 1. E[QC(v)] =
P|C|

i=1 ai · ci = pv.

Proof of Lemma 2. From the definition of the quantization function,

E[kv �QC(v)k22] = E[kQC(v)k2]� kvk2  R2.

This is true as C satisfies Condition (1) and therefore, each point ci 2 C has a bounded norm, kcik  R.

Proof of Theorem 3. Since ĝ is the average of N unbiased estimators, the fact that E[ĝ] = g follows from Lemma 1.
For the variance computation, note that

E[kg � ĝk22] =
1

N2

 
NX

i=1

E[kgi � ĝik22]
!

( since ĝi is an unbiased estimator of g )

 R2

N2

NX

i=1

kgik2 (from Lemma 2).

Proof of Proposition 4. The proof follows simply by linearity of expectations and Lemma 2.

E
⇥
kv � v̂k22

⇤
= E

"
k1
s

sX

i=1

(v �QC(v)) k2
#
 1

s
·R2.

C Missing proofs from Section 5

To prove Theorem 7, we first show the following lemma that allows us to union bound over the discrete set of
points in an "-net of a unit sphere. Consider an "-net for the unit sphere N(") for any "  1/R. We know that

such a set exists with |N(")| 
�
1 + 2

"

�d 
�
3
"

�d
[12].

Lemma 17. Let C be a set of points in Rd such that kck2  R2 for all c 2 C. If for each y 2 N("), yT c � 2
for some c 2 C, then it holds that for each x 2 Sd�1, there is a c0 2 C such that xT c0 � 1.

Proof. Let y 2 N(") be a net-point, and c 2 C be such that yT c � 2. Note that all points x 2 Sd�1

in the "-neighborhood of y can be written as x = y + ỹ, where ỹ 2 Rd has norm at most ✏. Therefore,
xT c = yT c+ ỹT c � 2� kỹkkck � 1. Since N(") covers the entire unit sphere, it follows that for all points x on
the unit sphere, there will be a c 2 C such that xT c � 1.

Proof of Theorem 7. Let us choose the random set C of t := e
20d
R2 +2 log d points in Rd in the following way: Each

coordinate of any c 2 C is chosen independently from a zero-mean Gaussian distribution with variance �2 := R
2

9d .

We say that a vector x 2 Sd�1 is a witness for C if xT c < 1 for all c 2 C. We now show that with high probability,
there is no witness for C in Sd�1. Using Lemma 17, it is su�cient to show that for any x 2 N("), xT c � 2 for
some c 2 C, "  1/R.

Let us define E1 to be the event that kck2  R2 for all c 2 C. Since every entry of c is chosen from i.i.d.
Gaussian, the norm kck2 is distributed according to �2-distribution with variance 2d�4. Since �2-distribution
is subexponential [34][ Eq. 2.18], for any c 2 C, we have, for any l � 1, Pr(kck2 > d�2(l + 1))  e�dl/8. This
implies,

Pr(kck2 > R2)  e�
1
8 (R

2
/�

2�d)  e�d,

substituting the value of �2. Then by union bound over all c 2 C.

Pr[Ē1]  te�d = e�d+20d/R2+2 log d  e�⌦(d), (9)

for R � 5.
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Let E2 denote the event that for each y 2 N("), there exists c 2 C such that yT c � 2. For any fixed y 2 N("),
and c 2 C, define py,c to be the probability that yT c � 2. Note that since c has i.i.d. Gaussian entries, then
for any fixed y 2 N("), the inner product yT c is distributed according to N (0,�2). Using standard bounds for
Gaussian distributions [8],

py,c := Pr[yT c � 2] � 2�

(�2 + 4)
p
2⇡

e�
2
�2

� 1p
2⇡

min(��1,�/4)e�
2
�2 � R

12
p
2⇡d

e�
2
�2 ,

for any R  6
p
d.

Since each c is chosen independently, the probability that yT c < 2 for all c 2 C is (1� py,c)t  e�t·py,c . Now for

" = 1/R, by union bound, since |N(")| 
�
3
"

�d
,

Pr[Ē2] = Pr[9 y 2 N(") s.t. yT c < 2 8 c 2 C]

 e�t·py,c+d log 3R

= e�t·e�
18d
R2 �log( 12

p
2⇡d

R
)
+d log 3R

= e�e

2d
R2 +2 log d�log( 12

p
2⇡d

R
)
+d log 3R

= e�d
2
e

2d
R2 �log( 12

p
2⇡d

R
)
+d log 3R

 e�⌦(d).

