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Abstract

Domain generalization is the problem of ma-
chine learning when the training data and the
test data come from different “domains” (data
distributions). We propose an elementary the-
oretical model of the domain generalization
problem, introducing the concept of a meta-
distribution over domains. In our model, the
training data available to a learning algorithm
consist of multiple datasets, each from a sin-
gle domain, drawn in turn from the meta-
distribution. We show that our model can
capture a rich range of learning phenomena
specific to domain generalization for three dif-
ferent settings: learning with Massart noise,
learning decision trees, and feature selection.
We demonstrate approaches that leverage do-
main generalization to reduce computational
or data requirements in each of these settings.
Experiments demonstrate that our feature
selection algorithm indeed ignores spurious
correlations and improves generalization.

1 Introduction

Machine learning algorithms often perform poorly due
to the fact that training data is distributed differently
from the data on which the algorithm will eventually
be used. This often happens when training data is
collected from some domains (e.g., certain websites,
breeds of dogs, or countries) but good performance is
desired on a broader distribution over domains (e.g.,
the entire web, all dogs, or the whole world). The
challenge is to generalize from data collected in these
training domains to the full distribution. For some
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problems, it is of course impossible to generalize from
data collected in some domains to others, even when
the training data is annotated by domain. In other
problems, however, it is not only possible but can in
fact be easier to learn with domain-split data than if
data were iid from the entire distribution of interest.
We propose a novel theoretical framework to study
this setting and give algorithms which illustrate such
learnability in the framework.

As a concrete example, consider classifying personal
web pages at a university as either student or faculty.
Think of each university, such as the Toyota Techno-
logical Institute, as a domain, often corresponding to
a URL domain name such as ttic.edu. Data may
be scraped from a handful of domains with the goal
to generalize to future domains. Moreover, predictors
that work on one domain may not generalize to others.
For example, the presence of the single word mission
on a web page is an excellent predictor of faculty web
pages because official ttic.edu faculty pages all con-
tain a “mission statement,” while student pages do not.
Given data from multiple domains, one can use the
domain splits of the training data to learn classifiers
that generalize across domains and hence are likely to
work on future data. This natural example is motivated
by the classic WebKB project, where Craveny et al.
(1998) collected and hand-labeled training data from
four universities with test data from 100 universities,
and in fact we test one of our algorithms on this data.

We suppose there is a distribution of interest ρ over
examples (x, y, z) where z ∈ Z represents the latent do-
main of example x ∈ X with label y ∈ Y. In standard
iid learning, e.g., PAC learning ρ, training examples
are iid from ρ and the z’s are unobserved. We consider
a setting where training data is divided into d domains,
where data from each domain share a common z, and
these domains are chosen iid from ρ’s marginal dis-
tribution on z. Learning is with respect to a family
of classifiers C and an assumption set ρ ∈ P on the
relationship between the domains—with no such as-
sumption, the problem reduces to agnostic learning.

ttic.edu
ttic.edu
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Interestingly, for some problems in this framework,
having training datasets split by domain can actually
make learning easier. We give algorithms for three
problems that illustrate three different ways in which
this can happen. We first consider a multi-domain vari-
ant of the Massart noise model (Massart et al., 2006),
where there is a common target concept c ∈ C but each
domain has a different noise rate in the labels. We pro-
vide a general reduction from computationally efficient
learning in this model to PAC learning under random
classification noise (Angluin and Laird, 1987). This
results in Bayes-optimal learning; it is not known how
to achieve this for iid learning even for simple classes
such as halfspaces with Massart noise (though progress
was made in this direction by the recent celebrated
result of Diakonikolas et al. (2019)).

Second, we provide a multi-domain feature selection
algorithm that identifies features that are robust across
multiple domains. Our algorithm augments a black-
box PAC learner with an additional correlation-based
selection based on data across different domains. We
empirically demonstrate its effectiveness on the afore-
mentioned WebKB dataset of university webpages. We
show that our approach provides stronger cross-domain
generalization than the standard baseline. As hypothe-
sized, we find that features that are highly predictive in
one university but not in another are in fact spurious
correlations; removing them improves prediction on
data from further universities not in the training set.

