
Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

Supplementary Material
A Preliminaries

For m 2 N, we use [m] to denote {1, . . . ,m}. For a distribution D, we write r ⇠ D to denote a random variable r

distributed as D. For a randomized algorithm A, we write A(X) to denote the distribution of the output of A on
input X. For a distribution D, we write A(D) to denote the distribution of the output of A when the input is
drawn from D. Sometimes we will allow the number of samples drawn by an algorithm to be a random variable.
In this case, the algorithm must specify the number of samples before seeing any samples. Furthermore, when
D is the distribution of each sample, we may write AD to denote the distribution of the output when each of
A’s samples is drawn from D. We use D1 ⌦ · · · ⌦ Dm to denote the product distribution of the distributions
D1, . . . ,Dm. Furthermore, we use D

⌦m to denote the m-fold product of the distribution D with itself.

For convenience, we interchangeably refer to a halfspace by hw or just the weight vector w itself.

A.1 Margin of Halfspaces

Robust learning of halfspaces is intimately related to the notion of margin. For a margin parameter � > 0, we
say that an example (x, y) 2 Rd

⇥ {±1} is correctly classified by w with margin � iff sgn(hw,xi � y · �) = y.
The �-margin error is defined as errD

�
(w) = Pr(x,y)⇠D[sgn(hw,xi � y · �) 6= y]. The connection between robust

learning of halfspaces and learning with margin is given through the following (folklore) lemma; its proof can be
found, e.g., in (Diakonikolas et al., 2020).

Lemma 7. For any non-zero w 2 Rd
, � � 0 and D, R�(w,D) = errD

�

⇣
w

kwk2

⌘
.

Due to the above lemma, we may refer to the �-margin error for halfspaces instead of their robust risk throughout
the paper.

A.2 Boosting the Success Probability

Throughout this work, it is often more convenient to prove lower bounds (resp. upper bounds) only for some
large (resp. small) failure probability ⇠ 2 (0, 1). We note that this is without loss of generality, since standard
techniques can be used to boost the success probability while incurring small loss in the sample complexity. We
sketch the argument below.
Observation 8. For any ⇠, ⇠

0
2 (0, 1), the following statement holds: If there is a (�, �0)-robust learner with

failure probability ⇠, accuracy ↵ and sample complexity m, then there exists a (�, �0)-robust learner with failure

probability ⇠
0
, accuracy 1.1↵ and sample complexity O⇠,⇠0(m+ 1/↵2).

Proof Sketch. Let A be the (�, �0)-robust learner with failure probability ⇠, accuracy ↵ and sample complexity m.
We define an algorithm B as follows:

• Let T := d
log(0.5⇠0)
log(1�⇠) e and M := d

106·log T

↵
e.

• For i 2 [T], run A on m samples to get a halfspace wi.

• Sample M fresh new samples. Then, output wi that minimizes the �-margin error of wi on the uniform
distribution over these M samples.

Clearly, the algorithm B uses m · T +M = O⇠,⇠0(m+1/↵2) samples as desired. For the accuracy, with probability
1� (1� ⇠)T � 1� 0.5⇠0 at least one of the wi’s satisfies errD

�0(wi) ↵. Conditioned on this, the Chernoff bound
ensures that w.p. 1� 0.5⇠ we output a wi s.t. errD

�0(wi) 1.1↵. We can then conclude the proof via the union
bound.

B Lower Bound for Robust Learning of Halfspaces: Pure-DP Case

In this section, we prove our lower bound for ✏-DP robust learning of halfspaces (Theorem 2), which is restated
below.

Robust and Private Learning of Halfspaces

Theorem 2. Any ✏-DP (�, 0.9�)-robust (possibly improper) learner has sample complexity ⌦(d/✏).

We will use the following (well-known) fact; for completeness, we sketch its proof at the end of this section.
Lemma 9. There exist w(1)

, . . . ,w(K)
2 Rd

where K = 2⌦(d)
such that kw(i)

k2 = 1 for all i 2 [K] and

|
⌦
w(i)

,w(j)
↵
| < 0.01 for all i 6= j.

Proof of Theorem 2. We will prove the statement for any � 0.99,↵ 0.49 and ⇠ 0.9.

Let w(1)
, . . . ,w(K) be the vectors guaranteed by Lemma 9. For each i 2 [K], we define D

(i) to be the uniform
distribution on two elements: (1.01� ·w(i)

,+1) and (�1.01� ·w(i)
,�1). Notice that R�(w(i)

,D
(i)) = 0.

Now, let G
(i) = {h : Bd

! {±1} | R0.9�(h,D(i)) ↵} denote the set of hypotheses which incurs error no more
than ↵ on D

(i). The main claim is the following:

Claim 10. For every i 6= j, G
(i)

\G
(j) = ;.

Proof. Suppose for the sake of contradiction that there exists h 2 G
(i)

\G
(j) for some i 6= j.

Since ↵ 0.49 and D
(i) is a uniform distribution over only two samples, R0.9�(h,D(i)) ↵ implies that

R0.9�(h,D(i)) = 0. This implies that

h(z) = 1 8z 2 P0.9�(1.01� ·w(i)).

By an analogous argument, we have

h(z) = �1 8z 2 P0.9�(�1.01� ·w(j)).

This is a contradiction since P0.9�(�1.01� · w(j)) \ P0.9�(1.01� · w(i)) 6= ;; specifically, |
⌦
w(i)

,w(j)
↵
| < 0.01

implies that this intersection contains 0.505� ·w(i)
� 0.505� ·w(j).

To finish the proof, consider any ✏-DP (�, 0.9�)-robust learner A with ↵ 0.49. Suppose that it takes n samples.
Notice that, when we feed it n random samples from D

(i), the accuracy guarantee ensures that

Pr
(x1,y1),...,(xn,yn)⇠D(i)

[A((x1, y1), . . . , (xn, yn)) 2 G
(i)] � 1� ⇠.

As a result, since A is ✏-DP, we have

Pr[A(;) 2 G
(i)] � (1� ⇠) · e�✏·n

� 0.1 · e�✏·n
. (3)

From Claim 10, G(1)
, . . . , G

(K) are disjoint, which implies

1 �

X

i2[K]

Pr[A(;) 2 G
(i)]

(3)
� K · 0.1 · e�✏·n

.

Thus, we have n � ⌦
⇣

logK

✏

⌘
= ⌦(d/✏) as desired.

Finally, we briefly sketch the proof of Lemma 9.

Proof of Lemma 9. It is well-known that there exist linear error correcting codes over F2 with constant rate and
distance 0.4995. (See e.g. (Alon et al., 1990, Section 7) for an explanation.) Equivalently, this means that there
exists a linear space V ✓ Fd

2 of dimension ⌦(d) such that kvk0 2 [0.4995d, 0.5005d] for all non-zero v 2 V where
k · k0 denote the Hamming norm (i.e. number of non-zero coordinates).

