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Abstract

We consider the problem of model selection
for two popular stochastic linear bandit set-
tings, and propose algorithms that adapts
to the unknown problem complexity. In the
first setting, we consider the K armed mix-
ture bandits, where the mean reward of arm
i ∈ [K]2, is µi + 〈αi,t, θ∗〉, with αi,t ∈ Rd be-
ing the known context vector and µi ∈ [−1, 1]
and θ∗ are unknown parameters. We define3

‖θ∗‖ as the problem complexity and consider
a sequence of nested hypothesis classes, each
positing a different upper bound on ‖θ∗‖.
Exploiting this, we propose Adaptive Linear
Bandit (ALB), a novel phase based algorithm
that adapts to the true problem complexity,
‖θ∗‖. We show that ALB achieves regret scal-

ing of4 Õ(‖θ∗‖
√
T ), where ‖θ∗‖ is apriori un-

known. As a corollary, when θ∗ = 0, ALB

recovers the minimax regret for the simple
bandit algorithm without such knowledge of
θ∗. ALB is the first algorithm that uses pa-
rameter norm as model section criteria for
linear bandits. Prior state of art algorithms
(Chatterji et al. (2019)) achieve a regret of

Õ(L
√
T ), where L is the upper bound on

‖θ∗‖, fed as an input to the problem. In
the second setting, we consider the standard
linear bandit problem (with possibly an in-
finite number of arms) where the sparsity
of θ∗, denoted by d∗ ≤ d, is unknown to
the algorithm. Defining d∗ as the problem
complexity (similar to Foster et al. (2019)),

we show that ALB achieves Õ(d∗
√
T ) regret,

1Work done while affiliated with UC Berkeley
2We denote [r] = {1, 2, . . . , r}; for r > 0.
3We use ‖.‖ for the `2 norm unless otherwise specified.
4The notation Õ hides the logarithmic dependence.
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matching that of an oracle who knew the
true sparsity level. This is the first algorithm
that achieves such model selection guaran-
tees. This methodology is then extended to
the case of finitely many arms and similar re-
sults are proven. We further verify through
synthetic and real-data experiments that the
performance gains are fundamental and not
artifacts of mathematical bounds. In partic-
ular, we show 1.5 − 3x drop in cumulative
regret over non-adaptive algorithms.

1 INTRODUCTION

We study model selection for MAB, which refers to
choosing the appropriate hypothesis class, to model
the mapping from arms to expected rewards. Model
selection for MAB plays an important role in appli-
cations such as personalized recommendations, as we
explain in the sequel. Formally, a family of nested
hypothesis classes Hf , f ∈ F needs to be specified,
where each class posits a plausible model for mapping
arms to expected rewards. The true model is assumed
to be contained in the family F which is totally or-
dered, where if f1 ≤ f2, then Hf1 ⊆ Hf2 . Model
selection guarantees then refers to algorithms whose
regret scales in the complexity of the smallest hypoth-
esis class containing the true model, even though the
algorithm was not aware apriori.

We consider two canonical settings for the stochas-
tic MAB problem. The first is the K armed mixture
MAB setting, in which the mean reward from any arm
i ∈ [K] is given by µi+〈θ∗, αi,t〉, where αi,t ∈ Rd is the
known context vector of arm i at time t, and the arm
bias µi ∈ R, θ∗ ∈ Rd are unknown and needs to be esti-
mated. This setting also contains the standard MAB
(Lai and Robbins (1985); Auer et al. (2002)) when
θ∗ = 0. Popular linear bandit algorithms, like Lin-
UCB, OFUL (see Chu et al. (2011); Dani et al. (2008);
Abbasi-Yadkori et al. (2011)) handle the case with no
bias (µi = 0), while OSOM Chatterji et al. (2019), the
recent improvement can handle arm-bias. Implicitly,
all the above algorithms assume an upper bound on
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the norm of ‖θ∗‖ ≤ L, which is supplied as an input.
Crucially however, the regret guarantees scale linearly
in the upper bound L. In contrast, we choose ‖θ∗‖
as the problem complexity, and provide a novel phase
based algorithm, that, without any upper bound on
the norm ‖θ∗‖, adapts to the true complexity of the
problem instance, and achieves a regret linearly in the
true norm ‖θ∗‖. As a corollary, our algorithm’s per-
formance matches the minimax regret of simple MAB
when θ∗ = 0, even though the algorithm did not apriori
know that θ∗ = 0. Formally, we consider a continuum
of hypothesis classes, with each class positing a differ-
ent upper bound on the norm ‖θ∗‖, where the com-
plexity of a class is the upper bound posited. As our
regret bound scales linearly in ‖θ∗‖ (the complexity of
the smallest hypothesis class containing the instance)
as opposed to an upper bound on ‖θ∗‖, our algorithm
achieves model selection guarantees.

