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Abstract

In this paper, we consider the problem of op-
timization and learning for constrained and
multi-objective Markov decision processes,
for both discounted rewards and expected av-
erage rewards. We formulate the problems as
zero-sum games where one player (the agent)
solves a Markov decision problem and its op-
ponent solves a bandit optimization problem,
which we here call Markov-Bandit games. We
extend Q-learning to solve Markov-Bandit
games and show that our new Q-learning al-
gorithms converge to the optimal solutions
of the zero-sum Markov-Bandit games, and
hence converge to the optimal solutions of the
constrained and multi-objective Markov deci-
sion problems. We provide numerical exam-
ples where we calculate the optimal policies
and show by simulations that the algorithm
converges to the calculated optimal policies.
To the best of our knowledge, this is the first
time Q-learning algorithms guarantee con-
vergence to optimal stationary policies for
the multi-objective Reinforcement Learning
problem with discounted and expected aver-
age rewards, respectively.

1 Introduction

1.1 Motivation

Reinforcement learning has made great advances in
several applications, ranging from online learning and
recommender engines, natural language understanding
and generation, to mastering games such as Go (Silver
et al., 2017) and Chess. The idea is to learn from ex-
tensive experience how to take actions that maximize
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a given reward by interacting with the surrounding en-
vironment. The interaction teaches the agent how to
maximize its reward without knowing the underlying
dynamics of the process. A classical example is swing-
ing up a pendulum in an upright position. By making
several attempts to swing up a pendulum and balanc-
ing it, one might be able to learn the necessary forces
that need to be applied in order to balance the pen-
dulum without knowing the physical model behind it,
which is the general approach of classical model based
control theory (Åström and Wittenmark, 1994).

Informally, the problem of constrained reinforcement
learning for Markov decision processes is described as
follows. Given a stochastic process with state sk at
time step k, reward function r, constraint function rj ,
and a discount factor 0 < � < 1, the multi-objective
reinforcement learning problem is that for the optimiz-
ing agent to find a stationary policy ⇡(sk) that simul-
taneously satisfies in the discounted reward setting

max
⇡

E

 
1X

k=0

�kr(sk,⇡(sk))

!
(1)

s.t. E

 
1X

k=0

�krj(sk,⇡(sk))

!
� 0 (2)

or in the expected average reward setting

max
⇡

lim
T!1
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1

T

T�1X

k=0

r(sk,⇡(sk))

!
(3)

s.t. lim
T!1
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1

T

T�1X

k=0

rj(sk,⇡(sk))

!
� 0 (4)

for j = 1, ..., J (a more formal definition of the problem
is introduced in the next section and some examples
of this setup are given in Appendix.)

Surprisingly, although constrained MDP problems are
fundamental and have been studied extensively in
the literature (see (Altman, 1999) and the references
therein), the reinforcement learning counter part seem
to be still open. When an agent takes actions based
on the observed states and constraint-outputs solely
(without any knowledge about the dynamics, and/or
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constraint-functions), a general solution seem to be
lacking to the best of the author’s knowledge for both
the discounted and expected average rewards cases.

Note that maximizing Eq. (1) is equivalent to maxi-
mizing � subject to the constraint

E

 
1X

k=0

�kr(sk,⇡(sk))

!
� �

Thus, one could always replace r with r � (1 � �)�
and obtain a constraint of the form (1). Similarly for
the average reward case, one may replace r with r� �
to obtain a constraint of the form (3). Hence, we can
run the bisection method with respect to � and the
problem in discounted setting will be transformed to
find a policy ⇡ such that

E

 
1X

k=0

�krj(sk,⇡(sk))

!
� 0 (5)

where j = 0, 1, ..., J and r0 = r � (1 � �)�. Or in the
average setting, find policy ⇡ such that

lim
T!1

E

 
1

T

T�1X

k=0

rj(sk,⇡(sk))

!
� 0 (6)

where r0 = r � �. In this paper, we call problems
(5) and (6) as multi-objective MDPs problems and
propose the algorithm with Markov bandit game and
prove the convergence of them.

1.2 Related Work

Constrained MDP problems are convex and hence
one can convert the constrained MDP problem to an
unconstrained zero-sum game where the objective is
the Lagrangian of the optimization problem (Altman,
1999). However, when the dynamics and rewards are
not known, it doesn’t become apparent how to do
it as the Lagrangian will itself become unkown to
the optimizing agent. Previous work regarding con-
strained MDPs, when the dynamics of the stochastic
process are not known, considers scalarization through
weighted sums of the rewards, see (Roijers et al., 2013)
and the references therein. Another approach is to
consider Pareto optimality when multiple objectives
are present (Zhou et al., 2020) and Yang et al. (2019).
Notice that there may be multiple Pareto optimal
points, and all these points will not satisfy all the con-
straints in general. Further, using any solution of min-
max may not in general be Pareto optimal. Thus, the
problem formulation is very different from the above
papers which aims to achieve the Pareto front.