Therefore, Pr[Ē1 [ Ē2]  e�⌦(d). Then using Lemma 17 and Theorem 6, we obtain the statement of the theorem.

Proof of Proposition 8. We prove this theorem by showing that the point set CRM satisfies the characterization
of Theorem 6. Since all points in CRM have squared norm exactly d, from Lemma 1 and Lemma 2, the proof
follows.

First note that the matrix with the points in CRM as its rows, has the following structure:

H :=


Hp

�Hp

�

where, Hp is the 2p ⇥ 2p Hadamard matrix.

For any fixed x 2 Sd�1, consider the sum S(x) :=
P

c2CRM
(xT c)2. We first show that S(x) � 2(d+ 1).

S(x) =
X

c2CRM

(xT c)2 = 2
X

hi2Hp

(xThi)
2

= 2kHpxk2 = 2(xTHT

p
)(Hpx)

(i)
= 2d · kxk2 = 2d.

(i) follows from the fact that the columns of the Hadamard matrix are mutually orthogonal and therefore,
HT

p
Hp = d · Id, where, Id denotes the d⇥ d identity matrix.

By an averaging argument, it then follows that there exists at least one c 2 CRM such that |xT c| � 1. Since for
every c 2 CRM , there exists �c 2 CRM , we get that xT c � 1 for some c 2 CRM .

D Missing proofs from Section 5.3

Proof of Proposition 9. The proof of Proposition 9 follows directly from Lemma 2 provided the point set Ccp

satisfies Condition (1) with R =
p
d. We will now prove this fact.

Since each vertex is of the form ±
p
dei, it follows that all the vertices of conv(Ccp), and hence the entire convex

hull lies inside a ball of radius
p
d, i.e., , conv(Ccp) ⇢ Bd(0d,

p
d).
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To prove that the unit ball is contained in the convex hull conv(Ccp), we pick any arbitrary point v 2 Bd(0d, 1)
and show that it can written as a convex combination of points in Ccp. The fact follows from the solution to the
system of linear equations (2) given in Equation (15). Note that the solution satisfies ai � 0 and

P
i
ai = 1 for

any point v 2 Bd(0, 1).

Proof of Lemma 10. Let K := conv(N(")) be the convex hull of the "-net points of the unit sphere. Let Bd(0d, r)
be the inscribed ball in K for some r < 1. We show that r � 1� ".

Consider the face of K that is tangent to Bd(0d, r) at point z. We will show that kzk2 � 1� ". Extend the line
joining (0d, z) to meet Sd�1 at point x. Since x 2 Sd�1, we know that there exists a net point u at a distance of at
most " from it. Therefore, the distance of x fromK is upper bounded by ", i.e., dist(x,K) = kx�zk  kx�uk  ".
Therefore kzk = 1� kx� zk � 1� ".

Therefore scaling all the points of N(") by any R � 1
1�"

we see that Bd(0d, 1) ✓ conv(C).

E Missing proofs from Section 6

Proof of Proposition 12. First we show that the point set CS satisfies Condition (1) with R = 2d. The fact that
conv(CS) ⇢ Bd(0d, 2d) follows trivially from the observation that each point in CS 2 Bd(0d, 2d).

To show that Bd(0d, 1) ⇢ conv(CS), consider any face of the convex hull, Fc := conv(CS \ {c}), for some
c 2 CS . We show that Fc is at an `2 distance of at least 1 from 0d. This in turn shows that any point outside
the convex hull must be outside the unit ball as well.

First consider the case when c = �41d. We observe that the face Fc is contained in the hyperplane Hc := {x 2
Rd | 1p

d
1T

d
x = 2

p
d}, and therefore is at a distance of O

⇣p
d
⌘
from the origin.

Now consider the case when c = 2d e1. Let w = 1p
9
16�

1
2d

(� 3
4 + 1

2d ,
1
2d , . . . ,

1
2d )

T 2 Rd be a unit vector. We note

that Fc ⇢ Hc, where Hc := {x 2 Rd | wTx = 1p
9
16�

1
2d

} is the hyperplane defined by the unit normal vector w

that is at a distance of at least 1 from 0d.