The second setting we consider is the standard lin-
ear stochastic bandit (Abbasi-Yadkori et al. (2011))
with possibly an infinite number of arms, and the mean
reward of any arm x ∈ Rd (arms are vectors in this
case) given by 〈x, θ∗〉, where θ∗ ∈ Rd is unknown. We
consider model selection from a total of d hypothesis
classes, with each class positing a different cardinality
for the support of θ∗. We exhibit a novel algorithm,
where the regret scales linearly in the unknown cardi-
nality of the support of θ∗. The regret of our algorithm
matches that of an oracle that knows the support of
θ∗ (Carpentier and Munos (2012),Bastani and Bayati
(2020)), thereby achieving model selection guarantees.

This setting with dimension as a measure of com-
plexity was also studied by Carpentier and Munos
(2012). However, our regret bounds are stronger (by
a logarithm in d factor). Furthermore, our algorith-
mic paradigm is more broadly applicable – for eg. we
can also handle the finite arm case (see Section 4.4),
and obtain similar model selection regret guarantees
that match the regret of an oracle that knows the true
dimension. Model selection with dimension as a mea-
sure of complexity was also recently studied by Foster
et al. (2019), in which the classical contextual bandit
(Chu et al. (2011)) with a finite number of arms was
considered. We clarify here that although our results
for the finite arm setting yields a better (optimal) re-
gret scaling with respect to the time horizon T and
the support of θ∗ (denoted by d∗), our guarantee de-
pends on a problem dependent parameter and thus not
uniform over all instances. In contrast, the results of
Foster et al. (2019), although sub-optimal in d∗ and
T , is uniform over all problem instances. Closing this
gap is an interesting future direction.

1.1 Our Contributions

1. Successive Refinement Algorithms - We
present two novel epoch based algorithms, ALB

(Adaptive Linear Bandit) - Norm and ALB - Dim,
that achieve model selection guarantees for both fam-
ilies of hypothesis respectively. For the K armed mix-
ture MAB, ALB-Norm, at the beginning of each phase,
estimates an upper bound on ‖θ∗‖. Subsequently, the
algorithm assumes this bound to be true during the
phase, and the upper bound is re-estimated at the end
of a phase. Similarly for the linear bandit setting,
ALB-Dim estimates the support of θ∗ at the beginning
of each phase and subsequently only plays from this
estimated support during the phase. In both settings,
we show the estimates converge to the true underlying
value —in the first case, the estimate of norm ||θ∗||
converges to the true norm, and in the second case,
for all time after a random time with finite expecta-
tion, the estimated support equals the true support.
Our algorithms are reminiscent of successive rejects al-
gorithm of Audibert and Bubeck (2010) for standard
MAB, with the crucial difference being that our algo-
rithm is non-monotone. Once rejected, an arm is never
pulled in the classical successive rejects. In contrast,
our algorithm is successive refinement and is not neces-
sarily monotone —a hypothesis class discarded earlier
can be considered at a later point of time.

2. Regret depending on the Complexity of
the smallest Hypothesis Class - In the K armed
mixture MAB setting, ALB-Norm’s regret scale as
Õ(‖θ∗‖

√
T ), which is superior compared to state of

art algorithms such as OSOM Chatterji et al. (2019),

whose regret scales as Õ(L
√
T ), where L is an upper

bound on ‖θ∗‖ that is supplied as an input5 . As a
corollary, we get the ‘best of both worlds’ guarantee
of Chatterji et al. (2019), where if θ∗ = 0, our re-
gret bound recovers known minimax regret guarantee
of simple MAB. Similarly, for the linear bandit setting
with unknown support, ALB-Dim achieves a regret of
Õ(d∗

√
T ), where d∗ ≤ d is the true sparsity of θ∗. This

matches the regret obtained by oracle algorithms that
know of the true sparsity d∗ (Carpentier and Munos
(2012); Bastani and Bayati (2020)). We also apply our
methodology to the case when there is a finite number
of arms and obtain similar regret scaling as the oracle.
ALB-Dim is the first algorithm to obtain such model se-
lection guarantees. Prior state of art algorithm ModCB

for model selection with dimension as a measure of
complexity was proposed in Foster et al. (2019), with a

5We clarify that, without the arm bias {µi}Ki=1, the re-
gret dependence on L can be improved with a careful choice
of tuning parameters (Abbasi-Yadkori et al. (2011)). How-
ever, in the K armed mixture model with arm bias, a linear
dependence on L is proved in Chatterji et al. (2019).
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finite set of arms, where the regret guarantee was sub-
optimal compared to the oracle. However, our regret
bounds for dimension, though matches the oracle, de-
pends on the minimum non-zero coordinate value and
is thus not uniform over θ∗. Obtaining regret rates in
this case that matches the oracle and is uniform over
all θ∗ is an interesting future work.