In (Geibel, 2006), the author considers a single con-
straint and allowing for randomized policies. However,

no proofs of convergence are provided for the proposed
sub-optimal algorithms. Sub-optimal solutions with
convergence guarantees were provided in (Chow et al.,
2017) for the single constraint problem, allowing for
randomized polices. In (Borkar, 2005), an actor-critic
sub-optimal algorithm is provided for one single con-
straint and it’s claimed that it can generalize to an
arbitrary number of constraints. Reinforcement learn-
ing based model-free solutions have been proposed for
the problems without guarantees (Djonin and Krishna-
murthy, 2007; Lizotte et al., 2010; Drugan and Nowe,
2013; Achiam et al., 2017; Abels et al., 2019; Raghu
et al., 2019).

Recently, (Tessler et al., 2018) proposed a policy gradi-
ent algorithm with Lagrange multiplier in multi-time
scale for discounted constrained reinforcement learn-
ing algorithm and proved that the policy converges to
a feasible policy. (Efroni et al., 2020) found a feasi-
ble policy by using Lagrange multiplier and zero-sum
game for reinforcement learning algorithm with convex
constraints and discounted reward. Yu et al. (2019)
(Paternain et al., 2019) showed that constrained re-
inforcement learning has zero duality gap, which pro-
vides a theoretical guarantee to policy gradient algo-
rithms in the dual domain. In constrast, our paper
does not use policy gradient based algorithms. (Zheng
and Ratliff, 2020) proposed the C-UCRL algorithm
which achieves sub-linear O(T

3
4

p
log(T )/�) with prob-

ability 1 � �, while satisfiying the constraints. How-
ever, this algorithm needs the knowledge of the model
dynamics. Brantley et al. (2020) proposed a model-
based algorithm for tabular episodic reinforcement
learning with concave rewards and convex constraints.
Singh et al. (2020) modified the famous UCRL2 al-
gorithm and proposed the model-based UCRL-CMDP
algorithm to solve the CMDP problem and gave the
sub-linear result. Efroni et al. (2020) proposed 4 al-
gorithms for the constrained reinforcement learning
problem in primal, dual or primal-dual domain and
showed a sub-linear bound for regret and constraints
violations. However, all these algorithms are model
based. While our algorithm is model-free and scalable
to continuous spaces. Ding et al. (2020b) employed
the natural policy gradient method to solve the dis-
counted infinite-horizon CMDP problem. It achieves
the O( 1

✏2
) convergence rate with respite to the concept

of ✏-optimal or ✏-constraint violation. Despite that the
algorithm is model-free, it still needs simulator to get
samples. Ding et al. (2020a) proposed a model-free
primal-dual algorithm without the simulator to solve
the CMDP and gives the O(

p
T ) bound for both re-

ward and constraint, which should be the state-of-the-
art result in this problem. Shah and Borkar (2018)
proposed a three time scale Q-learning based algo-
rithm to solve a constraint satisfaction problem in the
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expected average setting. In contrast, this paper pro-
vides the first single time-scale Q-learning algorithm
for both discounted and expected average rewards.

1.3 Contributions

We consider the problem of optimization and learn-
ing for constrained Markov decision processes, for both
discounted rewards and expected average rewards. We
formulate the problems as zero-sum games where one
player (the agent) solves a Markov decision problem
and its opponent solves a bandit optimization prob-
lem, which we here call Markov-Bandit games which
are interesting on their own. The opponent acts on a
finite set (and not on a continuous space). This trans-
formation is essential in order to achieve a tractable
optimal algorithm. The reason is that using Lagrange
duality without model knowledge requires infinite di-
mensional optimization in the learning algorithm since
the Lagrange multipliers are continuous (compare to
the intractability of a partially observable MDP, where
the beliefs are continuous variables). We extend Q-
learning to solve Markov-Bandit games and show that
our new Q-learning algorithms converge to the optimal
solutions of the zero-sum Markov-Bandit games, and
hence converge to the optimal solutions of the multi-
objective Markov decision problems. The proof tech-
niques are different for solving the discounted and av-
erage rewards problems, respectively, where the latter
becomes much more technically involved. We provide
numerical examples where we calculate the optimal
policies and show by simulations that the algorithm
converges to the calculated optimal policies. To the
best of our knowledge, this is the first time Q-learning
algorithms guarantee convergence to optimal station-
ary policies for the constrained and multi-objective
MDP problem with discounted and expected average
rewards, respectively.