Since all other faces are symmetric, the proof for the case c = 2d ei, i 2 [d] follows similarly.

Privacy: We now show that the quantization scheme is ✏-di↵erentially private for any ✏ > log 7. From the
definition of ✏-DP, it is su�cient to show that for any x,y 2 Bd(0d, 1) , and every c 2 CS ,

Pr[QCS
(x) = c]

Pr[QCS
(y) = c]

 7.

Since x,y 2 conv(CS), we can express them as the convex combination of points in CS . Let x =
P

c2CS
a(x)c c.

Similarly, let y =
P

c2CS
a(y)c c. Then, from the construction of the quantization function QCS

, we know that

Pr[QCS
(x) = c]

Pr[QCS
(y) = c]

=
a(x)c

a(y)c

.

We now show that the ratio a
(x)
c

a
(y)
c

is at most 7 for any pair x,y 2 Bd(0d, 1) and any c 2 CS . The privacy bound

follows from this observation.

First, consider the case c = �41d. From the closed form solution for any x 2 conv(CS) described in Equation (6),

we know that a(x)c = 1
3 �

P
d

i=1 xi

6d . For any x 2 Bd(0d, 1),
P

d

i=1 xi 2 [�kxk1, kxk1] ✓
h
�
p
d,
p
d
i
. Therefore,

a(x)c 2
h
1
3 � 1

6
p
d
, 1
3 + 1

6
p
d

i
. It then follows that for any x,y 2 Bd(0d, 1) and c = �41d,

a(x)c

a(y)c


1
3 + 1

6
p
d

1
3 � 1

6
p
d

= 1 +
2

2
p
d� 1

 3

Now we consider the case when c = 2d e1. Then from the closed from solution in Equation (6), we get that for

any x 2 conv(CS) the coe�cient a(x)c = x1
2d

�
1� 2

3d

�
�

P
d

i=2 xi

3d2 + 2
3d . Note that this quantity is maximized for
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x = e1 and minimized for x = �e1. Therefore the ratio for any x,y 2 Bd(0d, 1) and c = 2d e1 is at most

a(x)c

a(y)c

 7d� 2

d+ 2
 7

The ratio for all other vertices can be computed in a similar fashion and is bounded by the same quantity.

Proof of Proposition 13. First, we show that CH satisfies Condition (1) with R = 2d. The fact that conv(CH) ⇢
Bd(0d, 2d) is trivial and follows since every point in CH is contained in Bd(0d, 2d).

To show that Bd(0d, 1) ⇢ CH , consider any x 2 Bd(0d, 1), and the closed form solution for the coe�cients
ai given by Equation (7). We now show that these coe�cients indeed give a convex combination. Note that

ai :=
1

d+1

⇣
1 + cTx

4d

⌘
� 0. This holds since cTx � kckkxk � �2d. Moreover, from the property of Hadamard

matrices,
d+1X

i=1

ai =
1

d+ 1

⇥
1 . . . 1

⇤
HT

p


1
x

2
p
d

�
= 1.

The last equality follows from the following property of the Hadamard matrices that can be proved using induction.
⇥
1 . . . 1

⇤
HT

p
=
⇥
2p 0 . . . 0

⇤
.

Therefore, any x 2 Bd(0d, 1) can be expressed as a convex combination of the points in CH , i.e., , x =
P

d+1
i=1 aici,

for ci 2 CH .

Privacy: We now show that the quantization scheme is ✏-di↵erentially private for any ✏ > 0.4. From the
definition of ✏-DP, it is su�cient to show that for any x,y 2 Bd(0d, 1), and any c 2 CH ,

Pr[QCH
(x) = c]

Pr[QCS
(y) = c]

 1 +
p
2

Since x,y 2 conv(CS), we can express them as the convex combination of points in CH . Let x =
P

c2CH
a(x)c .

Similarly, let y =
P

c2CH
a(y)c . Then, from the construction of the quantization function QCH

, we know that

Pr[QCH
(x) = c]

Pr[QCH
(y) = c]

=
a(x)c

a(y)c

. (10)

From the closed form solution in Equation (7), we know that for any x 2 conv(CH), the coe�cient of c in the

convex combination of x is given by a(x)c = 1
d+1

⇣
1 + cTx

4d

⌘
. Plugging this in Equation (10), we get

Pr[QCH
(x) = c]

Pr[QCH
(y) = c]

=
a(x)c

a(y)c

=
1 + cTx

4d

1 + cTy
4d

= 1 +
cT (x�y)

4d

1 + cTy
4d

(11)

 1 +
kck2kx� yk2
4d� kck2

for y = � c

kck2
(12)

 1 +
2
p
2d

4d� 2d
(13)

(since kx� yk2 
p
2 and kck2 = 2d.)