Motivating Example: Our model selection frame-
work is applicable to personalized news recommenda-
tion platforms, that recommend one of K news outlets,
to each of its users. The recommendation decisions
made to any fixed user, can be modeled as an instance
of a MAB; the arms are the K different news outlets,
and the platforms recommendation decision (made to
this user) on day t is the arm played at time t. On
each day t, each news outlet i reports a story, that can
be modeled by the vectors αi,t, which can be obtained
by embedding the stories into a fixed-dimensional vec-
tor space based on some common embedding schemes.
The reward obtained by the platform in recommend-
ing news outlet i to this user on day t can be modeled
as µi + 〈αi,t, θ∗〉, where µi captures the preference of
this user to news outlet i and the vector θ∗ captures
the ‘interest’ of the user. If a channel i on day t, pub-
lishes a news article αi,t, that this user ‘likes’, then
most likely the content αi,t is ‘aligned’ to θ∗ and will
have a large inner product 〈αi,t, θ∗〉. Different users on
the platform however may have different biases and θ∗.
Some users have strong preference towards certain top-
ics and will read content written by any outlet on this
topic (these users will have a large ‖θ∗‖). Other users
may be agnostic to topics, but may prefer a particular
news outlet a lot (e.g., some users like Fox News ex-
clusively or CNN exclusively, regardless of the topic).
These users will have low ‖θ∗‖.

In such a multi-user recommendation application,
we show that ALB-Norm which tailors to the model
class for each user separately is more effective than
employing a (non-adaptive) linear bandit algorithm
for each user. We further show that our algorithms
are also more effective than state of art model selec-
tion algorithms such as OSOM (Chatterji et al. (2019)),
which posits a ‘binary’ model - users either assign a
0 weight to topic or assign a potentially large weight
to topic. Furthermore the heterogeneous complexity in
this application can also be captured by the cardinality
of the support of θ∗; different people are interested in
different sub-vectors of θ∗ which the recommendation
platform is not aware of apriori. In this context, our
algorithm ALB-Dim that tailors to the interest of the
individual user achieves 1.5− 3x reduction in cumula-
tive regret compared to its non-adaptive counterparts.

2 RELATED WORK

Model selection for MAB are only recently being stud-
ied (Agarwal et al. (2016); Ghosh et al. (2017)), with
Chatterji et al. (2019), Foster et al. (2019) being the
closest to our work. OSOM was proposed in Chatterji
et al. (2019) for model selection in the K armed mix-
ture MAB from two hypothesis classes —a “simple
model” where ‖θ∗‖ = 0, or a “complex model”, where
0 < ‖θ∗‖ ≤ L. OSOM was shown to obtain a regret guar-
antee of O(log(T )) when the instance is simple and

Õ(L
√
T ) otherwise. We refine this to consider a con-

tinuum of hypothesis classes and propose ALB-Norm,
which achieves regret Õ(‖θ∗‖

√
T ), a superior guar-

antee (which we also empirically verify) compared to
OSOM. Model selection with dimension as a measure
of complexity was recently initiated in Foster et al.
(2019), where an algorithm ModCB was proposed. The
setup considered in Foster et al. (2019) was that of
contextual bandits (Chu et al. (2011)) with a fixed
and finite number of arms. ModCB in this setting was
shown to achieve a regret that is sub-optimal compared
to the oracle. In contrast, we consider the linear ban-
dit setting with a continuum of arms (Abbasi-Yadkori
et al. (2011)), and ALB-Dim achieves a regret scaling
matching that of an oracle. The continuum of arms al-
lows ALB-Dim a finer exploration of arms, that enables
it to learn the support of θ∗ reliably and thus obtain
regret matching that of the oracle. However, our re-
gret bounds depend on the magnitude of the minimum
non-zero value of θ∗ and is thus not uniform over all
θ∗. Obtaining regret matching the oracle that holds
uniformly over all θ∗ is an interesting future work.

Corral was proposed in Agarwal et al. (2016), by
casting the optimal algorithm for each hypothesis class
as an expert, with the forecaster’s performance having
low regret with respect to the best expert (best model
class). However, Corral can only handle finitely many
hypothesis classes and is not suited to our setting with
continuum hypothesis classes.

Adaptive algorithms for linear bandits have also
been studied in different contexts from ours. The
papers of Locatelli and Carpentier (2018); Krishna-
murthy et al. (2018) consider problems where the arms
have an unknown structure, and propose algorithms
adapting to this structure to yield low regret. The
paper Lykouris et al. (2017) proposes an algorithm in
the adversarial bandit setup that adapt to an unknown
structure in the adversary’s loss sequence, to obtain
low regret. The paper of Auer et al. (2018) consider
adaptive algorithms, when the distribution changes
over time. In the context of online learning with full
feedback, there have been several works addressing
model selection (Luo and Schapire (2015); McMahan
and Abernethy (2013); Orabona (2014); Cutkosky and



Model selection in Stochastic Linear Bandits

Boahen (2017)). In the context of statistical learning,
model selection has a long line of work (for eg. Vapnik
(2006), Birgé et al. (1998), Lugosi et al. (1999), Arlot
et al. (2011), Cherkassky (2002) Devroye et al. (2013)).
However, the bandit feedback in our setups is much
more challenging and a straightforward adaptation of
algorithms developed for either statistical learning or
full information to the setting with bandit feedback is
not feasible.

3 NORM AS A MEASURE OF
COMPLEXITY

3.1 Problem Formulation

In this section, we formally define the problem. At
each round t ∈ [T ], the player chooses one of the K
available arms. Each arm has a context {αi,t ∈ Rd}Ki=1

that changes over time t. Similar to the standard
stochastic contextual bandit framework, the context
vectors for each arm is chosen independently of all
other arms and of the past time instances.