Let v(1)
, . . . ,v(K) denote the elements of V notice that K = 2dim(V) = 2⌦(d). Define w(1)

, . . . ,w(K)
2 Rd where

w(i)
`

=

(
�1/

p
d if v(i)

`
= 0

+1/
p
d if v(i)

`
= 1.

For i 6= j, we have
���
D
w(i)

,w(j)
E��� = |1� 2 · kv(i)

� v(j)
k0/d| 0.01d,

where the latter follows from linearity of V . This concludes our proof.

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

C Lower Bound for Robust Learning of Halfspaces: Approximate-DP Case

For our lower bound for approximate-DP proper learners (Theorem 3), we will reduce from a lower bound of
Steinke and Ullman (2017). To state their results, we will need some additional notation. Let U[0,1] denote the
uniform distribution on [0, 1], and let Bq denote the distribution that is +1/

p
d with probability q and is �1/

p
d

otherwise. For q 2 [0, 1]d, we use Bq to denote Bq1 ⌦ · · ·⌦ Bqd . Steinke and Ullman (2017) prove the following
theorem89:
Theorem 11 ((Steinke and Ullman, 2017, Theorem 3)). Let ⇣ > 0 and n, d 2 N be such that n < ⇣

p
d. Let M

be any (1, ⇣/n)-DP algorithm whose output belongs to the d-dimensional unit Euclidean ball. Let X = (x1, . . . ,xn)
be such that xi is i.i.d. drawn from Bq. Then,

Eq⇠U⌦d
[0,1]

,w⇠M(B⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5 < ⇣

p

d. (4)

In the next subsection, we first show a lower bound of ⌦(
p
d) for any sufficiently small constant � (Lemma 13).

Then, in Subsection C.2, we use this to prove a lower bound of ⌦(min{
p
d/�, d}).

C.1 Lower Bound for � = ⌦(1)

We cannot use the distribution Bq directly since it is not realizable with a large margin. To overcome this, we
define Pq as the distribution of x ⇠ Bq conditioned on hq0

,xi � 0.01 where we write q0 as a shorthand for
1p
d
(2q� 1). We will require the following bound:

Lemma 12. Eq⇠U⌦d
[0,1]

[dTV (Bq,Pq)] o(1/d).

Proof. The Chernoff bound implies that Prq⇠U⌦d
[0,1]

[kq0
k � 0.1] � o(1/d). For a fixed q such that kq0

k � 0.1, the
Chernoff bound again yields that Prx⇠Bq [hq

0
,xi � 0.01] o(1/d), which implies that dTV (Bq,Pq) o(1/d).

Combining these, we have Eq⇠U⌦d
[0,1]

[dTV (Bq,Pq)] o(1/d) as desired.

Let P̃q denote the distribution of (x,+1) where x ⇠ Pq. Similarly, let B̃q denote the distribution of (x,+1) where
x ⇠ Bq. We can now prove our ⌦(

p
d) lower bound for any sufficiently small constant � > 0, which follows almost

immediately from the following lemma.
Lemma 13. For any constant �,� 2 (0, 1) such that � > 2�, the following holds. Let A be any (1, o(1/n))-DP

algorithm with sample complexity n and whose output belongs to the d-dimensional unit Euclidean ball. If

Eq⇠U⌦d
[0,1]

,w⇠A(P̃⌦n
q)[err

P̃q
�

(w)] �,

then we must have n � ⌦(
p
d).

Proof. Suppose for the sake of contradiction that there exists a (1, o(1/n))-DP algorithm A with sample com-
plexity n = o(

p
d) whose output is a d-dimensional vector of Euclidean norm at most one that satisfies

Eq⇠U⌦d
[0,1]

,w⇠A(P⌦n
q)[err

Pq
� (w)] �.

8
We remark that (1) the result of Steinke and Ullman (2017) is stated for the Beta distributions which contain the

uniform distribution (i.e., U([0, 1]) = Beta(1, 1)) (2) we scale down the output M(X) by a factor of 1/
p
k (which has

the same effect on the error), (3) we replace the Bernoulli distribution with Bq which is valid since there is a one-to-one

mapping between the two, (4) the theorem of Steinke and Ullman (2017) has another parameter k which we simply set to

d and (5) the original theorem in Steinke and Ullman (2017) implicitly imposes a bound on kM(X)k1 but the actual

condition needed is on kM(X)k1 which is already implied by our condition that kM(X)k2 1.
9
We also remark that a similar theorem can already be derived via the work of Dwork et al. (2015); however, we choose

to state this version since it is more compatible with our reduction and is readily available already in (Steinke and Ullman,

2017).

Robust and Private Learning of Halfspaces

On input x1, . . . ,xn 2 {±1/
p
d}

d, M simply works as follows: Run A on (x1,+1), . . . , (xn,+1) to obtain a
halfspace w and output w. Now, we have that

Eq⇠U⌦d
[0,1]

,w⇠M(B⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5

= Eq⇠U⌦d
[0,1]

,w⇠A(B̃⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5

� Eq⇠U⌦d
[0,1]

,w⇠A(P̃⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5� Eq⇠U⌦d
[0,1]

h
dTV (P̃

⌦n

q , B̃
⌦n

q) · (0.5
p

d)
i

� Eq⇠U⌦d
[0,1]

,w⇠A(P̃⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5� (0.5n
p

d) · Eq⇠U⌦d
[0,1]

[dTV (Pq,Bq)]

Lemma 12
� Eq⇠U⌦d

[0,1]
,w⇠A(P̃⌦n

q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5� o(n/
p

d)

= Eq⇠U⌦d
[0,1]

,w⇠A(P̃⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5� o(1), (5)

where in the first inequality we use the fact that kwk2 1, which implies that kwk1
p
d.

Notice that we may rearrange the term inside the expectation in (5) as follows:

X

j2[d]

wj · (qj � 0.5) =

p
d

2

X

j2[d]

wj ·
2qj � 1
p
d

=

p
d

2
hw,q0

i

=

p
d

2

⌦
w,Ex⇠Bq [x]

↵

=

p
d

2
· Ex⇠Bq [hw,xi]

Lemma 12
�

p
d

2
· Ex⇠Pq [hw,xi]� o(1)

�

p
d

2

✓
� · Pr

x⇠Pq

[hw,xi � �]� 1 · Pr[hw,xi < �]

◆
� o(1)

=

p
d

2

⇣
� · (1� errP̃q

�
(w))� errP̃q

�
(w)

⌘
� o(1)

�

p
d

2

⇣
� � 2 errP̃q

�
(w))

⌘
� o(1)

Plugging this back into (5), we have that

Eq⇠U⌦d
[0,1]

,w⇠M(B⌦n
q)

2

4
X

j2[d]

wj · (qj � 0.5)

3

5

�

p
d

2
·

⇣
� � 2 · Eq⇠U⌦d

[0,1]
,w⇠A(P̃⌦n

q)

h
errP̃q

�
(w))

i⌘
� o(1)

�

p
d

2
(� � 2�)� o(1)

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

= ⌦(
p

d),

which contradicts Theorem 11. This concludes our proof.