Finally, we turn to another notoriously difficult com-
putational problem—PAC learning decision trees. We
make the assumption that there is a target decision
tree that labels the examples across all domains, but
examples in each domain all belong to a single leaf in
this tree. Under this assumption, we provide an effi-
cient algorithm with runtime O(n+s), where n denotes
the dimension of the data and s denotes the number
of nodes in the target tree. (Without any assumption,
the fastest known algorithm runs in time nO(log s)).

The three algorithms we introduce within this model are
quite different in nature and serve to illustrate the rich
range of algorithm innovations possible. Our model of
domain generalization enables two distinct advantages
over the traditional PAC learning model. First, PAC-
learned models do not come with any guarantee of
performance on data drawn from unobserved domains.
Second, the additional structure of training on multiple
datasets enables in-sample guarantees that are not
achievable in the standard PAC model. We view this
work as a theoretically-grounded starting point and
hope that it leads to further study.

Finally, we note that even in settings where training
data are not explicitly partitioned into domains, one

can employ data partitioning by which we mean arti-
ficially partitioning the training data along a feature
of interest or by clustering (e.g., one could partition
images collected within a city based on time of day,
season, weather, or geographic subdivision of the city.)
Algorithms may use such partitioned data to learn to
generalize to novel types of data. A domain expert
would choose such a partition analogously to data aug-
mentation where a domain expert anticipates certain
transformations that could be applied to data.

2 Related Work

A rich literature sometimes known as domain adapta-
tion (e.g., Blitzer et al. (2006); Ben-David et al. (2007);
Blitzer et al. (2008); Mansour et al. (2009a,b); Ben-
David et al. (2010); Ganin and Lempitsky (2015); Tzeng
et al. (2017); Morerio et al. (2018); Volpi et al. (2018a))
considers settings where the learner has access not only
to labeled training data, but also to unlabeled data
from the test domain. This is a quite different setting
from ours; our learner is given no access to data from
the test domain, either labeled or unlabeled.

There is also a rich literature (e.g., Li and Zong (2008);
Luo et al. (2008); Crammer et al. (2008); Mansour
et al. (2009c); Guo et al. (2018)) that does not always
rely on unlabeled data from the test distribution, but
rather leverages information about similarity between
domains to produce labels for new points. Zhang et al.
(2012), relatedly, study the distance between domains
in order to draw conclusions about generalization.

Adversarial approaches have recently gained attention
(e.g. Zhao et al., 2018), and in particular, Volpi et al.
(2018b), like us, generalize to unseen domains, but
they attack the problem of domain generalization by
augmenting the training data with fictitious, “hard”
points. There are also many other empirical approaches
to the problem of domain generalization (e.g., Muandet
et al., 2013; Khosla et al., 2012; Ghifary et al., 2015; Li
et al., 2017; Finn et al., 2017; Li et al., 2018; Mancini
et al., 2018; Balaji et al., 2018; Wang et al., 2019;
Carlucci et al., 2019; Dou et al., 2019; Li et al., 2019).

There are of course many other related fields of study,
including covariate shift (wherein the source and tar-
get data generally have different distributions of unla-
beled points but the same labeling rule), concept drift
and model decay (wherein the distribution over unla-
beled points generally remains static, but the labeling
rule drifts over time), robust optimization (which aims
for worst-case rather than PAC-style guarantees), and
multi-task learning (wherein the goal is generally to
leverage access to multiple domains to improve perfor-
mance on each of them, rather than generalizing to
new domains).
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3 Definitions

For mathematical notation, we let [n] denote
{1, 2, . . . , n} and 1Q denote the indicator function that
is 1 if predicate Q holds and 0 otherwise. For vec-
tor x ∈ Rn, let x[k] denote the kth coordinate of x.
Finally, let ∆(S) denote the set of probability distribu-
tions over set S. We now define our model of learning
from independent datasets.

