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1 PROOFS

Proof of Proposition 1. Let µ denote the posterior distributional parameter of (xmis | xobs,M) ∼ N (µ, c) for
some fixed constant c. In the following, we assume that the distributional parameter is found by optimization
of the expected likelihood given the augmented dataset

Ey[Pθ(xobs,xmis,1−y,m | Dπ(y))] = πPθ(xobs,m | Dπ(1)) + (1− π)Pθ(xobs,m,xmis | Dπ(0)). (1)

Let θ denote the parameter set of the generative model. We write θ1 for the parameter set where µ = µ1 and θ2
for the parameter set where µ = µ2. For any two parameters µ1 and µ2 with

πPθ1(xobs,m | Dπ(1)) + (1− π)Pθ1(xobs,m,xmis | Dπ(0)) =πPθ2(xobs,m | Dπ(1))

+ (1− π)Pθ2(xobs,m,xmis | Dπ(0)),

we have to show that µ1 = µ2.

From the identifiability of the mean parameter of Gaussian distributions as sample mean in maximum likelihood
estimation, it follows that

πPθ1(xobs,m | Dπ(1)) = πPθ2(xobs,m | Dπ(1)) and thus

(1− π)Pθ1(xobs,m,xmis | Dπ(0)) = (1− π)Pθ2(xobs,m,xmis | Dπ(0)), (2)

where only the probabilities in Equation (2) depend on µ. The maximization of Pθ2(xobs,m,xmis | Dπ(0))
equals a maximum likelihood estimation with a fully observed dataset of xmis. Again, from the identifiability of
the mean parameter of Gaussian distributions, it follows that µ1 = µ2 from (2).

Proof of ELBO in Table 1. The expected likelihood given the augmented dataset (1) is a weighted sum over
the likelihood of the observed model Pθ(xobs,m,xmis | Dπ(0)) and the likelihood of the unobserved model
Pθ(xobs,m | Dπ(1)).

The observed model can be learned by maximizing the ELBO which we can compute using Jensen’s inequality:

logPθ(xobs,m,xmis | Dπ(0)) = logPθ(xobs,m,xmis, r, z | Dπ(0))− logPθ(r, z | Dπ(0))

≥ EQφ(r,z|xobs,m,xmis)

[
logPθ(xobs,m,xmis, r, z | xobs,m,xmis)− logQφ(r, z | xobs,m,xmis)

]
= EQφ(r,z|xobs,m,xmis)

[
logPθ(m | r, z,xobs,xmis) + logPθ(xobs | r, z) + logPθ(xmis | r, z)

+ log
Pθ(z | r)

Qφ(z | r,xobs,m,xmis)
+ log

Pθ(r)

Qφ(r | xobs,m,xmis)

]
1denotes senior author
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= EQφ(r,z|xobs,m)

[
logPθ(m | r, z,xobs,xmis) + logPθ(xobs | r, z) + logPθ(xmis | r, z)

+ log
Pθ(z | r)

Qφ(z | r,xobs,m)
+ log

Pθ(r)

Qφ(r | xobs,m)

]
,

where logPθ(m | r, z,xobs,xmis) = logPθ(m | r,xobs,xmis) for PSMVAE(a) and logPθ(m | r, z,xobs,xmis) =
logPθ(m | r, z) for PSMVAE(b). The last equation follows from the assumption that Qφ(·|xobs,m,xmis) =
Qφ(·|xobs,m).

Similarly we obtain the lower bound of the unobserved model:

logPθ(xobs,m | Dπ(1)) = logPθ(xobs,m,xmis, r, z | Dπ(1))− logPθ(r, z,xmis | Dπ(1))

≥ EQφ(r,z,xmis|xobs,m)

[
logPθ(xobs,m,xmis, r, z | xobs,m)− logQφ(r, z,xmis | xobs,m)

]
= EQφ(r,z,xmis|xobs,m)

[
logPθ(m | r, z,xobs,xmis) + logPθ(xobs | r, z) + log

Pθ(xmis | r, z)

Qφ(xmis | xobs,m, z, r)

+ log
Pθ(z | r)

Qφ(z | r,xobs,m,xmis)
+ log

Pθ(r)

Qφ(r | xobs,m,xmis)

]
,

where logPθ(m | r, z,xobs,xmis) is defined as before.