C.2 Lower Bound for Smaller �

We will now reduce from the case � = ⌦(1) to get a larger lower bound for smaller �. To do this, it will be
convenient to have an “expected version” of Lemma 13, which is stated and proved below.
Lemma 14. For any constants �0,�0 2 (0, 1) such that �0 > 4

p
2�0, the following holds. Let B be any (1, o(1/n))-

DP algorithm that has access to an oracle O that can sample from P̃q where q is unknown to B. All of the

following cannot hold simultaneously:

1. The expected number of samples B draws from O is o(
p
d).

2. Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[kwk

2] 1.

3. Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[err

P̃q
�0 (w)] �0.

Proof. Suppose for the sake of contradiction that there exists a (1, o(1/n)) algorithm B that draws o(
p
d) samples

from O in expectation, and satisfies Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[kwk

2] 1 and Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[err

P̃q
�0 (w)] �0. We use B to

construct an algorithm A that will contradict Lemma 13 as follows:

• Run B.

• If B attempts to take more than 2n/�0 sample, simply output 0.

• Otherwise, let w be the output of B, and output w0 = w
kwk .

Notice that A is (1, o(1/n))-DP and the number of samples used is 2n/�0 = o(
p
d).

Let � = 2�0 and � = �0

p
�0/2. We will next argue that Eq⇠U⌦d

[0,1]
,w0⇠A(P̃⌦n

q)[err
P̃q
� (w0)] �. First, since the

expected number of samples of B is n, by Markov’s inequality, the probability that B takes more than 2n/�0

samples is at most �0/2. As a result, we have that

Eq⇠U⌦d
[0,1]

,w0⇠A(P̃⌦n
q)[err

P̃q
�

(w0)] Eq⇠U⌦d
[0,1]

,w⇠BP̃⌦n
q

[errP̃q
�

(w/kwk)] + �0/2.

Recall also that Eq⇠U⌦d
[0,1]

,B[kwk
2] 1; Markov’s inequality once again implies that Prq⇠U⌦d

[0,1]
,B[kwk

2
> 2/�0]

�0/2. Plugging this into the above inequality, we get that

Eq⇠U⌦d
[0,1]

,w0⇠A(P̃⌦n
q)[err

P̃q
�

(w0)] Eq⇠U⌦d
[0,1]

,w⇠BP̃⌦n
q

[errP̃q
�

(w/kwk) · 1[kwk

p
2/�0]] + �0.

 Eq⇠U⌦d
[0,1]

,w⇠BP̃⌦n
q

[errP̃q
�

(w/

p
2/�0)] + �0

= Eq⇠U⌦d
[0,1]

,w⇠BP̃⌦n
q

[errP̃q
�0

(w)] + �0

(From our third assumption on B) 2�0 = �,

which is a contradiction to Lemma 13 since � > 2�.

We can now prove our ⌦(min{
p
d/�, d}) lower bound (Theorem 3). Roughly speaking, when d � 1/�2, we “embed”

⇥(1/�2) hard distributions from Lemma 14 into ⇥(�2
d) dimensions, which results in the ⌦(

p
�2d · 1/�2) =

⌦
⇣p

d/�

⌘
lower bound as desired.

Theorem 3. Let ✏ < 1. Any (✏, o(1/n))-DP (�, 0.9�)-robust proper learner has sample complexity n =
⌦(min{

p
d/�, d}).

Robust and Private Learning of Halfspaces

Proof. We will prove this lower bound for � 0.01,↵, ⇠ 10�6.

First, notice that, when � 1/
p
d, a (�, 0.9�)-robust proper learner is also an (1/

p
d, 0)-robust proper learner.

Hence, by Theorem 4, we have n = ⌦(d) as desired. Thus, we can subsequenly only focus on the case � � 1/
p
d,

for which we will show that n = ⌦(
p
d/�).

Suppose for the sake of contradiction that there is a (1, o(1/n))-DP (�, 0.9�)-robust proper learner A with
↵, ⇠ 10�6 that has sample complexity n = o(

p
d/�). Let T = b0.01/�c, and d

0 = bd/T
2
c. We will construct an

algorithm B that contradicts with Lemma 14 in d
0 dimensions.

We will henceforth assume w.l.o.g. that d = d
0
· T

2. This is without loss of generality since the proof below
extends to the case d > d

0
· T

2 by padding d� d
0
· T

2 zeros to each of the samples.

In the following, we view the d-dimensional space Rd as the tensor RT
2

⌦ Rd
0
. Furthermore, we write ei as a

shorthand for the i-th vector in the standard basis of Rd
0
.

The algorithm B with an oracle O to sample from P̃q where q is unknown to B works as follows:

• Randomly draw q1, . . . ,qT 2 i.i.d. from U
⌦d

[0,1], and randomly sample i
⇤
2 [T 2].

• Draw n samples (x1, y1), . . . , (xn, yn) independently as follows:

– Draw i ⇠ [T 2].
– If i 6= i

⇤, then draw (x, y) ⇠ P̃qi and let the sample be (x⌦ ei, y).
– If i = i

⇤, the draw (x, y) ⇠ P̃q using O and let the sample be (x⌦ ei, y).

• Run A on (x1, y1), . . . , (xn, yn). Suppose that the output halfspace is w.

• Write w as
P

i2[T 2] w
i
⌦ ei for w1, . . . ,wT 2 2 Rd

0
. Then, output T ·wi

⇤
.

Clearly, B is (1, o(1/n))-DP and it takes n/T = o(
p
d0) samples in expectation from Pq.

For the ease of presentation, we will write Q as a shorthand for the mixture of distribution where we draw i ⇠ [T],
and return (x⌦ ei, y) where (x, y) ⇠ P̃qi . Moreover, we write Q̃ as a similar distribution but when qi⇤ is replaced
by q. Under this notation, we have that

Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[kwk

2] = Eq1,...,qT2 ,q⇠U⌦d
[0,1]

,i⇤⇠[T],w⇠A(Q̃n)

h
kT ·wi

⇤
k
2
i

= Eq1,...,qT2⇠U⌦d
[0,1]

,i⇤⇠[T],w⇠A(Qn)

h
kT ·wi

⇤
k
2
i

= Eq1,...,qT2⇠U⌦d
[0,1]

,w⇠A(Qn)

2

4 1

T 2
·

X

i⇤2[T 2]

kT ·wi
⇤
k
2

3

5

= Eq1,...,qT2⇠U⌦d
[0,1]

,w⇠A(Qn)

⇥
kwk

2
⇤

 1.