3.1 Generalizing from multiple domains

We study classification with multiple datasets from
independent domains where training data T =
〈T 1, . . . , T d〉 ∼ ρ×dm consists of datasets T i =
〈(xi1, yi1), . . . , (xim, y

i
m)〉 each of m examples. These

d datasets are chosen iid from dataset distribution ρm
over (X × Y)m.

In particular, there is a distribution ρ ∈ ∆(X ×Y ×Z)
where X is a set of examples, Y is a set of labels, and Z
is a set of domains. Based on this ρm selects m labeled
examples from a common latent domain as follows:
(x1, y1, z1) is picked from ρ, and (xj , yj) is picked from
ρ conditional on its domain being zj = z1 for j ≥ 2.
It is not difficult to see that this model is equivalent
to a meta-distribution over domains z paired with
domain-specific distributions over labeled examples,
where the domain-specific distributions would simply
be the distribution ρ conditioned on the given domain z.
For simplicity, in this paper we focus on classification
with equal-sized datasets and latent domains but the
model can be generalized to other models of learning,
unequal dataset sizes, and observed domains.

A domain-generalization learner L takes training data
T divided into multiple datasets of examples as input
and outputs classifier LT : X → Y. L is said to be
computationally efficient if it runs in time polynomial
in its input length.

The error of classifier c : X → Y is denoted by
errρ(c) = Prx,y,z∼ρ[c(x) 6= y] and ρ may be omitted
when clear from context. This can be thought of in two
ways: errρ(c) is the expected error on d′ test datasets
of m′ examples or it is also the average performance
across domains, i.e., error rate on a random example
(from a random domain) from ρ.

We first define a model of sample-efficient learning,
for large d, with respect to a family C of classifiers.
Following the agnostic-learning definition of Kearns
et al. (1992), we also consider an assumption ρ ∈ P
where P is a set of distributions over X × Y × Z.

Definition 1 (Efficient Domain Generalization). A
learner L is an efficient domain-generalization learner
for classifiers C over assumption P if there exist poly-

nomials qd and qm such that, for all ρ ∈ P, all ε, δ > 0,
and all d ≥ qd(1/δ, 1/ε),m ≥ qm(1/δ, 1/ε),

PrT∼ρ×d
m

[errρ
(
LT
)
≤ min

c∈C
errρ(c) + ε] ≥ 1− δ.

Standard models of learning can be fit into this model
using iid and noiseless assumptions:

Piid = {ρ ∈ ∆(X × Y × Z) | z is independent of
(x, y) for x, y, z ∼ ρ}

Pshh(C) = {ρ ∈ ∆(X × Y × Z) | minc∈C errρ(c) = 0}

In particular, agnostic learning can be defined as ef-
ficient domain-generalization learning subject to Piid
while PAC learning (Valiant, 1984) can be defined as
efficient domain-generalization learning with PPAC =
Piid ∩ Pshh(C).

It is not difficult to see that Definition 1 is not substan-
tially different from PAC and agnostic learning, with a
large number of datasets:

Observation 2. If C is PAC learnable, then C is effi-
ciently domain-generalization learnable with noiseless
assumption Pshh(C). If C is agnostically learnable, then
C is efficiently domain-generalization learnable without
assumption, i.e., P = ∆(X × Y × Z).

Proof. Simply take a PAC (or agnostic) learning al-
gorithm for C and run it on the first example in each
dataset. Since these first examples are in fact iid from
ρ, the guarantees of PAC (or agnostic) learning apply
to the error for future examples drawn from ρ.

This is somewhat dissatisfying, as one might hope that
error rates would decrease as the number of data points
per domain increases. This motivates the following
definition, which considers the rate at which the error
decreases separately in terms of the number of datasets
d and the number of examples per dataset m.

Definition 3 (Dataset-efficient learning). A learner
L is a dataset-efficient learner for classifiers C over
assumption P if there exists polynomials qd and qm
such that, for all ρ ∈ P, all ε, δ > 0, and all d ≥
qd(1/δ),m ≥ qm(1/δ, 1/ε),

PrT∼ρ×d
m

[errρ
(
LT
)
≤ min

c∈C
errρ(c) + ε] ≥ 1− δ.