1.4 Outline

In the problem formulation (Section 2), we present a
precise mathematical definition of the multi-objective
problem for MDPs. Then, we give a brief introduc-
tion and some useful results to reinforcement learning
with applications to zero-sum Markov-Bandit games
(Section 3). Section 4 firstly shows the connection
between the Markov Bandit Game and the multi-
objective problem. Then, it presents the solution to
the multi-objective reinforcement learning problem .
We demonstrate the proposed algorithm by an exam-
ple in Section 5 and we finally conclude the paper in
Section 6. Most proofs and some numerical results are
relegated to the Appendix.

2 Problem Formulation and

Assumptions

Consider a Markov Decision Process (MDP) defined
by the tuple (S,A, P ), where S = {S1, S2, ..., Sn} is a
finite set of states, A = {A1, A2, ..., Am} is a finite set
of actions taken by the agent, and P : S⇥A⇥S ! [0, 1]
is a transition function mapping each triple (s, a, s+)
to a probability given by

P (s, a, s+) = Pr(s+ | s, a)

and hence,
X

s+2S

P (s, a, s+) = 1, 8(s, a) 2 S ⇥A.

where s+ is the next state for state s. Let ⇧ be the
set of policies that map a state s 2 S to a probability
distribution of the actions with a probability assigned
to each action a 2 A, that is ⇡(s) = a with probability
Pr(a|s). The agent’s objective in the multi-objective
reinforcement learning is concerned with finding a pol-
icy that satisfies a set of constraints of the form ((5)) or
(6), for s0 = s 2 S, where rj : S⇥A! R are bounded
functions, for j = 0, 1, ..., J , possibly unknown to the
agent. The parameter � 2 (0, 1) is a discount factor
which models how much weight to put on future re-
wards. The expectation is taken with respect to the
randomness introduced by the policy ⇡ and the tran-
sition mapping P .
Definition 1 (Unichain MDP). An MDP is called

unichain, if for each policy ⇡ the Markov chain in-

duced by ⇡ is ergodic, i.e. each state is reachable from

any other state.

Unichain MDPs are usually considered in reinforce-
ment learning problems with discounted rewards, since
they guarantee that we learn the process dynamics
from the initial states. Thus, for the discounted re-
ward case we will make the following assumption.
Assumption 1 (Unichain MDP). The MDP (S,A, P )
is assumed to be unichain.

For the case of expected average reward, we will make
a simpler assumption regarding the existence of a re-
curring state, a standard assumption in Markov deci-
sion process problems with expected average rewards
to ensure that the expected reward is independent of
the initial state.
Assumption 2. There exists a state s⇤ 2 S which is

recurrent for every stationary policy ⇡ played by the

agent.

Assumption 2 implies that E(rj(sk, ak)) is indepen-
dent of the initial state at stationarity. Hence, the
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constraint (3) is at stationarity equivalent to the in-
equality E(rj(sk, ak)) � 0, for all k. We will use this
constraint in the sequel which turns out to be very use-
ful in the game-theoretic approach to solve the prob-
lem.

Assumption 3. The absolute values of the functions

{rj}J
j=0 are bounded by some constant c known to the

agent.

The bounded reward function is a typical assumption
in RL, Jin et al. (2018) and Ni et al. (2019), where the
bound is known aprior.

3 Reinforcement Learning for

Zero-Sum Markov-Bandit Games

A zero-sum Markov-Bandit game is defined by the tu-
ple (S,A,O, P,R), where S, A and P are defined as in
section 2, O = {o1, o2, ..., oq} is a finite set of actions
made by the agent’s opponent. Let ⇧ be the set of
policies ⇡(s) that map a state s 2 S to a probability
distribution of the actions with a probability assigned
to each action a 2 A, that is ⇡(s) = a with probability
Pr(a | s).

For the zero-sum Markov-Bandit game, we define the
reward R : S ⇥ A ⇥ O ! R which is assumed to be
bounded. The agent’s objective is to maximize the
minimum (average or discounted) reward obtained due
to the opponent’s malicious action. The difference be-
tween a zero-sum Markov game and a Markov-Bandit
game is that the opponent’s action doesn’t affect the
state and it chooses a constant action ok = o 2 O for
all time steps k. This will be made more precise in the
following sections.

3.1 Discounted Rewards

Consider a zero-sum Markov-Bandit game where the
agent is maximizing the total discounted reward given
by

V (s) = min
o

E

 
1X

k=0

�kR(sk, ak, o)

!
(7)

for the initial state s0 2 S. Let Q(s, a, o) be the ex-
pected reward of the agent taking action a0 = a 2 A
from state s0 = s, and continuing with a policy ⇡
thereafter when the opponent takes a fixed action
o. Note that this is different from zero-sum Markov
games with discounted rewards (Littman, 1994), where
the opponent’s actions may vary over time, that is ok
is not a constant. Then for any stationary policy ⇡,

we have that

Q(s, a, o) = R(s, a, o) +E

 
1X

k=1

�kR(s+,⇡(s+), o)

!