Finally, we will argue the accuracy of B where �0 = 0.01,�0 = 2 · 10�6. Once again we rewrite it as

Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[errP̃q

�0
(w)] = Eq1,...,qT2 ,q,i⇤,w⇠A(Q̃n)

h
errP̃q

�0
(T ·wi

⇤
)
i

= Eq1,...,qT2 ,i
⇤,w⇠A(Qn)

h
err

P̃q

�0/T
(wi

⇤
)
i

(Since �0/T 0.1�) Eq1,...,qT2 ,i
⇤,w⇠A(Qn)

h
err

Pq

0.1�(w
i
⇤
)
i

= Eq1,...,qT2 ,w⇠A(Qn)

2

4 1

T 2

X

i⇤2[T 2]

err
P̃q

0.1�(w
i
⇤
)

3

5

= Eq1,...,qT2 ,w⇠A(Qn)

⇥
errQ0.1�(w)

⇤
.

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

Now, notice that the halfspace w⇤ = 1
T

P
i2[T 2] q

0
i
⌦ ei (whose Euclidean norm is at most one) correctly

classifies each point in supp(Q) with margin 0.01
T

� �. As a result, the accuracy guarantee of A ensures that
Ew⇠A(Qn)[err

Q
0.1�(w)] ↵(1� ⇠) + ⇠ �0. Plugging into the above, we have

Eq⇠U⌦d
[0,1]

,w⇠BP̃q
[errP̃q

�0
(w)] �0,

which contradicts with Lemma 14.

D Lower Bound for Non-Robust Learning of Halfspaces

In this section, we provide a lower bound of ⌦
⇣

1
✏�2

⌘
on the sample complexity of non-robust learners (Theorem 4).

While quantitatively similar, our lower bound significantly strengthens that of Nguyen et al. (2020) in two aspects:
(1) our lower bounds hold against even improper learners whereas the lower bound in (Nguyen et al., 2020) is
only valid against proper learners and (2) our lower bound holds even against (✏, �)-DP algorithms whereas that
of Nguyen et al. (2020) is only valid when � = 0.

Theorem 4. For any ✏ > 0, there exists � > 0 such that any (✏, �)-DP (�, 0)-robust (possibly improper) learner

has sample complexity ⌦
⇣

1
✏�2

⌘
. Moreover, this holds even when d = O(1/�2).

To prove the above, we will require the following simple lemma, which states that the task of outputting an input
bit requires ⌦(1/✏) equal samples in order to gain any non-trivial advantage over random guessing. The proof
follows a straightforward packing argument.

Lemma 15. For s 2 {±1}, let Os denote the distribution which is s with probability 1. For any ✏ > 0, there

exists � = ⌦(1/✏) such that the following holds: There is no (✏, �)-DP algorithm that can take at most 10�5
/✏

samples in expectation from Os for a random s 2 {±1} and output s correctly with probability 0.51.

Proof. We may assume that ✏ < 1 as it is clear that the algorithm needs at least one sample to output s correctly
with probability 0.51. Furthermore, let � = 0.001

1�e�✏ .

Suppose for the sake of contradiction that there is an algorithm A that takes in at most 10�5
/✏ samples in

expectation and output s correctly with probability 0.51. By Markov inequality, with probability 0.999, A takes
at most n := b0.01/✏c samples. Let B be the modification of A where B draws n samples and runs A on them but
fails whenever A attempts to draw more than n samples. We have that B outputs s correctly with probability
0.509. In other words, we have

Pr[B(sn) = s] � 0.509, (6)

where s
n denote n inputs all equal to s.

Since A is (✏, �)-DP, B is also (✏, �)-DP. Suppose without loss of generality that Pr[B(;) 6= 1] � Pr[B(;) 6= �1].
This implies that Pr[B(;) 6= 1] � 0.5. From (✏, �)-DP of B, we have

Pr[B(1n) 6= 1] � e
�✏ Pr[B(1n�1) 6= 1]� �

...
� e

�n✏ Pr[B(;) 6= 1]� �(1 + e
�✏ + · · ·+ e

�n✏)

� e
�0.01

· 0.5� 0.001

> 0.491

which contradicts (6). This concludes our proof.

We can now prove Theorem 4. Roughly speaking, we “embed” the hard problem in Lemma 15 into each of the
d = 1/�2 dimensions, which results in the d · ⌦(1/✏) = ⌦

⇣
1

✏�2

⌘
lower bound.

Robust and Private Learning of Halfspaces

Proof of Theorem 4. We prove this statement for any � < 1,↵ 0.4 and ⇠ 0.0001.

Let � be the same as in Lemma 15, and let d = b1/�2
c. Suppose for the sake of contradiction that there exists an

(✏, �)-DP (�, 0)-robust learner A that takes in at most n := b10�5
d/✏c samples and outputs a hypothesis with

error at most ↵ 0.4 with probability 1� ⇠ � 0.9999. We will use A to construct an algorithm B that can solve
the problem in Lemma 15.

For every i 2 [d] and s 2 {±1}, we use Di,s to denote the uniform distribution on (ei, s) and (�ei,�s).
Furthermore, for s 2 {±1}d, we use Ds to denote the mixture 1

d

P
i2[d] Di,si . Our algorithm B works as follows:

• Randomly sample s 2 {±1}d and randomly sample i
⇤
2 [d].

• Draw n samples (x1, y1), . . . , (xn, yn) independently as follows:

– Randomly pick i 2 [d].
– If i 6= i

⇤, then return a sample drawn from Di,si .
– Otherwise, if i = i

⇤, sample a ⇠ Os. Then return the sample (ei, a) with probability 0.5; otherwise,
return the sample (�ei,�a).

• Run A on (x1, y1), . . . , (xn, yn) to get a hypothesis h.

• With probability 0.5, return h(ei⇤). Otherwise, return �h(�ei⇤).

It is obvious to see that B is (✏, �)-DP and that the expected number of samples B draws from Os is n/d 10�5
/✏.

Hence, we only need to show that B outputs a correct answer with probability 0.51 to get a contradiction with
Lemma 15.

Since s is uniformly draw from {±1}, the probability that B outputs the incorrect answer is equal to

Es⇠{±1}d,i2[d],h⇠A(D⌦n
s)

1

2
1 [h(ei) 6= si] +

1

2
1 [h(�ei) 6= �si]

�

= Es⇠{±1}d,h⇠A(D⌦n
s)

2

41

d

X

i2[d]

✓
1

2
1 [h(ei) 6= si] +

1

2
1 [h(�ei) 6= �si]

◆3

5

= Es⇠{±1}d,h⇠A(D⌦n
s)

h
errDs

0 (h)
i
.