We assume that there exists an underlying pa-
rameter θ∗ ∈ Rd and biases {µ1, . . . , µK} each tak-
ing value in [−1, 1] such that the mean reward of an
arm is a linear function of the context of the arm.
The reward for playing arm i at time t is given by,
gi,t = µi + 〈αi,t, θ∗〉 + ηi,t,, where {ηi,t}Tt=1 are i.i.d
zero mean and σ sub-Gaussian noise. The context
vector satisfies E[αi,t|{αj,s, ηj,s}j∈[K],s∈[t−1]}] = 0,

and E[αi,tα
>
i,t|{αj,s, ηj,s}j∈[K],s∈[t−1]}] < ρmin I. The

above setting is popularly known as stochastic linear
bandit (Chatterji et al. (2019)). In the special case of
θ∗ = 0, the above model reduces to gi,t = µi + ηi,t.
Note that in this setting, the mean reward of arms
are fixed, and not dependent on the context. Hence,
this corresponds to a simple multi-armed bandit setup
and standard algorithms (like UCB, Auer et al. (2002))
can be used as a learning rule. At round t, we define
i∗t = argmaxi∈[K] [µi + 〈θ∗, αi,t〉] as the best arm. Also
let an algorithm play arm At at round t. The regret
of the algorithm upto time T is given by6,

R(T ) =

T∑
s=1

[
µi∗s + 〈θ∗, αi∗s ,s〉 − µAs − 〈θ

∗, αAs,s〉
]
.

We define a new notion of complexity for stochastic
linear bandits; and propose an algorithm that adapts
to it. We define ‖θ∗‖ as the problem complexity for
the linear bandit instance. Note that if ‖θ∗‖ = 0,
the linear bandit model reduces to the simple multi-
armed bandit setting. Furthermore, the cumulative

6Throughout the paper, we use C,C1, .., c, c1, .. to de-
note positive universal constants, the value of which may
differ in different instances.

regret R(T ) of linear bandit algorithms (like OFUL
Abbasi-Yadkori et al. (2011) and OSOM Chatterji
et al. (2019)) scales linearly with ‖θ∗‖ (Chatterji et al.
(2019)). Hence, ‖θ∗‖ constitutes a natural notion
of model complexity. In Algorithm 1, we propose a
scheme which adapts to the true complexity of the
problem, ‖θ∗‖. Instead of assuming an upper-bound
on ‖θ∗‖, we use an initial exploration phase to obtain
a rough estimate of ‖θ∗‖ and then successively refine
it over multiple epochs. The cumulative regret of our
proposed algorithm actually scales linearly with ‖θ∗‖.

3.2 ALB-Norm algorithm

We present the adaptive scheme in Algorithm 1. Note
that Algorithm 1 depends on the subroutine OFUL+.
Observe that at each iteration, we estimate the bias
{µ1, . . . , µK} and θ∗ separately. The estimation of the
bias involves a simple sample mean estimate with up-
per confidence level, and the estimation of θ∗ involves
building a confidence set that shrinks over time.

In order to estimate θ∗, we use a variant of the pop-
ular OFUL (Abbasi-Yadkori et al. (2011)) algorithm
with arm bias. We refer to the algorithm as OFUL+.
Algorithm 1 is epoch based, and over multiple epochs,
we successively refine the estimate of ‖θ∗‖. We start
with a rough over-estimate of ‖θ∗‖ (obtained from a
pure exploration phase), and based on the confidence
set constructed at the end of the epoch, we update the
estimate of ‖θ∗‖. We argue that this approach indeed
correctly estimates ‖θ∗‖ with high probability over a
sufficiently large time horizon T .

We now discuss the algorithm OFUL+. A vari-
ation of this is proposed in Chatterji et al. (2019) in
the context of model selection between linear and stan-
dard multi-armed bandits. We use µ̃i,t to address the
bias term, which we define shortly. The parameters b
and δ are used in the construction of the confidence
set Ct. Suppose OFUL+ is run for a total of T̃ rounds
and plays arm As at time s. Let Ti(t) be the number
of times OFUL+ plays arm i until time t. Also, let
b be the current estimate of ‖θ∗‖. We define, ḡi,t =

1
Ti(t)

∑t
s=1 gi,s1 {As = t}. With this, we have 7 µ̃i,t =

ḡi,t + c(σ + b)
√

d
Ti(t)

log
(

1
δ

)
. The confidence interval

Ct, is defined as Ct = {θ ∈ Rd : ‖θ− θ̂t‖ ≤ Kδ(b, t, T̃ )},
where θ̂t is the least squares estimate defined

as, θ̂t =
(
α>K+1:tαK+1:t + I

)−1
α>K+1:tGK+1:t with

αK+1:t as a matrix having rows α>AK+1,K+1, . . . , α
>
At,t

and GK+1:t = [gAK+1,K+1 − µ̃AK+1,K+1, . . . , gAt,t −
µ̃At,t]

>. The radius of Ct is given by, Kδ(b, t, T̃ ) =

c (σ
√
d+b)

ρmin

√
t

√
log(KT̃/δ) (see Appendix A for complete

7For complete expression, see Appendix A
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Algorithm 1: Adaptive Linear Bandit
(norm)–ALB-Norm

1: Input: Initial exploration period τ , the phase
length T1, δ1 > 0, δs > 0.