= R(s, a, o) + � ·E (Q(s+,⇡(s+), o))
(8)

Equation (8) is known as the Bellman equation. The
solution to (8), with respect to Q and the initial state
s0 that corresponds to the optimal policy ⇡?, is de-
noted Q?. If we have the function Q?, then we can
obtain the optimal policy ⇡? according to the equa-
tions

Q?(s, a, o) = R(s, a, o) + � ·E (Q?(s+,⇡
?(s+), o))

(⇡?(s0), o
?) = argmax

⇡2⇧
min
o

E (Q?(s0,⇡(s0), o))

⇡?(s) = argmax
⇡2⇧

E (Q?(s,⇡(s), o?))

(9)
which maximizes the total discounted reward

min
o

E

 1X

k=0

�kR(sk,⇡
?(s), o)

!
= min

o

E (Q?(s,⇡?(s), o))

for s = s0. Note that the optimal policy may not
be deterministic, as opposed to reinforcement learning
for unconstrained Markov Decision Processes, where
there is always an optimal policy that is determinis-
tic. Also, not that we will get different Q tables for
different initial states here. Therefore, Q? is in fact
dependent on and varies with respect to s0. A more
proper notation would be to use Q?

s0
, but we omit the

indexing with respect to s0 for ease of notation. It’s
relevant to introduce the operator

(TQ)(s, a, o) = R(s, a, o) + � ·E (Q(s+,⇡
?(s+), o))

which ⇡⇤ appears in Equation (9). It’s not hard to
check that the operator T is not a contraction, so the
standard Q-learning that is commonly used for rein-
forcement learning in Markov decision processes with
discounted rewards can’t be applied here.

In the case we don’t know the process P and the re-
ward function R, we will not be able to take advantage
of the Bellman equation directly. The following results
show that we will be able to design an algorithm that
always converges to Q?.
Theorem 1. Consider a zero-sum Markov-Bandit

game given by the tuple (S,A,O, P,R) where (S,A, P )
is unichain, and suppose that R is bounded by some

constant and known aprior. Let Q = Q?
and ⇡?

be

solutions to

Q(s, a, o) = R(s, a, o) + � ·E (Q(s+,⇡
?(s+), o))

(⇡?(s), o?) = argmax
⇡2⇧

min
o

E (Q(s,⇡(s), o))

⇡?(s) = argmax
⇡2⇧

E (Q(s,⇡(s), o?))

(10)
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Let ↵k(s, a, o) = ↵k · 1(s,a,o)(sk, ak, ok) satisfy

0  ↵k(s, a, o) < 1,
1X

k=0

↵k(s, a, o) =1,

1X

k=0

↵2
k
(s, a, o) <1, 8(s, a, o) 2 S ⇥A⇥O.

(11)

Then, the update rule

(⇡k, ok) = argmax
⇡2⇧

min
o

E(Qk(s+,⇡(s+), o))

Qk+1(s, a, ok) =

(1�↵k(s, a, ok))Qk(s, a, ok) + ↵k(s, a, ok)

⇥ (R(s, a, ok) + �E(Qk(s+,⇡k(s+), ok)))
(12)

converges to Q?
with probability 1. Furthermore, the

optimal policy ⇡?
2 ⇧ given by (9) maximizes (7) with

respect to the initial state s = s0. That is,

(⇡?(s0), o
?) = argmax

⇡2⇧
min
o

E (Q?(s0,⇡(s0), o))

⇡?(s) = argmax
⇡2⇧

E (Q?(s,⇡(s), o?))

3.2 Expected Average Rewards

The agent’s objective is to maximize the minimal av-
erage reward obtained due to the opponent’s malicious
actions, that is maximizing the total reward given by

min
o2O

lim
T!1

E

 
1

T

T�1X

k=0

R(sk, ak, o)

!
(13)

for some initial state s0 2 S. Note that this problem is
different from the zero-sum game considered in (Man-
nor, 2004a) where the opponent has to pick a fixed
value for its action, ok = o, as opposed to the work
in (Mannor, 2004a) where ok is allowed to vary over
time. Thus, from the opponent’s point of view, the
opponent is performing bandit optimization.

Under Assumption 2 and for a given stationary policy
⇡, the value of

V (o) , lim
T!1

E

 
1

T

T�1X

k=0

R(sk,⇡(sk), o)

!
(14)

is independent of the initial state s0 for any fixed value
of the parameter o. We will make this standard as-
sumption in Markov decision process control problems.
Proposition 1. Consider an MDP (S,A, P ) with

a total reward (14) for a fixed number o. Under

Assumption 2 and for a fixed stationary policy ⇡,

there exists a number v(o) and a vector H(s, o) =
(H(S1, o), ..., H(Sn, o)) 2 Rn

, such that for each s 2 S,

we have that

H(s, o) + v(o) = E
⇣
R(s,⇡(s), o)

+
X

s+2S

P (s+ | s,⇡(s))H(s+, o)
⌘
.