Now, notice that any (x, y) 2 supp(Ds) is correctly classified by the halfspace z := 1p
d

P
i2[d] ei with margin

1/
p
d � �. As a result, the accuracy guarantee of A ensures that E

h⇠A(D⌦n
s)[err

Ds
0 (h))] 1 · 0.0001+0.4 · 0.9999 <

0.41. Thus, we can conclude that B outputs the correct answer with probability at least 1� 0.41 > 0.59. This
contradicts Lemma 15.

E Pure DP Robust Learner

In this section, we give a pure-DP algorithm for robust learning of halfspaces:

Theorem 5. There is an ✏-DP (�, 0.9�)-robust learner with sample complexity
10

O↵

⇣
1
✏
max{d, 1

�2 }

⌘
.

To prove this result, we will also need the following generalization bound due to Bartlett and Mendelson (2002):
Lemma 16 (Generalization Bound for Large Margin Halfspaces (Bartlett and Mendelson, 2002)). Suppose

�̂, ⇠̂ 2 [0, 1] and let D be any distribution on Bd
⇥ {±1}. If we let X be drawn from D

⌦n
, then the following holds

with probability 1� ⇠̂:

8w 2 Bd
, errD0.95�̂(w) errX

�̂
(w) + 400

s
ln(4/⇠̂)

n�̂2
.

10
Here O↵(·) hides a factor of poly(1/↵), and Õ(·) hides a factor of poly log(1/(↵��)).

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

Proof of Theorem 5. We will prove this for ⇠ = 0.9. Let ⇤ = 106 ·
p
log(1/↵) · max{

p
d, 1/�}, and n =

104⇤2

✏↵
+ 1010

↵2�2 = O

⇣
log(1/↵)

↵✏
·max{d, 1/�2

}+ 1
↵2�2

⌘
.

Our algorithm samples (x1, y1), . . . , (xn, yn) from D, and then employs the exponential mechanism of McSherry
and Talwar (2007). Specifically, let µ be the density of the uniform measure over the unit sphere in Rd. Then, on
the input dataset X = ((x1, y1), . . . , (xn, yn)), we define the scoring function q by

q(X,w) = �n · errX0.95�(w).

Then, we output ŵ drawn from the distribution with density µ
0(w) / µ(w) · exp

�
✏

2 · q(X,w)
�
.

We will next argue the accuracy guarantee of the algorithm. Similar to (McSherry and Talwar, 2007), let
St := {w | q(X,w) � �t}. We start by showing that, with probability 0.99, we have ŵ 2 S0.5↵n. To prove this,
we will use the following result from (McSherry and Talwar, 2007):

Lemma 17. For any t � 0, Pr[ŵ /2 S2t] exp(�✏t/2)/µ(St).

In light of Lemma 17, it suffices for us to provide a lower bound for µ(S0.25↵n). Recall from the realizable
assumption that, there exists a unit-norm w⇤ such that errX

�
(w⇤) = 0. Since µ(S0.25↵n) is rotational-invariant,

we may assume for notational convenience that w⇤ = ed, the d-th vector in the standard basis. In this notation,
a sample w ⇠ µ may be obtained by:

• Sample wd ⇠ N (0, 1),

• Sample w? ⇠ N (0, I(d�1)⇥(d�1)),

• Let w = 1
T
(w? � wd) where T =

p
kw?k2 + w2

d
.

Fix i 2 [n]. We will now bound the probability Pr[yi hw,xii 0.95� | wd � ⇤]. Let us write yixi as x? � xd.
hw?,x?i is distributed as N (0, kx?k). Since kx?k 1, we may apply standard tail bound of Gaussian which
gives

Pr[hw?,x?i < �0.01⇤/�] Pr[hw?,x?i < 104
p
log(1/↵)] 0.1↵. (7)

Observe also that kw?k
2 is simply distributed as �

2
d�1. Hence, via standard tail bound (e.g., (Laurent and

Massart, 2000)), we have

Pr[kw?k > 0.01⇤] Pr[kw?k > 104
p

d log(1/↵)] 0.1↵. (8)

Furthermore, notice that when wd � ⇤, hw?,x?i � �0.01⇤/� and kw?k 0.01⇤, we have yi hw,xii > 0.95�.
As a result, a union bound and the independence of wd and w? implies that

Pr[yi hw,xii 0.95� | wd � ⇤] Pr[hw?,x?i < �0.01⇤/�] + Pr[kw?k > 0.01⇤]

 0.2↵. (9)

From (9) and from the linearity of the expectation, we have that

E[|{i 2 [n] | yi hw,xii 0.95�}| | wd � ⇤] 0.2↵n.

By Markov’s inequality, we may conclude that

Pr[w 2 S0.25↵n | wd � ⇤] � 0.1.

Finally, recall that wd is distributed as N (0, 1), which implies that Pr[wd � ⇤] � 2�10⇤2

. This gives

µ(S0.25↵n) = Pr[w 2 S0.25↵n | wd � ⇤] Pr[wd � ⇤] � 0.1 · 2�10⇤2

� 2�20⇤2

. (10)

Robust and Private Learning of Halfspaces

Hence, applying Lemma 17, we get that

Pr[ŵ /2 S0.5↵n]
exp(�✏t/2)

µ(St)
(10)

exp(�0.125✏↵n)

2�20⇤2

(From our choice of n) 0.99.

In other words, with probability 0.99, we have errX0.95�(ŵ) 0.5↵. Finally, via the generalization bound (Lemma 16
with �̂ = 0.95�), we also have errD0.9�(ŵ) ↵ with probability 0.9 as desired.

F Approximate-DP Robust Learner

In this section, we describe our approximate-DP learner and prove its guarantee, restated below:

Theorem 6. There is an (✏, �)-DP (�, 0.9�)-robust learner with sample complexity n = Õ↵

⇣
1
✏
·max

np
d

�
,

1
�2

o⌘

and running time Õ↵ (nd/�).

As alluded to earlier, this algorithm is a noised and batch version of the margin perceptron algorithm (Duda and
Hart, 1973; Collobert and Bengio, 2004). The algorithm is presented in Algorithm 1.

The rest of this section is organized as follows. In the next subsection, we provide the utility analysis of the
algorithm. Then, in Subsection F.2, we analyze its privacy guarantee. Finally, we set the parameters and prove
Theorem 6 in Section F.3.

F.1 Utility Analysis

Suppose that there exists w⇤
2 Bd with err�(w⇤) = 0. Furthermore, let �

0 = 0.95�, �gap := � � �
0 and B := pn.

Throughout the analysis, we will assume that the following “good” events occur:

• Ebatch-size: For all i 2 [T], |Si| 1.5B.

• Enoise-norm: For all i 2 [T], kgik B
p
↵.

• Eparallel: For all i 2 [T], hwi�1 + ui,gii 0.01↵�gapB · kwi�1 + uik.

• Eopt-noise: For all i 2 [T], hw⇤
,gii � �0.01↵�gapB.

• Emistake-noise: For all i 2 [T], ⌫i 2 [�0.1↵B, 0.1↵B].