The weighted sum of the ELBOs (denoted by L(xobs,m) in the following) can then be written as

L(xobs,m) = EQφ(r,z|xobs,m)

[
logPθ(xobs | r, z) + log

Pθ(z | r)

Qφ(z | r,xobs,m)
+ log

Pθ(r)

Qφ(r | xobs,m)

]
+ πEQφ(r,z,xmis|xobs,m)

[
logPθ(m | r, z,xobs,xmis) + log

Pθ(xmis | r, z)

Qφ(xmis | xobs,m, z, r)

]
+ (1− π)EQφ(r,z|xobs,m,xmis)

[
logPθ(m | r, z,xobs,xmis) + logPθ(xmis | r, z)

]
.

Specifying π = 1 when mj = 0 yields the ELBO, as shown in Table 1 of the main paper.

2 DETAILS OF DATASETS AND EXPERIMENTS

2.1 Data

We split the datasets into a train, a validation and a test dataset respectively based on a 8:1:1 data split. The
data is then normalized and mean imputed. The datasets can be found online in the GitHub repository. We
compute the normalized RMSE which corresponds to the RMSE on the normalized data. We predict categorical
and nominal variables by rounding the predictions of the models. Please refer to Table 1. Note that our results
deviate from those of other papers because we do a train test split for the data which results in a smaller dataset
in the training stage.

Dataset Sample size # continuous features # discrete features
Adult 32.561 3 8
Breast 569 30 0
Credit 30.000 14 9
Letter 20.000 0 16
Spam 4.601 57 0
Wine 6.497 11 1

Table 1: Statistics of the datasets



Sahra Ghalebikesabi, Rob Cornish, Chris Holmes, Luke J. Kelly

2.2 Implementation Details

We use PyTorch to implement the VAE models. The tensorflow code for GAIN can be found online (https:
//github.com/jsyoon0823/GAIN) as well as the PyTorch implementation of MIWAE (https://github.com/
pamattei/miwae). The code for not-MIWAE was provided by the main author of the corresponding paper, Niels
Bruun Ipsen. We use the MissForest implementation of sklearn (IterativeImputer with ExtraTreesRegressor as
estimator) and the MICE implementation of sklearn (IterativeImputer with BayesianRidgeRegressor).

We train all benchmark models with default parameters as specified in our code. We run all deep learning
methods for 1,000 epochs and train them using the Adam optimizer (Kingma and Ba, 2014). All subgraphs
of the VAE-based approaches have one hidden layer with 128 nodes. Unless otherwise stated, we choose the
dimension of the latent Gaussian variable z equal to 20 and the number of categories k of the latent categorical
variable r as 10. Only MIWAE has two hidden layers each with 128 hidden units as specified by Mattei and
Frellsen (2019). We use a rectifier as activation function between two layers. We chose a batch size of 200 for
the datasets used in the main paper and a batch size of 512 for MNIST. The number of trees used for MissForest
is set to 10. We use the self-masking approach of not-MIWAE where P (m | x) is learned by a logistic regression
which is independent for each feature.

The benchmark VAE architectures have been modeled as follows:

• VAE : a basic VAE with one Gaussian latent variable learned on the observed data (and not on the missing-
ness mask).

• GMVAE : a VAE with a Gaussian Mixture prior. That is a VAE with one categorical latent variable r taking
values from {1, ..., k} and one conditionally normal distributed latent variable z | r. It learns the generative
model P(xobs|m, z, r) = P(xobs,m | z, r)P(z | r)P(r). This model framework is similar to the HIVAE model
presented in (Nazabal et al., 2020). Instead of sampling r from a Gumbel-Softmax distribution (Jang et al.,
2017), we instead learn P(· | r = r) for each r ∈ {1, ..., k} and weight the resulting loss for each category
with its posterior probability.

• DLGM : a deep latent Gaussian model which extends the GMVAE by a second latent Gaussian variable w
with the same dimensionality as x. It learns the generative distribution P(xobs,m, z,w, r) = P(xobs,m |
z, r)P(w | z, r)P(z | r)P(r). The inference model is structured in the same way as the inference model for
the PSMVAE where xmis is replaced by w.