(15)

Furthermore, the value of (14) is V (o) = v(o).

Proof. Consult (Bertsekas, 2005).

Introduce

Q(s, a, o)� v(o) =R(s, a, o) +
X

s+2S

P (s+ | s, a)H(s+, o)

(16)
and let Q?, v?, and H? be solutions to Equation (15)-
(16) corresponding to the optimal policy ⇡? that max-
imizes (13). Then we have that

⇡?(s) = argmax
⇡2⇧

min
o2O

E (Q?(s,⇡(s), o))

H?(s, o) = E (Q?(s,⇡?(s), o))

Q?(s, a, o)� v?(o)

= R(s, a, o) +
X

s+2S

P (s+ | s,⇡?(s))H?(s+, o) (17)

We will make some additional assumptions that will
be used in the learning of Q? in the average reward
case. We start off by introducing a sequence of learn-
ing rates {�k} and assume that this sequence satisfies
the following assumption. Notice that this is a typi-
cal assumption in stochastic approximation and it is
common in expected reward RL setting. See for in-
stance Assumption 2.3 in Abounadi et al. (2001a)and
Assumption 2 in Mannor (2004b).
Assumption 4 (Learning rate). The sequence �k sat-

isfies:

1. �k+1  �k eventually

2. For every 0 < x < 1, supk �bxkc/�k <1

3.
P

1

k=1 �k =1 and
P

1

k=0 �
2
k
<1.

4. For every 0 < x < 1, the fraction

Pbytc

k=1 �kP
t

k=1 �k

converges to 1 uniformly in y 2 [x, 1] as t!1.

For example, �k = 1
k

and �k = 1
k log k

(for k > 1)
satisfy Assumption 4.
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Now define N(k, s, a, o) as the number of times that
state s and actions a and o were played up to time k,
that is

N(k, s, a, o) =
kX

t=1

1(s,a,o)(st, at, ot).

The following assumption is needed to guarantee that
all combinations of the triple (s, a, o) are visited often,
which can be satisfied by using the ✏-greedy method
in the algorithm.
Assumption 5 (Often updates). There exists a de-

terministic number d > 0 such that for every s 2 S,

a 2 A, and o 2 O, we have that

lim inf
k!1

N(k, s, a, o)

k
� d

with probability 1.

Definition 2. We define the set � as the set of all

functions f : Rn⇥m⇥q
! R such that

1. f is Lipschitz

2. For any c 2 R, f(cQ) = cf(Q)

3. For any r 2 R and bQ(s, a, o) = Q(s, a, o) + r for

all (s, a, o) 2 Rn⇥m⇥q
, we have f( bQ) = f(Q) + r

For instance, f(Q) = 1
|S||A||O|

P
s,a,o

Q(s, a, o) belongs
the the set �.

The next result shows that we will be able to design
an algorithm that always converges to Q?.
Theorem 2. Consider a Markov-Bandit zero-sum

game given by the tuple (S,A,O, P,R) and suppose

that R is bounded. Suppose that Assumption 2, 4, and

5 hold. Let f 2 � be given, where the set � is defined

as in Definition 2. Then, the asynchronous update al-

gorithm given by

Qk+1(s, a, o) = Qk(s, a, o) + 1(s,a,o)(sk, ak, ok)⇥

⇥ �N(k,s,a,o) max
⇡2⇧

min
ok2O

(R(s, a, ok)

+E(Qk(sk+1,⇡(sk+1), ok))� f(Qk)�Qk(s, a, o))
(18)

converges to Q?
in (17) with probability 1. Further-

more, the optimal policy ⇡?
2 ⇧ given by (17) maxi-

mizes (13).

4 Reinforcement Learning for

multi-objective Reinforcement

Learning

4.1 Discounted Rewards

Consider the optimization problem of finding a sta-
tionary policy ⇡ subject to the initial state s0 = s and

the constraints (1), that is

find ⇡ 2 ⇧

s. t. E

 
1X

k=0

�krj(sk,⇡(sk))

!
� 0

for j = 1, ..., J.

(19)

The next theorem states that the optimization prob-
lem (19) is equivalent to a zero-sum Markov-Bandit
game, in the sense that an optimal strategy of the
agent in the zero-sum game is also optimal for (19).
Theorem 3. Consider optimization problem (19) and

suppose it’s feasible and that Assumption 3 holds. Let

⇡?
be an optimal stationary policy in the zero-sum

game

v(s0) = max
⇡2⇧

min
j2[J]

E

 
1X

k=0

�krj(sk,⇡(sk))

!
. (20)

Then, ⇡?
is a feasible solution to (19) if and only if

v(s0) � 0.

The interpretation of the game (20) is that the mini-
mizer chooses index j 2 [J ], where [J ] = 1, 2, ..., J .