This definition requires fewer datasets than the previous
definition, requiring a number of datasets that depends
only on 1/δ regardless of ε.

In PAC and agnostic learning, many problems have a
natural complexity parameter n where X =

⋃
n≥1 Xn,

C =
⋃
n≥1 Cn, Z =

⋃
n≥1Zn, P =

⋃
n≥1 Pn, such as

Xn = Rn. In those cases, we allow the number of
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examples and datasets, qd, qm in Definitions 1 and 3
to also grow polynomially with n. Also note that the
set P can capture a host of other assumptions, such
as a margin between positive and negative examples.
Finally, while we assume that the chosen domains zi
are not given to the learner—this is without loss of
generality as the domains could be redundantly encoded
in the examples x.

4 Multi-Domain Massart Noise Model

In the traditional Massart noise model (Massart et al.,
2006), each individual example x has its own label noise
rate that is, Pr[c(x) 6= y] = η(x) ≤ ηb, for some given
upper-bound ηb < 1/2. Learning under this model
is computationally challenging and no efficient Bayes-
optimal algorithms are known even for simple concept
classes (Diakonikolas et al., 2019), despite the fact that
the statistical complexity of learning in this model is no
worse than learning with a uniform noise rate ηb. We
study a multi-domain variant of the Massart model, in
which the learner receives examples with noisy labels
from multiple domains such that each domain has its
own fixed noise rate. We demonstrate that by lever-
aging the cross-domain structure of the problem we
can obtain a broad class of computationally efficient
algorithms. In particular, we provide a reduction from
efficient learning a multi-domain variant of the Massart
noise model to efficient PAC learning under random
classification noise (Angluin and Laird, 1987). Practi-
cally every concept class known to be efficiently PAC
learnable (Valiant, 1984) can also be learned efficiently
with classification noise (either directly or through the
statistical query framework (Kearns, 1998), with parity-
based constructions being the only known exceptions).

We first state our multi-domain Massart model formally
as an assumption over the distributions ∆(X ×Y ×Z).

Assumption PMDM. There exists an unknown clas-
sifier c ∈ C and an unknown noise rate function
η : Z → R such that the distribution ρ over X ×Y ×Z
satisfies Prρ[y 6= c(x) | z] = η(z) ≤ ηb < 1/2. We
assume quantity ηb is known to the learner. While this
may seem “easier” than learning with a fixed noise rate
of ηb because there is less noise, this is not the case
just as learning with Massart noise seems to be hard
than learning with a fixed noise rate ηb. (If the noise
rates for different examples or domains were known, it
would be easy to artificially add noise and reduce it
to the easier problem of learning with a constant ηb
noise.) However, with unknown noise rates, patterns
in the examples may correlate with differences in rates
of noise to make it harder to learn.

Note that the minimal error rate Prρ[y 6= c(x)] ∈ [0, η],

achieved by the “true” classifier c, can be much smaller
than η. Our multi-domain variant is a generalization in
that the marginal distribution over labeled examples,
ignoring domains, fits the Massart noise model. We
will leverage the domain structure to provide a reduc-
tion from the learning problem in this model to PAC
learning under classification noise due to Angluin and
Laird (1987), defined below.

Classification Noise (CN) Learnable. Let ρX be
a distribution over X . For any noise rate 0 ≤ η0 < 1/2,
the example oracle EXηCN(c, ρX ) on each call returns
an example (x, y) by first drawing an example x from
ρX and then drawing a random noisy label y such
that Pr[y 6= c(x)] = η0 < η, where η is an known
upper bound. The concept class C is CN learnable
if there exists a learner L and a polynomial f such
that for any distribution ρX over X , any noise rate
0 ≤ η0 < η < 1/2, and for any 0 < ε ≤ 1 and 0 < δ ≤ 1,
the following holds: L will run in time bounded by
f(1/(1− 2η), 1/ε, 1/δ) and output a hypothesis h that
with probability at least 1− δ satisfies Prx∼ρX [h(x) 6=
c(x)] ≤ ε.
Theorem 4. Let C be a concept class that is CN learn-
able. Then there exists an efficient domain general-
ization learner for C under the multi-domain Massart
assumption PMDM.