= 1 +
p
2 (14)

This concludes the proof of Proposition 13.

Proof of Proposition 14. The fact that Q
C̃cp

satisfies Condition (1) with R = 2
p
d follows from the proof of

Proposition 9. For any v 2 Rd, we can compute the convex combinations as

ai =

8
><

>:

vi

2
p
d
+ �

2d if vi > 0 and i  d

� vi

2
p
d
+ �

2d if vi  0 and i > d
�

2d otherwise

(15)
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where, � := 1� kvk1

2
p
d
, is a non-negative quantity for every v 2 Bd(0d, 1).

To prove the privacy guarantees of this scheme, we first state a few observations:

• Since kvk1 2 [�
p
d,
p
d], the quantity � 2 [1/2, 3/2].

• For any coordinate i 2 [d], if xi > 0, then the coe�cients ai =
|xi|
2
p
d
+ �

2d , and ad+i =
�

2d .

• Similarly, if xi  0, then the coe�cients ai =
�

2d , and ad+i =
|xi|
2
p
d
+ �

2d .

• For any x 2 Bd(0d, 1), xi 2 [�1, 1]

Let x,y 2 Bd(0d, 1) and for any c 2 C̃cp, we need to upper bound the following quantity to prove the privacy
guarantees of the scheme:

pc :=
Pr[Q

C̃cp
(x) = c]

Pr[Q
C̃cp

(y) = c]

Note that it is su�cient to consider only one of the points c = 2
p
dej in the following four scenarios:

1. xi > 0, yi > 0, then pc =
|xi|
2
p

d
+ �x

2d
|yi|
2
p

d
+

�y

2d


1

2
p

d
+ 3

4d
1
4d

 O(
p
d).

2. xi > 0, yi  0, then pc =
|xi|
2
p

d
+ �x

2d
�y

2d


1

2
p

d
+ 3

4d
1
4d

 O(
p
d).

3. xi  0, yi > 0, then pc =
�x

2d
|yi|
2
p

d
+

�y

2d

=
3
4d
1
4d

 3

4. xi  0, yi  0, then pc =
�x

2d
�y

2d

=
3
4d
1
4d

 3.

Therefore, the privacy guarantees hold for any ✏ > O(log d).

Proof of Theorem 15. First we show that v̂ = PQC,✏(v) =
1

p�q

P|C|
i=1(1{y=ci} � q)ci is an unbiased estimator of

v. From linearity of expectations, we have

E[v̂] =
1

p� q

|C|X

i=1

(Pr[y = ci]� q)ci, (16)

where, the expectation is taken over the randomness of both the quantization and RR scheme. Recall that

y := RR p(QC(v), C) 2 C,

where p = e
✏

e✏+|C|�1 . Therefore,

Pr(y = ci) =

|C|X

j=1

Pr[y = ci|QC(v) = cj ] · Pr[QC(v) = cj ]

= (p� q)ai + q.

Therefore E[v̂] = 1
p�q

P|C|
i=1(p� q)aici = v.



Venkata Gandikota, Daniel Kane, Raj Kumar Maity, Arya Mazumdar

Now we bound the variance of the estimator

E[kv � v̂k2] = E

2

4k
|C|X

i=1

✓
1

p� q
(1{y=ci} � q)� ai

◆
cik2

3

5


|C|X

i=1

E

"✓
1

p� q
(1{y=ci} � q)� ai

◆2

kcik2
#

=

|C|X

i=1

Var

✓
1

p� q
(1{y=ci} � q)

◆
kcik2

�

=

✓
1

p� q

◆2 |C|X

i=1

Var(1{y=ci})kcik
2

= O(|C|R2),

since kcik2  R2 and Var(1{y=ci})  1/4 .