• Esampled-mistake: For all i 2 [T] such that11 errX
�0

⇣
wi�1

kwi�1k

⌘
> 0.5↵, we have |Mi| � 0.4↵B.

Later on, we will select the parameters p, n, T, b,� so that these events happen with high probability.
Lemma 18. Let T = d

1500
↵�2

gap
e. If the events Ebatch-size, Enoise-norm, Eparallel, Eopt-noise, Emistake-noise and

Esampled-mistake all occur, then the algorithm outputs w such that errX
�0(w) 0.5↵.

Proof. We will show that we always execute Line 10. Once this is the case, Emistake-noise and Esampled-mistake
imply that the output wi/kwik satisfies errX

�0(wi/kwik) 0.5↵ as desired.

To prove that we execute Line 10, let us assume for the sake of contradiction that this is not the case, i.e., that
the algorithm continues until reaching the end of the T -th iteration.

From our assumption that Emistake-noise occurs and from the fact that Line 10 was not executed, we have
|Mi| � 0.2↵B for all i 2 [T]. Let mi :=

P
j2[i] |Mi| denote the number of �0-margin mistakes seen up until the

end of the i-th iteration; from the previous bound on Mi, we have

mi � 0.2↵Bi. (11)
11

Similar to before, we use X to denote (x1, y1), . . . , (xn, yn).

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

Now, notice that

hw⇤
,wT i =

*
w⇤

,

0

@
X

i2[T]

X

(x,y)2Mi

y · x

1

A+
X

i2[T]

gi

+

=

0

@
X

i2[T]

X

(x,y)2Mi

y · hw⇤
,xi

1

A+
X

i2[T]

hw⇤
,gii

(From errX
�0(w⇤) = 0 and Eopt-noise) �

0

@
X

i2[T]

X

(x,y)2Mi

�

1

A+
X

i2[T]

�0.01↵�gapB

= mT � � 0.01↵�gapBT

(11)
� mT (� � 0.05�gap). (12)

Furthermore, for every i 2 [T], we have that

kwik
2 = kwi�1 + ui + gik

2

= kwi�1 + uik
2 + 2 hwi�1 + ui,gii+ kgik

2

(From Eparallel) kwi�1 + uik
2 + 0.02↵�gapB · kwi�1 + uik+ kgik

2

(From Enoise-norm) kwi�1 + uik
2 + 0.02↵�gapB · kwi�1 + uik+ ↵B

2

 kwi�1k
2 + 2 hwi�1,uii+ kuik

2 + 0.02↵�gapB · (kwi�1k+ kuik) + ↵B
2 (13)

We can bound hwi�1,uii as follows:

hwi�1,uii =
X

(x,y)2Mi

y · hwi�1,xi |Mi| · �
0
kwi�1k,

where the inequality follows from the condition on Line 6.

Furthermore, we also have that

kuik =

������

X

(x,y)2Mi

y · x

������

X

(x,y)2Mi

kxk |Mi|.

Plugging the above two inequalities into (13), we get

kwik
2
 kwi�1k

2 + (2|Mi|�
0 + 0.02↵�gapB) · kwi�1k+ (|Mi|

2 + 0.02↵�gapB|Mi|+ ↵B
2)

 kwi�1k
2 + (2|Mi|�

0 + 0.02↵�gapB) · kwi�1k+ (|Mi|
2 + 0.02B · |Mi|+ ↵B

2)

 kwi�1k
2 + (2|Mi|�

0 + 0.02↵�gapB) · kwi�1k+ 2B|Mi|+ ↵B
2
,

where in the last inequality we use the fact that |Mi| 1.5B which follows from Ebatch-size.

The above inequality implies that

kwik kwi�1k+ (|Mi|�
0 + 0.01↵�gapB) +

B|Mi|+ 0.5↵B2

kwi�1k
.

Notice that when kwi�1k �
100B
�gap

, we have that

kwik kwi�1k+ (|Mi|�
0 + 0.01↵�gapB) + 0.01|Mi|�gap + 0.01↵�gapB

= kwi�1k+ 0.02↵�gapB + (�0 + 0.01�gap) · |Mi|.

Robust and Private Learning of Halfspaces

As a result, we get12

kwT k
200B

�gap
+ 0.02↵�gapBT + (�0 + 0.01�gap) ·

0

@
X

i2[T]

|Mi|

1

A

=
200B

�gap
+ 0.02↵�gapBT + (�0 + 0.01�gap) ·mT

(11)

200B

�gap
+ (�0 + 0.11�gap) ·mT . (14)

From (12) and (14), we have

mT (� � 0.05�gap)
200B

�gap
+mT (�0 + 0.11�gap) ,

which implies that

mT
200B

�gap (� � �0 � 0.16�gap)

<
200B

0.8�2
gap

= 250B/�
2
gap,

which contradicts (11) and our choice of T = d
1500
↵�2

gap
e.

F.2 Privacy Analysis

Lemma 19. For any ✏, � 2 (0, 1) and any T 2 N, let p = 1p
T
,� = 100 ln(T/�)

✏
and b =

100
p

ln(T/�)

✏
. Then,

Algorithm 1 is (✏, �)-DP.

To prove this, we require the following the results on amplification by subsampling13 and advanced composition.
Lemma 20 (Amplification by Subsampling (Balle et al., 2018)). Let A be any (✏0, �0)-DP algorithm such that

✏0, �0 2 (0, 1). Let B be an algorithm that independently selects each input sample w.p. p and runs A on this

subsampled input dataset. Then, B is (2p✏0, p�0)-DP.

Lemma 21 (Advanced Composition (Dwork et al., 2010)). Suppose that B is an algorithm resulting from running

an (✏0, �0)-DP algorithm T times (possibly adaptively), where ✏0, �0 2 (0, 1). Then, B is (✏0, (T + 1)�0)-DP where

✏
0 =

p
2T ln(1/�0) · ✏0 + 2T ✏20.

Proof of Lemma 19. Let ✏0 = ✏

20
p

ln(T/�)
and �0 = �

2
p
T

. The Gaussian mechanism with noise standard deviation

� is (0.5✏0, �0)-DP (Dwork and Roth, 2014, Appendix A) whereas the Laplace mechanism with parameter b

is 0.5✏0-DP (Dwork et al., 2006b)14. As a result, without subsampling, each iteration is (✏0, �0)-DP. With the
subsampling, Lemma 20 implies that each iteration is (2p✏0, p�0)-DP. Finally, we may apply Lemma 21 ensures
that the final algorithm is (✏0, �0)-DP for

✏
0 =

p
2T ln(1/(p�)) · (2p✏0) + 2T (2p✏0)

2
 ✏,

and

�
0 = (T + 1)p�0 2

p

T �0 = �,

which concludes our proof.
12

Note that the first term
200B
�gap

comes from an observation that if i0 is the smallest index for which kwi0k � 100B
�gap

,

then (13) implies that kwi0k0 200B
�gap

.