2: Select an arm at random, sample 2τ rewards
3: Obtain initial estimate (b1) of ‖θ∗‖ according to

Section 3.3
4: for t = 1, 2, . . . ,K do
5: Play arm t, receive reward gt,t
6: end for
7: Define S = {gi,i}Ki=1

8: for epochs i = 1, 2 . . . , N do
9: Use S as pure-exploration reward

10: Play OFUL+
δi

(bi) until the end of epoch i
(denoted by Ei)

11: At t = Ei, refine estimate of ‖θ∗‖ as,
bi+1 = maxθ∈CEi ‖θ‖

12: Set Ti+1 = 2Ti, δi+1 = δi
2 .

13: end for
14: OFUL+

δ (b):

15: Input: Parameters b, δ > 0, number of rounds T̃
16: for t = 1, 2, . . . , T̃ do
17: Select the best arm estimate as jt =

argmaxi∈[K]

[
maxθ∈Ct−1{µ̃i,t−1 + 〈αi,t, θ〉}

]
,

where µ̃i,t and Ct are given in Section 3.2.
18: Play arm jt, and update {µ̃i,t}Ki=1 and Ct
19: end for

expressions). Lemma 2 of Chatterji et al. (2019) shows
that θ∗ ∈ Ct with probability 8 at least 1− 4δ.

3.3 Construction of initial estimate b1

We select an arm at random (WLOG, assume that
this is arm 1), and sample rewards (in an i.i.d fash-
ion) for 2τ times, where τ > 0 is a parameter to be
fed to the Algorithm 1. In order to kill the bias of
arm 1, we take pairwise differences and form: y(1) =
g1,1 − g1,2, y(2) = g1,3 − g1,4 and so on. Augmenting

y(.), we obtain: Y = X̃θ∗+ η̃, where the i-th row of X̃
is (α1,2i+1−α1,2i+2)>, the i-th element of η̃ is η1,2i+1−
η1,2i+2. Hence, the least squares estimate, θ̂(`s) satis-

fies ‖θ̂(`s) − θ∗‖ ≤
√

2σ
√

d
τ log(1/δs), with probability

exceeding 1− δs (Wainwright (2019)). We set the ini-

tial estimate b1 = max{‖θ̂(`s)‖+
√

2σ
√

d
τ log(1/δs), 1}

satisfying b1 ≥ ‖θ∗‖ and b1 ≥ 1 with high probability.

8There is a typo in the proof of regret in Chatterji et al.
(2019). We correct the typo, and modify the definition of

µ̃i,t and Kδ(b, t, T̃ ). As a consequence, the high probability
bounds change a little.

3.4 Regret Guarantee of Algorithm 1

We now obtain an upper bound on the cumulative
R(T ) with Algorithm 1. For theoretical tractability,
we assume that OFUL+ restarts at the start of each
epoch. We have the following lemma regarding the
sequence {bi}∞i=1 of estimates of ‖θ∗‖:
Lemma 1. With probability exceeding 1−8δ1−δs, the
sequence {bi}∞i=1 converges to ‖θ∗‖ at a rate O( i2i ),
and we obtain bi ≤ (c1‖θ∗‖+ c2) for all i, provided

T1 ≥ C1 (max{p, q} b1)
2
d, where C1 > 9, and p =

[
14 log(

2KT1
δ1

)
√
ρmin

], q = [
2Cσ log(

2KT1
δ1

)
√
ρmin

].

Hence, the sequence converges to ‖θ∗‖ at an expo-
nential rate. We have the following guarantee on the
cumulative regret R(T ):

Theorem 1. Let C1 > 9 and Tmin(δ, T ) =
( 16
ρ2min

+ 8
3ρmin

) log( 2dT
δ ), and suppose T1 >

max{Tmin(δ, T ), C1 (max{p, q} b1)
2
d}. Then, with

probability at least 1− 18δ1 − δs, we have

R(T ) ≤ C(2τ +K)‖θ∗‖+ C2(‖θ∗‖+ 1)

× (
√
K +

√
d)
√
T log(KT1/δ1) log(T/T1).

Remark 1. Note that the regret bound depends on
the problem complexity ‖θ∗‖, and we prove that Al-
gorithm 1 adapts to this complexity. Ignoring the log
factors, Algorithm 1 has a regret of Õ((1+‖θ∗‖)(

√
K+√

d)
√
T ) with high probability.

Remark 2. (Matches Linear Bandits) The above
bound matches the regret guarantee of the linear ban-
dit algorithm with bias as presented in Chatterji et al.
(2019).

Remark 3. (Matches UCB when θ∗ = 0) When
θ∗ = 0 (the simplest model, without any contextual
information), Algorithm 1 recovers the minimax re-
gret of UCB algorithm. Indeed, substituting ‖θ∗‖ = 0
in the above regret bound yields R(T ) = O(

√
KT ),

with high probability, provided K > d. Hence, we ob-
tain the “best of both worlds” results with simple model
(θ∗ = 0) and contextual bandit model (θ∗ 6= 0).