We then impute xmis by sampling from the conditional distribution of xobs.

In contrast to Nazabal et al. (2020), we do not use the Gumbel softmax distribution for sampling the categorical
variable r (Jang et al., 2017), but instead integrate out r in the loss function. See Dilokthanakul et al. (2016) for
a similar approach. In the implementation, we weight the log-likelihood of the observed data with the inverse of
1-missingness rate. Otherwise increasing the missingness will lead to a higher weight of the log-likelihood of the
missingness mask compared to the log-likelihood of the observed data.

3 ADDITIONAL EXPERIMENTS

3.1 Multiple Imputation

We follow Mattei and Frellsen (2019) and assess the performance of our models in the multiple imputation setting
by computing the test accuracy of the predicted target variable when a one layer classification network is trained
on the dataset where each observation with missing entries was imputed 20 times. The test set is again made
up of 20 multiple imputations.

3.2 Preliminary Results On Image Inpainting

We also show that our method can be used for image inpainting using the MNIST dataset (LeCun et al.,
2010). We induced missingness completely random as before. We then trained our method using 500 epochs,
a batch size of 512, π = 0 and only one importance sample. Please refer to Figure 1 for the results. Missing
pixels were highlighted in red in the first row of each subfigure. The second row shows inpainted images using

https://github.com/jsyoon0823/GAIN
https://github.com/jsyoon0823/GAIN
https://github.com/pamattei/miwae
https://github.com/pamattei/miwae
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Algorithm 20% MCAR 80% MCAR 20% MNAR 80% MNAR
PSMVAE(a) .9482 ± .0211 .8466 ± .0627 .9489 ± .0116 .9501 ± .0101
PSMVAE(b) .9429 ± .0180 .8791 ± .0511 .9577 ± .0063 .9496 ± .0157
MICE .9545 ± .0141 .8105 ± .0337 .9578 ± .0096 .9578 ± .0096

Table 2: Test accuracy of a one layer neural network for the prediction of breast cancer using the breast dataset
which was imputed multiple times

the corresponding imputation algorithm. As we see, the PSMVAE(b) yields sharper images than GAIN does.
Especially when the missingness is high, the imputations of our model suffer from considerably less noise than
those of GAIN.

(a) 20% MCAR inpainted using PSMVAE(b) (b) 20% MCAR inpainted using GAIN

(c) 80% MCAR inpainted using PSMVAE(b) (d) 80% MCAR inpainted using GAIN

Figure 1: MNIST images with pixels MCAR at different rates inpainted with different imputation algorithms

3.3 Robustness Study

We now assess the robustness of our method. Please refer to Figure 2 for an illustration of the relationship
between the RMSE and the hyperparameter π. The vertical lines highlight the minimum of the loss curves. We
notice that the optimal value of π is usually on a similar scale as the optimal value of the weight decay parameter.
Only on the MCAR spam dataset it is optimal to have a π = 0. Please note that the decay of the curves seems
infinitesimal because we compare different methods and datasets within the same figure.
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Figure 2: RMSE of imputation for different values of π for a missingness rate of 20% (left) and a missingness
rate of 80% (right)

In the following we compare the robustness of our models and two benchmarks on the credit dataset. When
assessing the relationship of the RMSE and the missingness rate (see Figure 3), we note that not-MIWAE is
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not robust to increasing the missingness rate. This could stem from the fact that increasing the missingness
increases the fraction of the optimization loss that comes from the likelihood of the missingness mask compared
to the likelihood of the observed data. The larger the missingness, the better do our models compare relative to
MICE.
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Figure 3: RMSE of imputation for different missingness rates (in %) when data of the credit dataset are missing
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Figure 4: RMSE of imputation for different sample sizes when 20% of the data of the credit dataset are missing
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Figure 5: RMSE of imputation for different number of features when 20% of the data of the credit dataset are
missing
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When we change the sample size of the training dataset (see Figure 4), we note that the performance of the deep
learning methods improves strictly and that the PSMVAE(b) performs better than MICE for large sample sizes.

Eventually, we compare the robustness of the RMSE when the number of features is changed (Figure 5). We see
that the performance of all methods in general decreases when the number of features increases (except for one
increase for all methods). The relative performance of our models hereby improves, the more features there are.
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