The basic idea behind the proof is to “denoise” data
from each dataset by training a classifier within each
dataset and then using that classifier to label another
held-out example from that domain. If that classifier
had high accuracy, then with high probability the pre-
dicted labels will be correct. A noiseless classification
algorithm can then be applied to the denoised data.

Proof. Let L be a CN learner for C with runtime
polynomial f . To leverage this learner to learn un-
der the multi-dataset Massart model, we will aim to
create an example oracle EXηCN. Let c ∈ C be the
target concept, and let ε, δ ∈ (0, 1) be the target ac-
curacy parameters. We will first draw a collection of
d = f(1, 1/ε, 2/δ) datasets T = 〈T 1, . . . T d〉 from ρ×dm ,
where m > f(1/(1− 2ηb), δ/(4d), δ/(4d)). We will run
the CN learner with a random subset of Ti of size
(m− 1) as input and obtain an hypothesis hi such that
with probability 1− δ/(4d),

Pr
ρi

[hi(x) 6= c(x)] ≤ δ/(4d), (1)

where ρi denotes the conditional distribution over X
conditioned on the domain being zi. By a union bound,
we know that except with probability δ/4, equation (1)
holds for all datasets i. We will condition on this level of
accuracy (event E1). Let (xi, yi) denote an example in
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Ti that was not used for learning hi. This provides an-
other dataset T̂ = 〈(x1, hi(x1)), . . . , (xd, hi(x

d))〉. Note
that the xi’s i.i.d. draws from the ρX , the marginal
distribution of ρ over X . Furthermore, by the accuracy
guarantee of each hi, Pr[hi(x

i) 6= c(xi)] ≤ δ/(4d). By
a union bound, we know that except with probability
δ/4, hi(xi) = c(xi) for all i ∈ [d]. We will condition on
this event of correct labeling (event E2). This means
the examples in T̂ can simulate random draws from
EX0

CN(c, ρX ). Finally, we will run L over the set T̂ ,
and by our choice of d, L will output a hypothesis h
such that Prρ[h(x) 6= c(x)] ≤ ε with probability at least
1− δ/2 (event E3). Finally, our learning guarantee fol-
lows by combining the failure probability of the three
events E1, E2, E3 with a union bound.

Open problem in the (multi-domain) Massart
model. An open question in the multi-domain Mas-
sart noise model is whether there exists an efficient
algorithm that only relies on a constant number of
examples from each domain. If we can decrease the
number of examples in each domain down to 1, we
recover the standard Massart noise model. Thus, we
view this as an intermediate step towards an efficient al-
gorithm for the standard Massart model (Diakonikolas
et al., 2019).

5 Feature Selection Using Domains

Next, we use access to training data from multiple
domains to aid in performing feature selection.

We fix X = {0, 1}n. For set R ⊆ [p], let x[R] =
〈x[k]〉k∈R ∈ {0, 1}|R| denote the selected features R of
example x ∈ X . Let zi denote the domain correspond-
ing to training dataset T i, for each i ∈ [d]. Define ρk
to be the correlation of x[k] and y over ρ and let ρik
denote the usual (Pearson) correlation coefficient of
feature x[k] with y conditioned on the example having
domain z = zi. Let ρ̂ik denote the empirical correlation
of x[k] and y on T i.

The following algorithm (FUD) performs feature se-
lection using domains.

1. Input: class C, parameters β, ε ≥ 0, training data
T consisting of d splits of m examples each.

2. If the overall fraction of positive or negative ex-
amples is less than ε/2 (massive class imbalance),
stop and output the constant classifier c(x) = 0 or
c(x) = 1, respectively.

3. For each variable i ∈ [n], compute empirical corre-
lation ρ̂ik of x[k] and y over each dataset i ∈ [d].

4. Let R =
{
k | mini |ρ̂ik| ≥ β

}
.

5. Find any c ∈ C such that c(x[R]) = y for all
s, x, y ∈ T , and output classifier f(x) = c(x[R]).
If no such c exists, output FAIL.