4 DIMENSION AS A MEASURE OF
COMPLEXITY

4.1 Continuum Armed Setting

In this section, we consider the standard stochastic
linear bandit model in d dimensions (Abbasi-Yadkori
et al. (2011)), with dimension as a measure of com-
plexity. The setup in this section is almost identi-
cal to that in Section 3.1, with 0 arm biases and
a continuum collection of arms denoted by the set
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A := {x ∈ Rd : ‖x‖ ≤ 1}9 Thus, the mean reward
from any arm x ∈ A is 〈x, θ∗〉, where ‖θ∗‖ ≤ 1. We
assume that θ∗ is d∗ ≤ d sparse, where d∗ is apriori
unknown to the algorithm. Thus, unlike in Section
3.1, there is no i.i.d. context sampling in this section.
We consider a sequence of d nested hypothesis classes,
where each hypothesis class i ≤ d, models θ∗ as a i
sparse vector. The goal of the forecaster is to mini-
mize the regret, R(T ) :=

∑T
t=1 [〈x∗t − xt, θ∗〉], where

at any time t, xt is the action recommended by an al-
gorithm and x∗t = argmaxx∈A〈x, θ∗〉. The regret R(T )
measures the loss in reward of the forecaster with that
of an oracle that knows θ∗ and thus can compute x∗t
at each time.

4.2 ALB-Dim Algorithm

The algorithm is parametrized by T0 ∈ N, given in
Equation (1) in the sequel and slack δ ∈ (0, 1). As in
the previous case, ALB-Dim proceeds in phases num-
bered 0, 1, · · · which are non-decreasing with time. At
the beginning of each phase, ALB-Dim makes an esti-
mate of the set of non-zero coordinates of θ∗, which
is kept fixed throughout the phase. Concretely, each
phase i is divided into two blocks - (i) a regret mini-
mization block lasting 25iT0 time slots, (ii) followed by
a random exploration phase lasting 5id

√
T0e time slots.

At the beginning of each phase i ≥ 0, Di ⊆ [d] denotes
the set of ‘active coordinates’, namely the estimate of
the non-zero coordinates of θ∗. Subsequently, in the
regret minimization block of phase i, a fresh instance of
OFUL (Abbasi-Yadkori et al. (2011)) is spawned, with
the dimensions restricted only to the set Di and prob-
ability parameter δi := δ

2i . In the random exploration
phase, at each time, one of the possible arms from the
set A is played chosen uniformly and independently
at random. At the end of each phase i ≥ 0, ALB-Dim
forms an estimate θ̂i+1 of θ∗, by solving a least squares
problem using all the random exploration samples col-
lected till the end of phase i. The active coordinate
set Di+1, is then the coordinates of θ̂i+1 with magni-
tude exceeding 2−(i+1). The pseudo-code is provided
in Algorithm 2, where, ∀i ≥ 0, Si in lines 15 and 16
is the total number of random-exploration samples in
all phases upto and including i. By this careful choice
of exploration periods and thresholds, we show that
the estimated support of θ∗ is equal to the true sup-
port, for all but finitely many phases. Thus, after a
finite amount of time, the support set ‘locks in’ to the
correct support. Once the lock-in occurs, the agent
incurs the optimal regret that an oracle knowing the
true support would incur. Thus, the difference in the
regret between our algorithm and that of the oracle

9Our algorithm can be applied to any compact set A ⊂
Rd, including the finite set as shown in Appendix C.

Algorithm 2: Adaptive Linear Bandit
(Dimension)–ALB-Dim

1: Input: Initial Phase length T0, slack δ > 0.
2: θ̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do
4: Ti = 25iT0, εi ← 1

2i , δi ← δ
2i

5: Di := {i : |θ̂i| ≥ εi
2 }

6: for Times t ∈ {Ti−1 + 1, · · · , Ti} do
7: Play OFUL(1, δi) restricted to coordinates

in Di. δi is the probability slack
parameter and 1 represents ‖θ∗‖ ≤ 1.

8: end for
9: for Times t ∈ {Ti + 1, · · · , Ti + 5i

√
T0} do

10: Play an arm from the action set A chosen
uniformly and independently at random.

11: end for
12: αi ∈ RSi×d; each row being the arm played

during all random explorations in the past.
13: yi ∈ RSi ; i-th entry being the reward at the

i-th random exploration in the past
14: θ̂i+1 ← (αTi αi)

−1αiyi, (∈ Rd)
15: end for

is the additive regret incurred until the lock-in occurs,
which is a constant independent of time (depending on
the smallest non-zero value of θ∗).