13
Amplification by subsampling results are often stated with the new ✏ being ln(1 + p(e✏ � 1)) which is no more than

2p✏ (from Bernoulli’s inequality and from 1 + x e
x

for all x 2 R).
14

In both cases, the `2 sensitivity and the `1 sensitivity respectively are bounded by one. For the former, this is because

each sample effects w only by y · x and ky · xk2 = kxk 1.

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

F.3 Putting Things Together

Proof of Theorem 6. Let T = d
1500
↵�2

gap
e be as in Lemma 18, and let p = 1p

T
,� = 100 ln(T/�)

✏
and b =

100
p

ln(T/�)

✏

be as in Lemma 19. Finally, let n = d
100

p
d� log T

p
p
↵

+ 1000�
p
log T

p↵�
+ 100 log T

↵
+ 1010

↵2�2 e. Notice that n =

O↵

⇣
1
✏�

⇣p
d+ 1

�

⌘
· (log T)2

⌘
as claimed.

From Lemma 19, our algorithm with the above parameters is (✏, �)-DP. Furthermore, the expected running time of
the algorithm is pnT = O(n

p
T) = O

⇣
n

�
p
↵

⌘
. Moreover, it can be verified via standard concentration inequalities

that all of the events required in Lemma 18 happens w.p. 0.99, which means that we output a halfspace w
with errX

�0(w) 0.5↵. Finally, the generalization bound (Lemma 16 with �̂ = �
0) implies that errD0.9�(w) ↵ as

desired.

G Additional Experiments

G.1 Adversarial Robustness Evaluation on USPS Dataset

(a) ✏ = 0.5 (b) ✏ = 1 (c) ✏ = 2

Figure 3: Robustness accuracy comparison between DP-SGD-trained Convolutional neural networks and DP Batch

Perceptron halfspace classifiers on USPS dataset for a fixed privacy budget. In all three plots, � = 10�5
but ✏ varies from

0.5, 1, and 2.

We compare the robust accuracy of DP Batch Perceptron classifiers and DP-SGD-trained neural networks in
Figure 3 for � = 10�4 and ✏ = 0.5, 1, 2. The architecture and parameters follow the same setup described in
Section 4. In the case of ✏ = 0.5, while both classifiers have similar test accuracies (without any perturbation,
� = 0), as � increases, the robust accuracy rapidly degrades for the DP-SGD-trained neural network compared to
that of the DP Batch Perceptron model. This overall trend persists for ✏ = 1; the CNN starts off with larger test
accuracy when � = 0 but is eventually surpassed by the halfspace classifier as � increases. On the other hand,
when ✏ = 2, the CNN maintains slightly higher robust accuracy for most perturbation norms in consideration.

G.2 Experiments with Gaussian Kernel

It is well-known that accuracy of linear classifiers for digit classifications can be significantly improved via kernel
methods (see, e.g., (Lecun et al., 1998; Schölkopf et al., 1997)). Here we would like to privately train linear
classifiers with Gaussian kernels. Recall that the Gaussian kernel is that of the form

k(x,x0) = exp

✓
�
kx� x0

k
2

2�̂2

◆
,

where �̂ is the so-called width parameter.

Unlike the standard (non-kernel) setting, it is unclear in the Gaussian kernel setting how the noise should
be added to obtain DP; the kernel space themselves is not of finite dimension, and the classifier is typically
only implicitly represented. To handle this, we follow the approach of Rahimi and Recht (2007) (also used in
DP-SVM (Rubinstein et al., 2012)). Specifically, Rahimi and Recht (2007) shows that the following approximate
embedding �̂ : Rd

! B2d̂ has a property that
D
�̂(x), �̂(x0)

E
is close to k(x,x0):

�̂(x) :=
1p
d̂

�
cos(h⇢1,xi , . . . , cos(

⌦
⇢
d̂
,x

↵
, sin(h⇢1,xi), . . . , sin(

⌦
⇢
d̂
,x

↵
)
�
,

Robust and Private Learning of Halfspaces

where ⇢1, . . . , ⇢d̂ are i.i.d. sampled from N (0, 1
�̂2 · Id⇥d). Below we write �

⇤ to denote 1/�̂.

To summarize, this approach allows us to train with (approximate) Gaussian kernel as follows (where �
⇤
, d̂ are

hyperparameters):

1. Randomly sample ⇢1, . . . , ⇢d̂ i.i.d. from N (0, (�⇤)2 · Id⇥d).

2. For each class y, use DP-Batch-Perceptron on (�̂(x1), y1), . . . , (�̂(xn), yn) to train a halfspace w(y)
2 R2d̂ for

the y-vs-rest classifier.

3. When we would like to predict x 2 Rd, compute argmaxy2{1,...,10}

D
w(y)

, �̂(x)
E
.

Notice here that the DP guarantee (in the second step) is exactly the same as the DP-Batch-Perceptron guarantee
for the non-kernel setting. Similar to Figure 1, we report the (non-robust) test accuracy of DP Batch Perceptron
algorithm with Gaussian kernel included in Figure 4, across different ✏ values (first column) and different �

values (middle column). We find that kernel learning helps to boost performance overall, the gain in accuracy is
particularly significant in the case of MNIST dataset (top row).

(a) Accuracy as ✏ varies (b) Accuracy as � varies (c) Robust accuracy as ✏ varies

Figure 4: Performance on the MNIST (top row) and USPS (bottom row) datasets with Gaussian kernel. The horizontal

dotted line indicates performance when ✏ = 1 (no noise). The width of the kernel for both datasets is tuned as a

hyperparameter with values 2, 3.5, 5, 7.5, 10.

As for noise addition, the robustness guarantee for such kernel classifiers is also more complicated than the
non-kernel linear classifiers. In Section G.2.1 below, we provide a provable robustness guarantee of the kernel
classifiers. Using this provable guarantee, the empirical robustness accuracy is shown in the last column of Figure
4 and its comparison to DP-SGD-trained CNNs is shown in Figure 5. Even though the kernel classifiers start
off with similar accuracy (at � = 0), it quickly drops and becomes worse than CNNs. We remark here that, in
addition to the nature of the kernel, this may also be exacerbated by the fact that the provable robust guarantee
for the kernel classifiers is not tight (unlike the non-kernel case).

G.2.1 Robustness Guarantee for Multi-Class Perceptron with Kernel

To compute the robust error for the kernel classifiers, we will use the following result, which is a slightly simplified
version of Theorem 2.1 from (Hein and Andriushchenko, 2017).