Assumption FS(C, β) For β > 0 we define the Fea-
ture Selection assumption FS(C, β) to require that
there exists a robust set of features R ⊆ [p] such that:

• Noiselessness Pshh(C): For some c ∈ C,
Prρ[c(x[R]) = y] = 1.

• Independence: x[R] and z are independent over ρ.

• Correlation: For all k ∈ R, |ρ[k]| > 1.1β

• Idiosyncrasy: For all k 6∈ R, Prx,y,z∼ρ
[
|ρzk| <

0.9β
]
> 0.1.

Note that the constants 1.1, 0.9 and 0.1 in the above
assumption can be replaced by parameters (e.g., 1±
ε1 and ε2) and the dependence of d and m on these
parameters in the following theorem would be inverse
polynomial.

Theorem 5. For any C of finite VC dimension V C(C),
with X = {0, 1}n, Y = {0, 1} and any β > 0,
FUD is a dataset-efficient learner under assumption
FS(C, β). In particular, for d = O

(
log n

δ

)
and m =

O
(
V C(C)
ε + log(n/δ)

β4ε2

)
,

Pr
T

[errρ(FUDT ) ≤ ε] ≥ 1− δ,

for any ε, δ ∈ (0, 1/2).

Proof. Fix ρ ∈ FS(C, β). Note that by the noiseless
and independent assumptions, the fraction of positives
is the same in each domain, i.e., E[y|z] = E[y]. We first
bound the failure probability of outputting the all 0 or
all 1 classifier in the second step. However, if E[y] ≥ ε,
the probability that it outputs the all 0 classifier is at
most δ/10 by multiplicative Chernoff bounds over dm =
Ω( 1

ε log 1
δ ) labeled examples. Similarly, if E[y] ≤ 1− ε,

the probability we output the all 1 classifier is at most
δ/10. Conversely, if E[y] < ε/4, then multiplicative
Chernoff bounds also imply that with probability at
least 1−δ/10, we will output the 0 classifier (and hence
have error < ε), and similarly if E[y] > 1− ε/4.

Henceforth, let us assume E[y] ∈ [ε/4, 1− ε/4].

Next, note that the set R described in the FS assump-
tion is uniquely determined for ρ. Call this set R∗. It
suffices to show that with probability at least 1− δ/10,
R = R∗ for R defined in the algorithm. This is be-
cause if R = R∗, by a standard VC bound of Haussler
et al. (1991), since x[R] is iid and the total number
of examples observed is dm = Ω

(
V C(C)
ε log 1

δ

)
, with
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probability at least 1− δ/2 the error is at most ε be-
cause learning of (x[R], y) is standard PAC learning of
C.

Using E[y] ∈ [ε/4, 1−ε/4], Lemma 6 below implies that
m = Ω(β−4ε−2 log(dn/δ)) examples suffice to estimate
all dn correlations accurately to within 0.1β with prob-
ability at least 1 − δ/10. Assuming this happens, all
k ∈ R∗ will necessarily also be in R.

It remains to argue that with probability at least
1 − δ/10, R = R∗. To see this, note that for each
k 6∈ R∗, the Idiosyncrasy assumption means that with
probability at most 0.9d ≤ δ/(10n) would there be no
k for which |ρki | ≤ 0.9β. Hence, by a union bound,
with probability at least 1− δ/10, there will be simul-
taneously for each k 6∈ R∗ some dataset i ∈ [d] such
that |ρki | ≤ 0.9β. Since we are assuming that all cor-
relations are estimated correctly to within 0.1β, it is
straightforward to see that R = R∗.

We now bound the number of examples needed to
estimate correlations.
Lemma 6. For any jointly distributed binary random
variables (R,S) ∈ {0, 1}2 with E[S] ∈ [v, 1 − v], and
for any ε, δ > 0, the probability that the empirical
correlation coefficient of m ≥ 2048ε−4v−2 log(8/δ) iid
samples differs by more than ε from the true correlation
is at most δ.

The proof of this Lemma is given in Appendix A.