4.3 Main Result

We first specify, how to set the input parameter T0,
as function of δ. For any N ≥ d, denote by AN
to be the N × d random matrix with each row be-
ing a vector sampled uniformly and independently
from the unit sphere in d dimensions. Denote by

MN := 1
NE[ATNAN ], and by λ

(N)
max, λ

(N)
min, to be the

largest and smallest eigenvalues of MN . Observe that

as MN is positive semi-definite (0 ≤ λ
(N)
min ≤ λ

(N)
max)

and almost-surely full rank, i.e., P[λ
(N)
min > 0] = 1. The

constant T0 is the smallest integer such that

√
T0 ≥ max(

32σ2

(λ
(d
√
T0e)

min )2
ln(2d/δ),

4

3

(6λ
(d
√
T0e)

max + λ
(d
√
T0e)

min )(d+ λ
(d
√
T0e)

max )

(λ
(d
√
T0e)

min )2
ln(2d/δ)). (1)

Remark 4. T0 in Equation (1) is chosen such that,

at the end of phase 0, P[||θ̂0 − θ∗||∞ ≥ 1/2] ≤ δ.

A formal statement of the Remark is provided in
Lemma 2 in Appendix B.

Theorem 2. Suppose Algorithm 2 is run with input
parameters δ ∈ (0, 1), and T0 as given in Equation (1),
then with probability at-least 1 − δ, the regret after a
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total of T arm-pulls satisfies

RT ≤
50

γ4.65
T0 + 25

√
T [1 + 4

√
d∗ ln(1 +

25T

d∗
)

× (1 + σ

√
2 ln(

T

T0δ
) + d∗ ln(1 +

25T

d∗
))].

The parameter γ > 0 is the minimum magnitude of the
non-zero coordinate of θ∗, i.e., γ = min{|θ∗i | : θ∗i 6= 0}
and d∗ the sparsity of θ∗, i.e., d∗ = |{i : θ∗i 6= 0}|.

To parse this result, we give the following corollary.

Corollary 1. Suppose Algorithm 2 is run with input
parameters δ ∈ (0, 1), and T0 = Õ

(
d2 ln2

(
1
δ

))
given

in Equation (1), then with probability at-least 1 − δ,
the regret after T times satisfies

RT ≤ O(
d2

γ4.65
ln2(d/δ)) + Õ(d∗

√
T ).

Remark 5. The constants in the Theorem are not
optimized. The exponent of γ can be made arbitrarily
close to 4, by setting εi = C−i in Line 4 of Algorithm
2, for some appropriately large constant C > 1, and
increasing Ti = (C ′)iT0, for large C ′ (C ′ ≈ C4).

Discussion - The regret of an oracle algorithm that
knows the true complexity d∗ scales as Õ(d∗

√
T ) (Car-

pentier and Munos (2012); Bastani and Bayati (2020)),
matching ALB-Dim’s regret, upto an additive constant
(the price of model selection) independent of T . On
the other hand, standard linear bandit algorithms such
as OFUL achieve a regret scaling Õ(d

√
T ), which is

much larger compared to that of ALB-Dim, especially
when d∗ << d, and γ is a constant. Numerical sim-
ulations further confirms this deduction, thereby in-
dicating that our improvements are fundamental and
not from mathematical bounds. Corollary 1 also in-
dicates that ALB-Dim has higher regret if γ is lower.
A small value of γ makes it harder to distinguish a
non-zero coordinate from a zero coordinate, which is
reflected in the regret scaling. Nevertheless, this only
affects the second order term as a constant, and the
dominant scaling term only depends on the true com-
plexity d∗, and not on the underlying dimension d.
However, the regret guarantee is not uniform over all
θ∗ as it depends on γ. Obtaining regret rates matching
the oracles and that hold uniformly over all θ∗ is an
interesting avenue of future work.

4.4 Finite Armed Setting

Setup: In this section, we consider the model selec-
tion problem for the setting with finitely many arms in
the framework studied in Foster et al. (2019). At each
time t ∈ [T ], the forecaster is shown a context Xt ∈ X ,
where X is some arbitrary ‘feature space’. The set of

contexts (Xt)
T
t=1 are i.i.d. with Xt ∼ D, a probabil-

ity distribution over X that is known to the forecaster.
Subsequently, the forecaster chooses an action At ∈ A,
where the set A := {1, · · · ,K} are the K possible ac-
tions chosen by the forecaster. The forecaster then
receives a reward Yt := 〈θ∗, φM (Xt, At)〉 + ηt. Here
(ηt)

T
t=1 is an i.i.d. sequence of 0 mean sub-gaussian

random variables with sub-gaussian parameter σ2 that
is known to the forecaster. The function10 φM : X ×
A → Rd is a known feature map, and θ∗ ∈ Rd is an un-
known vector. The goal of the forecaster is to minimize
its regret, namely R(T ) :=

∑T
t=1 E [〈A∗t −At, θ∗〉],

where at any time t, conditional on the context Xt,
A∗t ∈ argmaxa∈A〈θ∗, φM (Xt, a)〉. Thus, A∗t is a ran-
dom variable as Xt is random.