Now that we are equipped with Theorem 1 and 3, we
are ready to state and prove our next result.
Theorem 4. Consider the constrained MDP problem

(19) and suppose that it’s feasible and that Assumption

1 and 3 hold. Also, introduce O = [J ], o = j, and

R(s, a, o) = R(s, a, j) , rj(s, a), j = 1, ..., J.

Let Qk be given by the recursion according to (12).

Then, Qk ! Q?
as k ! 1 where Q?

is the solution

to (10). Furthermore, the policy

⇡?(s0) = argmax
⇡2⇧

min
o2O

E (Q?(s0,⇡(s), o))

⇡?(s) = argmax
⇡2⇧

E(Q?(s,⇡(s), o?))
(21)

is an optimal solution to (19) for all s 2 S.

Proof. According to Theorem 3, (19) is equivalent to
the zero-sum game (20), which is equivalent to the
zero-sum Markov-Bandit game given by (S,A,O, P,R)
with the objective

max
⇡2⇧

min
o2O

E

 
1X

k=0

�kR(sk,⇡(sk), o)

!
. (22)

Assumption 3 implies that |R(s, a, o)|  2c for all
(s, a, o) 2 S⇥A⇥O. Now let Q? be the solution to the
maximin Bellman equation (10). According to Theo-
rem 1, Qk in the recursion given by (11)-(12) converges
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Algorithm 1 Zero Sum Markov Bandit Algorithm for
CMDP with Discounted Reward
1: Initialize Q(s, a, o)  0 for all (s, a, o) 2 S ⇥ A ⇥

O. Observe s0 and Initial a0 randomly. Select ↵k

according to Eq. (11)
2: for Iteration k = 0, ...,K do
3: Take action ak and observe next state sk+1

4: ⇡k+1, ok = argmax
⇡k+1

min
o2O

Q(sk+1,⇡k+1(sk+1), ok)

5: Q(sk, ak, ok)  (1 � ↵k)Q(sk, ak, ok) +
↵k[r(sk, ak, ok) + �E(Q(sk+1,⇡k+1(sk+1), ok)]

6: Sample ak+1 from the distribution ⇡k+1(·|sk+1)
7: end for

to Q? with probability 1. By, definition, the optimal
policy ⇡? achieves the value of the zero-sum Markov-
Bandit game in (21), and thus achieves the value of
(22) and the proof is complete.

Finally, the algorithm for Constrained Markov Deci-
sion Process with Discounted Reward is shown in Alg.
1. In line 1, we initialize the Q-table, observe s0 and
select a0 randomly. In line 3, we take the current ac-
tion ak and observe the next state sk+1 so that we
can compute the max-min operator in line 4 based on
the first line of Eq. (12). Line 5 updates the Q-table
according to the second line of Eq. (12). Line 6 sam-
ples the next action from the policy gotten from the
line 4. Notice that The max-min can be converted to
a maximization problem with linear inequalities and
can be solved by linear programming efficiently due to
the number of inequalities here is limited by the space
of the opponent. Even for large scale problems, effi-
cient algorithms exist for max-min Parpas and Rustem
(2009).

4.2 Expected Average Rewards

Consider the optimization problem of finding a sta-
tionary policy ⇡ subject to the constraints (3), that
is

find ⇡ 2 ⇧

s. t. lim
T!1

E

 
1

T

T�1X

k=0

rj(sk,⇡(sk))

!
� 0

for j = 1, ..., J.

(23)

The next theorem states that the optimization prob-
lem (23) is equivalent to a zero-sum Markov-Bandit
game, in the sense that an optimal strategy of the
agent in the zero-sum game is also optimal for (23).

Theorem 5. Consider optimization problem (23) and

suppose that Assumption 2 and 3 hold. Let ⇡?
be an

Algorithm 2 Zero Sum Markov Bandit Algorithm for
CMDP with Average Reward
1: Initialize Q(s, a, o)  0 and N(s, a, o)  

0 8(s, a, o) 2 S ⇥ A ⇥ O. Observe s0 and ini-
tialize a0 randomly

2: for Iteration k = 0, ...,K do
3: Take action ak and observe next state sk+1

4: ⇡k+1, ok = argmax
⇡k+1

min
o2O


R(sk, ak, ok) +

Q(sk+1,⇡k+1(sk+1), ok)

�

5: t = N(sk, ak, ok) N(sk, ak, ok) + 1; ↵t =
1

t+1

6: f = 1
|S||A|O|

P
s,a,o

Q(s, a, o)

7: y = R(sk, ak, ok)+E[Q(sk+1,⇡k+1(sk+1), ok]�f

8: Q(sk, ak, ok) (1� ↵t)Q(sk, ak, ok) + ↵k ⇤ y
9: Sample ak+1 from the distribution ⇡k+1(·|sk+1)

10: end for

optimal policy in the zero-sum game

v = max
⇡2⇧

min
j2[J]

lim
T!1

E

 
1

T

T�1X

k=0

rj(sk,⇡(sk))

!
. (24)

Then, ⇡?
is a solution to (23) if and only if v � 0.