6 Feature Selection Experiments

We conducted simple experiments to evaluate the qual-
ity of features selected by our methodology from Sec-
tion 5. We experimented with the WebKB Universities
data set,1 (Craveny et al., 1998) a small dataset that
is ideally suited for domain generalization. It conatins
webpages from computer science departments of var-
ious universities, which can be identified by the url
domain, e.g., cornell.edu. The data set is classified
into categories such as faculty, student, course, etc.;
we focused on the faculty and student classes for our
experiments. Our training data pertains to 711 faculty
and student webpages from four universities: Cornell,
Texas, Washington, and Wisconsin. Our test data in-
cludes faculty and student pages from 100 universities.
None of the four universities in our training set were
represented in the test set. We represented each page
as a bag-of-words, and preprocessed the data to remove
all words that had less than 50 occurrences. As a result,
we obtained a vocabulary of 547 unique words. Thus,
we represented each page as a 547-dimensional binary

1http://www.cs.cmu.edu/afs/cs/project/theo-
20/www/data/

vector: each word that occurred at least once in the
page had the corresponding coordinate set to 1.

We summarize the statistics of our data in Table 1.
Note that we computed the bag density of a domain
as the average of the mean vector pertaining to
the binary vectors in the domain. The respective
densities for student and faculty pages are also shown.
Note that the faculty proportion in test data (47%)
is about twice the proportion in any domain from
the training data (where the fraction of faculty
pages hovers around 20%). Thus, investigating this
data for domain generalization is a worthwhile exercise.

We compare the performance of our algorithm with
a standard feature baseline. Specifically, the baseline
selects words whose Pearson correlation coefficient with
the training labels (i.e., faculty or student) is high. We
implemented a regularized version of our feature selec-
tion algorithm FUD that penalized those features that
have large standard deviation (stdev) of the Pearson
coefficient on the train domains. In other words, we
computed scores sk = |ρ̂k| − α stdev(ρ̂1k, . . . , ρ̂

d
k), and

selected the features k that were found to have high
sk. We set the value of the regularization parame-
ter α to 2. We call our regularized algorithm FSUS.
We trained several classifiers, namely, decision tree,
K-nearest neighbor, and logisitic regression, on the fea-
tures selected by each algorithm (using default values
of hyperparameters in the Python sklearn library). The
performance of the algorithms was measured in terms
of the standard balanced error rate, i.e., the average of
prediction error on each class. Besides the performance
on test data, we also show the mean validation error to
estimate the generalization performance on domains in
the training set. Specifically, we first trained a separate
classifier for each domain and measured its prediction
error on the data from other domains in the training
set, and then averaged these errors to compute the
estimate of validation error, denoted by (K=1) in Fig-
ure 1. Likewise, for K = 2, classifiers were trained
on data from two domains at a time, and evaluated
for performance on the other domains; similarly for
K ∈ {3, 4}. As Figure 1 illustrates, our algorithm gen-
erally outperformed the baseline method, for different
numbers of selected features (horizontal axis) and for
differentK across classifiers. Note that instead of fixing
α beforehand, we could tune it based on the validation
error. We found that performance of our algorithm
deteriorated only slightly using the tuned α. We omit
the details for brevity. These empirical findings sub-
stantiate our theoretical foundations, suggesting the
benefits of domain generalization.

Figure 2 shows a scatter-plot of the correlations of
features, words in this instance, and robustness of this
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Figure 1: Balanced error rates on University data for varying number of selected features. FSUS is our algorithm,
and the baseline is denoted by FS.

Figure 2: Correlations of words with faculty page (x-axis) vs the std. dev. of correlations over universities. Words
to the right such as professor correlate most strongly with faculty pages, while words to the left such as student
correlate most with student pages. Words towards the bottom such as student have robust correlations across
universities while words towards the top are more idiosyncratic. The words selected are those outside the diagonal
lines, where the slope of the line is determined by parameter α, and the horizontal positions of the lines is
determined by the number of words to be selected.
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Table 1: Data statistics
Domain Pages Faculty proportion Bag density (student pages, faculty pages)

Cornell 162 21% 23% (22%, 28%)
Texas 194 24% 23% (23%, 22%)
Washington 157 20% 24% (24%, 20%)
Wisconsin 198 21% 23% (21%, 29%)
Test 2,054 47% 21% (22%, 21%)

correlation across datasets. Interestingly, one of the
most correlated features was the token 19, which was
later discovered to be correlated in certain datasets
simply because student webpages at certain universities
were downloaded at 7pm, and the datafiles included
header information which revealed the download times.
It is normally considered the job of a data scientist to
decide to ignore features such as data collection time,
but this illustrates how our algorithm identified this
problem automatically using the idea of robustness
across domains.