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

(a) ✏ = 0.5 (b) ✏ = 1 (c) ✏ = 2

(d) ✏ = 0.5 (e) ✏ = 1 (f) ✏ = 2

Figure 5: Robustness accuracy comparison between DP-SGD-trained Convolutional neural networks and DP Batch

Perceptron halfspace classifiers with Gaussian kernel on MNIST (top row) and USPS (bottom row) datasets for a fixed

privacy budget. In all three plots, � = 10�5
but ✏ varies from 0.5, 1, and 2.

Lemma 22. Let M be a classifier which, for each class y 2 {1, . . . , k}, computes some function f
y : Rd

! R
and predicts the class y

⇤
that minimizes f

y
⇤
. Then, for every example (x, y) and any � 2 Rd

such that

k�k min
y0 6=y

f
y(x)� f

y
0
(x)

supx02Rd krfy(x0)�rfy0(x0)k
,

the classifier M predicts y on x+�.

Note that this lemma is tight for the non-kernel case, leading to the margin formula � < miny0 6=y

hw
(y)

,xi�
D
w(y0)

,x
E

kw(y)�w(y0)k
that we used earlier.

Our kernel classifier is of the form in Lemma 22 with f
y(x0) :=

⌦
w(y)

,�⇢1,...,⇢d̂
(x0)

↵
. To apply the lemma, we

first compute rf :

rf
y(x0) =

1p
d̂

·

d̂X

i=1

⇣
�w

(y)
i

· sin(h⇢i,x
0
i) + w

(y)

d̂+i
· cos(h⇢i,x

0
i)
⌘
· ⇢i.

As a result, for two classes y, y
0, we have

rf
y(x0)�rf

y
0
(x0) =

1p
d̂

·

d̂X

i=1

⇣
(w(y0)

i
� w

(y)
i

) · sin(h⇢i,x
0
i) + (w(y)

d̂+i
� w

(y0)

d̂+i
) · cos(h⇢i,x

0
i)
⌘
· ⇢i.

In the following, we will give an upper bound on krf
y
� rf

y
0
k. Let ⇧ 2 Rd⇥d̂ resulting from concatenating

⇢1, . . . , ⇢d̂, and let p 2 Rd̂ denote the vector for which pi =
1p
d̂

(wy
0

i
�w

y

i
)·sin(h⇢i,x0

i)+(wy

d̂+i
�w

y
0

d̂+i
)·cos(h⇢i,x0

i).
First, notice that

rf
y
�rf

y
0
= ⇧p.

Now, we may bound kpk by

kpk =
1p
d̂

·

vuut
d̂X

i=1

⇣
(w(y0)

i
� w

(y)
i

) · sin(h⇢i,x0i) + (w(y)

d̂+i
� w

(y0)

d̂+i
) · cos(h⇢i,x0i)

⌘2

Robust and Private Learning of Halfspaces

(Cauchy–Schwarz inequality)
1p
d̂

·

vuut
d̂X

i=1

⇣
(w(y0)

i
� w

(y)
i

)2 + (w(y)

d̂+i
� w

(y0)

d̂+i
)2
⌘
(sin(h⇢i,x0i)2 + cos(h⇢i,x0i)2)

=
1p
d̂

·

vuut
d̂X

i=1

⇣
(w(y0)

i
� w

(y)
i

)2 + (w(y)

d̂+i
� w

(y0)

d̂+i
)2
⌘

=
1p
d̂

· kw(y)
�w(y0)

k

As a result, we have

krf
y(x0)�rf

y
0
(x0)k = k⇧pk �max(⇧) ·

1p
d̂

· kw(y)
�w(y0)

k,

where �max(⇧) denote the largest singular value of ⇧ (i.e. the operator norm of ⇧ with respect to L2 norm).

Plugging this back into Lemma 22, we can conclude that each example (x, y) remaining correctly classifies up to
perturbation norm of

p
d̂

�max(⇧)
· min
y0 6=y

f
y(x)� f

y
0
(x)

kw(y) �w(y0)k
.

G.3 Comparison with Support Vector Machines (SVM)

Previous work has introduced different approaches to preserving DP for SVM (Rubinstein et al., 2012), or convex
optimization algorithms in general (Feldman et al., 2020; Bassily et al., 2019). Our implementation of DP SVM
uses DP SGD (Abadi et al., 2016) with the standard hinge loss and L2 weight regularization. The regularization
strength is chosen from 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, the learning rate from 1, 0.1, 0.01, 0.001, 0.0001. After
summing gradients from each batch of data, we add appropriately calibrated Gaussian noise (again, based on
Renyi DP) to the weights update.

Figures 6 and 7 compare performance of DP Batch Perceptron and DP SVM with and without kernel respectively.
For experiments with varying ✏ (first column in both figures), we observe that DP Batch Perceptron outperforms
DP SVM in most instances and achieves competitive accuracy on both datasets. For different � values (second
column) while keeping ✏ fixed at 1.0, the trend still holds to a large extent and both algorithms yield very similar
test accuracy. The last column compares the robust accuracy of models trained via DP Batch Perceptron and
DP SVM at ✏ = 1, 2. In the case where no kernel is involved, the former yields better results on MNIST dataset
but performs worse on USPS dataset. The opposite trend is observed when Gaussian kernel is included.

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Thao Nguyen

(a) Accuracy as ✏ varies (b) Accuracy as � varies (c) Robust accuracy as ✏ varies

Figure 6: Comparison of performance of DP Batch Perceptron vs DP SVM halfspace classifiers on the MNIST (top row)

and USPS (bottom row) datasets, when no kernel is involved in the learning process.

(a) Accuracy as ✏ varies (b) Accuracy as � varies (c) Robust accuracy as ✏ varies

Figure 7: Comparison of performance of DP Batch Perceptron vs DP SVM halfspace classifiers on the MNIST (top row)

and USPS (bottom row) datasets, with Gaussian kernel.

	Introduction
	Sample Complexity Lower Bounds
	Pure-DP Lower Bound (Theorem 2)
	Approximate-DP Lower Bound (Theorem 3)
	Non-Robust DP Learning Lower Bound (Theorem 4)

	Sample-Efficient Algorithms
	Pure-DP Algorithm (Theorem 5)
	Approximate-DP Algorithm (Theorem 6)

	Experiments
	Other Related Work
	Conclusions and Future Directions
	Preliminaries
	Margin of Halfspaces
	Boosting the Success Probability

	Lower Bound for Robust Learning of Halfspaces: Pure-DP Case
	Lower Bound for Robust Learning of Halfspaces: Approximate-DP Case
	Lower Bound for = (1)
	Lower Bound for Smaller

	Lower Bound for Non-Robust Learning of Halfspaces
	Pure DP Robust Learner
	Approximate-DP Robust Learner
	Utility Analysis
	Privacy Analysis
	Putting Things Together

	Additional Experiments
	Adversarial Robustness Evaluation on USPS Dataset
	Experiments with Gaussian Kernel
	Robustness Guarantee for Multi-Class Perceptron with Kernel

	Comparison with Support Vector Machines (SVM)