Now that we are equipped with Theorem 2 and 5, we
are ready to state the second main result (proof in
Appendix).

Theorem 6. Consider the constrained Markov Deci-

sion Process problem (23) and suppose that Assump-

tion 2 and 3 hold. Introduce O = [J ], o = j and

R(s, a, o) = R(s, a, j) , rj(s, a), j = 1, ..., J

Let Qk be given by the recursion according to (18)

and suppose that Assumptions 4 and 5 hold. Then,

Qk ! Q?
as k !1 where Q?

is the solution to (17).

Furthermore, the policy

⇡?(s) = argmax
⇡2⇧

min
o2O

E (Q?(s,⇡(s), o)) (25)

is a solution to (23) for all s 2 S.

The algorithm for Constrained Markov Decision Pro-
cess with Discounted Reward is in Alg. 2. The most
part of this algorithm is similar to Algorithm 1. How-
ever, in line 1, we initialize the N table, which records
how many times (s, a, o) has been met in the learning
process and N table is updated in line 5. Besides, in
Line 6, f is computed according to Def. 2. Finally, in
line 8, Q-table is updated according to the Eq. (2).
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Table 1: Transition probability of the queue system
Current State P (xt+1 = xt � 1) P (xt+1 = xt) P (xt+1 = xt + 1)
1  xt  L� 1 a(1� b) ab+ (1� a)(1� b) (1� a)b

xt = L a 1� a 0
xt = 0 0 1� b(1� a) b(1� a)

5 Evaluation on Discrete time

Single-Server Queue

In this section, we evaluate the proposed algorithm on
a queuing system with a single server in discrete time.
In this model, we assume there is a buffer of finite
size L. A possible arrival is assumed to occur at the
beginning of the time slot. The state of the system
is the number of customers waiting in the queue at
the beginning of time slot such that |S| = L + 1. We
assume there are two kinds of actions, service action
and flow action. The service action space is a finite
subset A of [amin, amax] and 0 < amin  amax < 1.
With a service action a, we assume that a service of
a customer is successfully completed with probability
a. If the service succeeds, the length of the queue
will reduce by one, otherwise there is no change of the
queue. The flow is a finite subset B of [bmin, bmax]
and 0  bmin  bmax < 1. Given a flow action b,
a customer arrives during the time slot with proba-
bility b. Let the state at time t be xt. We assume
that no customer arrives when state xt = L and thus
can model this by the state update not increasing on
customer arrival when xt = L. Finally, the overall ac-
tion space is the product of service action space and
flow action space, i.e., A ⇥ B. Given an action pair
(a, b) and current state xt, the transition of this system
P (xt+1|xt, at = a, bt = b) is shown in Table 1. Assum-
ing that � = 0.5, we want to optimize the total dis-
counted reward collected and satisfies two constraints
with respect to service and flow simultaneously. Thus,
the overall optimization problem is given as

min
⇡a,⇡b

E
 1X

t=0

�tc(st,⇡
a(st),⇡

b(st))

�

s.t. E
 1X

t=0

�tci(st,⇡
a(st),⇡

b(st))

�
 0 i = 1, 2

(26)
where ⇡a

h
and ⇡b

h
are the policies for the service and

flow at time slot h, respectively. We note that the
expectation in the above is with respect to both the
stochastic policies and the transition probability. In
order to match the constraints satisfaction problem
modeled in this paper, we use the bisection algo-
rithm on � and transform the objective to a con-

straint E
P

1

t=0 �
tc(st,⇡a(st),⇡b(st))

�
 �. In the

setting of the simulation, we choose the length of the
queue L = 5. We let the service action space be
A = [0.3, 0.4, 0.5, 0.6, 0.7] and the flow action space
be B = [0, 0.2, 0.4, 0.6] for all states besides the state

s = L. Moreover, the cost function is set to be
c(s, a, b) = s�5, the constraint function for the service
is defined as c1(s, a, b) = 10a � 5, and the constraint
function for the flow is c2(s, a, b) = 5(1� b)2 � 2.
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(b) � = 9.55.
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(c) � = 9.575.
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(d) � = 9.6.
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(e) � = 9.625.
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(f) � = 9.7.

Figure 1: Value of constraints with iterations for the
Zero-Sum Markov Bandit algorithm applied to Dis-
crete time single-server queue in the discounted case.