7 Decision Tree Multi-Domain Model

Finally, we consider learning binary decision trees on
X = {0, 1}n in the multi-domain model. Despite
years of study, there is no known polynomial-time PAC
learner for decision trees, with the fastest known algo-
rithm learning binary decision trees of size ≤ s in time
nO(log s) (Hellerstein and Servedio, 2007). Formally, a
decision tree is a rooted binary tree where each inter-
nal node is annotated with an attribute 1 ≤ i ≤ n,
and the two child edges are annotated with 0 and 1
corresponding to the restrictions x[i] = 0 and x[i] = 1.
Each leaf is annotated with a label {0, 1}, and on x the
classifier computes the function that is the label of the
leaf reached by following the path starting at the root
of tree and following the corresponding restrictions.

Assumption PDT (s, n). Let Ts,n be the class of de-
cision trees with at most s leaves. The domains sim-
ply correspond to the leaves of the tree in which the
(noiseless) example belongs. To make this assumption
denoted PDT (s, n) formal, let the set of domains Z is
simply the set of all 3n possible conjunctions (each x[j]
can appear as positive, negative, or not at all) on n
variables. We identify each leaf ` in a tree with domain
z` ≡ x[j1] = v1∧x[j2] = v2∧ . . .∧x[jk] = vk, where k is
the depth of the leaf, j1, j2, . . . , jk ≤ n are the annota-
tions of the internal nodes on the path, and vk ∈ {0, 1}
correspond to the edges on the path to that leaf. Using
this notation, the assumption PDT (s, n) is that there
is a tree T ∈ Ts,n for which, with probability 1 over ρ,
every example (x, y, z) satisfies z = z` for the leaf ` in

T which x belongs to, i.e., conjunction z` holds, and
y = T (x), i.e., noiselessness PDT (s, n) ⊂ Pshh(Ts,n).

Recall that the chosen domains zi themselves are not
observed, otherwise learning would be trivial. Instead,
we think of the decision tree simply as the union (OR)
of the conjunctions corresponding to leaves labeled posi-
tively. It is known to be easy to PAC-learn conjunctions
from positive examples alone by outputting the largest
consistent conjunction (Kearns et al., 1994, Section
1.3): the hypothesis given by the conjunction of the
subset of possible terms {x[j] = b | j ∈ [n], b ∈ {0, 1}}
that are consistent with every positively labeled ex-
ample.2 It is largest in terms of the number of terms,
but it is minimal in terms of the positive predictions
it makes, and it never has any false positives. The
following algorithm learns decision trees in the above
multi-domain decision tree model.

1. Input: training data T 1, T 2, . . . , T d .

2. Let PosDomains = {i | yi1 = 1}.

3. For each i ∈ PosDomains, find the largest con-
sistent conjunction ci for T i.

4. Output the classifier

ĉ(x) =

{
1 if ci(x) = 1 for any i ∈ PosDomains
0 otherwise.

Theorem 7. Let s, n ≥ 1 and Ts be the family of
binary decision trees of size at most s on {0, 1}n.
Then the above algorithm is an efficient domain-
generalization learner for PDT (s, n) for complexity pa-
rameter N = n+ s.

For decision trees, the complexity of the class depends
on both the number of variables and the size of the
tree, hence we use N = n+ s as a complexity measure.
The proof appears in Appendix B.

2For example, for the two positive examples (0, 0, 1)
and (0, 1, 1), the largest consistent conjunction is x[1] =
0 ∧ x[3] = 1.
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