Privacy Now we show that our scheme is ✏ di↵erentially private where ✏ is the input parameter to the RR
algorithm. For any two points v,w 2 Bd(0d, 1),

PQC,✏(v) = y

PQC,✏(w) = y
=

P|C|
i=1 Pr(y|QC(v) = ci) Pr(QC(v) = ci)

P|C|
j=1 Pr(y|QC(w) = cj) Pr(QC(w) = cj)

(17)


maxi Pr(y|QC(v) = ci)

P|C|
i=1 Pr(QC(v) = ci)

minj Pr(y|QC(w) = cj)
P|C|

i=1 Pr(QC(w) = cj)
(18)

=
maxi Pr(y|QC(v) = ci)

minj Pr(y|QC(w) = cj)
 e✏ (19)

we are using the following privacy property of Randomized Rounding [36] mechanism in Equation (19)

sup
i,j

Pr(y|QC(v) = ci)

Pr(y|QC(w) = cj)
 e✏ 8v,w

Proof of Theorem 16. First we show that v̂ = 1
(1�2p)

P|C|
j=1 (yj � p) cj is an unbiased estimator of v. From

linearity of expectations, we have

E[v̂] =
1

(1� 2p)

|C|X

j=1

(E[yj ]� p) cj , (20)

where, the expectation is taken over the randomness of both the quantization and RAPPOR scheme.

Recall that
y := Rappor p(1-hot (QC(v), C)) 2 {0, 1}|C|.

Each entry of the vector y is an independent binary random variable and

E[yj ] = Pr(yj = 1) =

|C|X

i=1

Pr(yj , QC(v) = ci)

=

|C|X

i=1

Pr(yj |QC(v) = ci)Pr(QC(v) = ci)

= Pr(yj |QC(v) = cj)Pr(QC(v) = cj)

+

|C|X

i 6=j

Pr(yj |QC(v) = ci)Pr(QC(v) = ci)

= (1� p)aj + p(1� aj) = p+ (1� 2p)aj . (21)
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Plugging Equation (21) in Equation (20) , we get

E(v̂) =
1

(1� 2p)

|C|X

j=1

(p+ (1� 2p)aj � p) cj =

|C|X

j=1

ajcj = v (22)

Now we show a bound on the variance of the estimate

E
⇥
kv � v̂k22

⇤
= E

2

4k
|C|X

j=1

ajcj �
1

(1� 2p)

|C|X

j=1

(yj � p) cjk22

3

5 (23)

=

|C|X

j=1

E

✓
aj �

(yj � p)

(1� 2p)

◆2

|cj |2 (24)

( all the cross terms are 0 as they are mutually independent and E
⇣
aj � yj�p

1�2p

⌘
= 0)

=

|C|X

j=1

var

✓
yj � p

1� 2p

◆
|cj |2 (25)

=

✓
1

1� 2p

◆2 |C|X

j=1

var(yj) |cj |2 = O(|C|R2) (26)

Equation (26) comes form the fact that yj is a binary random variable and V ar(yj) = Pr(yj)(1� Pr(yj))  1
4

and |cj |2  R2.

Privacy Now we show that our scheme is ✏ di↵erentially private where ✏ is the input parameter to the RAPPOR
algorithm. For any two points v,w 2 Bd(0d, 1),

PQC,✏(v) = y

PQC,✏(w) = y
=

P|C|
i=1 Pr(y|QC(v) = ci) Pr(QC(v) = ci)

P|C|
j=1 Pr(y|QC(w) = cj) Pr(QC(w) = cj)

(27)


maxi Pr(y|QC(v) = ci)

P|C|
i=1 Pr(QC(v) = ci)

minj Pr(y|QC(w) = cj)
P|C|

i=1 Pr(QC(w) = cj)
(28)

=
maxi Pr(y|QC(v) = ci)

minj Pr(y|QC(w) = cj)
 e✏ (29)

By the privacy property of RAPPOR [15] mechanism , we are using the following fact in equation (29)

sup
i,j

Pr(y|QC(v) = ci)

Pr(y|QC(w) = cj)
 e✏ 8v,w

Communication : Now we show that for the RAPPOR based scheme the expected communication is linear in
|C|. Say y is the output when RAPPOR is applied to one hot encoded binary string. Without loss of generality
say the the bit string is ei. The output y is generated as follows

Pr(yj = 1) =

(
p if j 6= i

(1� p) if j = i

So the expected sparsity (l0 norm) of the output is

E[kyk0] =
|C|X

i

yi = (|C|� 1)p+ (1� p)

= |C|p+ (1� 2p) = O(|C|)