For different values of �, the numerical results are given
in Fig. 1. To show the performance of the algorithm,
we choose the values of � close to the real optimum
value and thus the figure shows the performance with
� = 9.5, 9.55, 9.575, 9.6, 9.625, and 9.7. For each value
of �, we run the algorithm for 105 iterations. Rather
than evaluating the policy in each iteration, we eval-
uate the policy every 100 iterations, while evaluate at
every iteration for the last 100 iterations. In order
to get the expected value of the constraints, we collect
10000 trajectories and calculate the average constraint
function value among them. These constraint func-
tion values for the three constraints are plotted in Fig.
1. For � = 9.5, we see that the algorithm converges
after about 60000 iterations and all three constrains
are larger than 0, which means that we find a feasible
policy for the setting � = 9.5. Moreover, it is reason-
able that all three constraints converge to a same value
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since the proposed Algorithm 1 optimize the minimal
value function among V (s, a, o) with respect to o. We
see that the three constraints for � = 9.5 are close to
each other and non-negative, thus demonstrating the
constraints are satisfied and � = 9.5 is feasible.

On the other extreme, we see the case when � = 9.7.
We note that all three constraints are below 0, which
means that no feasible policy for this setting. Thus,
seeing the cases for � = 9.5 and 9.7, we note that the
optimal objective is between the two values. Looking
at the case where � = 9.625, we also note that the
service constraint is clearly below zero and the con-
straints are not satisfied. Similarly, for � = 9.55, the
constraints are non-negative - the closest to zero are
the service constraints which are crossing zero every
few iterations and thus the gap is within the margin.
This shows that the optimal objective is within 9.55
and 9.625. However, the judgment is not as evident
between the two regimes and it cannot be clearly men-
tioned from � = 9.575 and � = 9.6 if they are feasible
or not since they are not consistently lower than zero
after 80,000 iterations like in the case of � = 9.625
and � = 9.7, are not mostly above zero as for � = 9.5.
Thus, looking at the figures, we estimate the value of
optimal objective between 9.55 and 9.625.

In order to compare the result with the theoretical op-
timal total reward, we can assume the dynamics of the
MDP is known in advance and use the Linear Program-
ming algorithm to solve the original problem. The re-
sult solved by the LP is 9.62. We note that Q(s, a, o)
has 6⇥5⇥4⇥3 = 360 elements and it is possible that
105 iterations are not enough to make all the elements
in Q table to converge. Further, sampling 104 tra-
jectories can only achieve an accuracy of 0.1 with 99%
confidence for the constraint function value and we are
within that range. Thus, more iterations and more
samples (especially more samples) would help improve
the achievable estimate from 9.55 in the algorithm per-
formance. Overall, considering the limited iterations
and sampling in the simulations, we conclude that the
result by the proposed algorithm is close to the optimal
result obtained by the Linear Programming.

Next, we test this example in the expected average
rewards case, which is formulated as

min
⇡a,⇡b

lim
T!1

1

T
E
 T�1X

t=0

c(st,⇡
a(st),⇡

b(st))

�

s.t. lim
T!1

1

T
E
 T�1X

t=0

ci(st,⇡
a(st),⇡

b(st))

�
 0 i = 1, 2

(27)
When the model is known apriori, this problem can
be computed by linear programming approach (Alt-
man, 1999). With the same reward function and two
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Figure 2: Value of constraints with iterations for the
Zero-Sum Markov Bandit algorithm applied to Dis-
crete time single-server queue in the expected average
case.

constraint functions, LP shows that the optimal total
average reward is about 3.62. In order to compare the
result with LP, we run Algorithm 2 with parameters
� = 3.5 and � = 3.55. The results are shown in Fig. 2.

We see that for � = 3.5, all the three constraints are
all above 0, which means that there exists feasible pol-
icy when � = 3.5. However, when � = 3.55, the flow
constraint is not satisfied. Thus, the result by the
proposed algorithm is between between 3.5 and 3.55,
which is close to the optimal result 3.62 (after con-
verting objective to a constraint). The reason for the
gap arises from the same reason as mentioned in the
discounted case.

Finally, We note that two additional numerical exam-
ples can be seen in the Appendix.

6 Conclusions

We considered the problem of optimization and learn-
ing for constrained and multi-objective Markov deci-
sion processes, for both discounted rewards and ex-
pected average rewards. We formulated the prob-
lems as zero-sum games where one player (the agent)
solves a Markov decision problem and its opponent
solves a bandit optimization problem, which we call
Markov-Bandit games. We extended Q-learning to
solve Markov-Bandit games and proved that our new
Q-learning algorithms converge to the optimal solu-
tions of the zero-sum Markov-Bandit games, and hence
converge to the optimal solutions of the constrained
and multi-objective Markov decision problems. The
provided numerical examples and the simulation re-
sults illustrate that the proposed algorithm converges
to the optimal policy.

Having an approach with a combination of the long-
term constraints as in this paper and the peak con-
straints as in Gattami (2019); Bai et al. (2021) is an
interesting future direction.
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