To describe the model selection, we consider a se-
quence of M dimensions 1 ≤ d1 < d2, · · · < dM := d
and an associated set of feature maps (φm)Mm=1, where
for any m ∈ [M ], φm(·, ·) : X ×A → Rdm , is a feature
map embedding into dm dimensions. Moreover, these
feature maps are nested, namely, for all m ∈ [M − 1],
for all x ∈ X and a ∈ A, the first dm coordinates
of φm+1(x, a) equals φm(x, a). The forecaster is as-
sumed to have knowledge of these feature maps. The
unknown vector θ∗ is such that its first dm∗ coordi-
nates are non-zero, while the rest are 0. The forecaster
does not know the true dimension dm∗ . If this were
known, then standard contextual bandit algorithms
such as LinUCB (Chu et al. (2011)) can yield a regret

of Õ(
√
dm∗T ). In this section, we provide an algorithm

in which, even when the forecaster is unaware of dm∗ ,
the regret scales as Õ(

√
dm∗T ). However, this result

is not uniform over all θ∗ as, we will show, depends on
the minimum non-zero coordinate value in θ∗.

Model Assumptions We will require some assump-
tions identical to the ones stated in Foster et al. (2019).
Let ‖θ∗‖2 ≤ 1, which is known to the forecaster. The
distribution D is assumed to be known to the fore-
caster. Associated with the distribution D is a ma-
trix ΣM := 1

K

∑
a∈A E

[
φM (x, a)φM (x, a)T

]
(where

x ∼ D), where we assume its minimum eigen value
λmin(ΣM ) > 0 is strictly positive. Further, we as-
sume that, for all a ∈ A, the random variable φM (x, a)
(where x ∼ D is random) is a sub-gaussian random
variable with (known) parameter τ2.

4.5 ALB-Dim Algorithm

The algorithm here is identical to that of Algorithm
2, except that in place of OFUL, we use SupLinRel of
Chu et al. (2011) as the black-box. The details of the
Algorithm are provided in Appendix C.

10Superscript M will become clear shortly
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4.6 Main Result

For brevity, we only state the Corollary of our main
Theorem (Theorem 3) which is stated in Appendix C.

Corollary 2. Suppose Algorithm 3 is run with input
parameters δ ∈ (0, 1), and T0 = Õ

(
d2 ln2

(
1
δ

))
given

in Equation (15) , then with probability at-least 1− δ,
the regret after T times satisfies

RT ≤ O
(

d2

γ4.65
ln2(d/δ)τ2 ln

(
TK

δ

))
+ Õ(

√
Td∗m),

where γ = min{|θ∗i | : θ∗i 6= 0} and θ∗ is d∗ sparse.

Discussion - Our regret scaling matches that of an
oracle that knows the true problem complexity and
thus obtains a regret of Õ(

√
dm∗T ). This, thus im-

proves on the rate compared to that obtained in Fos-
ter et al. (2019), whose regret scaling is sub-optimal
compared to the oracle. On the other hand however,
our regret bound depends on γ and is thus not uniform
over all θ∗, unlike Foster et al. (2019) that is uniform
over θ∗. Thus, in general, our results are not directly
comparable to that of Foster et al. (2019). It is an
interesting future work to close the gap and in partic-
ular, obtain the regret matching that of an oracle to
hold uniformly over all θ∗.

5 SIMULATIONS

5.1 Synthetic Experiments

We compare ALB-Norm with the (non-adaptive)
OFUL+ and an oracle that knows the problem com-
plexity apriori. The oracle just runs OFUL+ with
the known problem complexity. We choose the bias
∼ U [−1, 1], and the additive noise to be zero-mean
Gaussian random variable with variance 0.5. At each
round of the learning algorithm, we sample the con-
text vectors from a d-dimensional standard Gaussian,
N (0, Id). We select d = 50, the number of arms,
K = 75, and the initial epoch length as 100. In par-
ticular, we generate the true θ∗ in 2 different ways: (i)
‖θ∗‖ = 0.1, but the initial estimate b1 = 10, and (ii)
‖θ∗‖ = 1, with the initial estimate b1 = 10.

In panel (a) and (b) of Figure 1, we observe that, in
setting (i), OFUL+ performs poorly owing to the gap
between ‖θ∗‖ and b1. On the other hand, ALB-Norm is
sandwiched between the OFUL+ and the oracle. Simi-
lar things happen in setting (ii). In panel (c), we show
that the norm estimates of ALB-Norm improves over
epochs, and converges to the true norm very quickly.

In panel (d)-(f), we compare the performance of
ALB-Dim with OFUL (Abbasi-Yadkori et al. (2011))
and an oracle who knows the true support of θ∗ apri-
ori. For computational ease, we set εi = 2−i in sim-

ulations. We select θ∗ to be d∗ = 20-sparse, with the
smallest non-zero component, γ = 0.12. We have 2
settings: (i) d = 500 and (ii) d = 200. In panel (d)
and (e), we observe a huge gap in cumulative regret
between ALB-Dim and OFUL, thus showing the effec-
tiveness of dimension adaptation. In panel (f), we plot
the successive dimension refinement over epochs. We
observe that within 4 − 5 epochs, ALB-Dim finds the
sparsity of θ∗.

5.2 Real-data experiment

Here, we evaluate the performance of ALB-Norm on Ya-
hoo! ‘Learning to Rank Challenge’ dataset (Chapelle
and Chang (2010)). In particular, we use the file
set2.test.txt, which consists of 103174 rows and
702 columns. The first column denotes the rating,
{0, 1, ., 4} given by the user (which is taken as reward);
the second column denotes the user id, and the rest 700
columns denote the context of the user. After selecting
20, 000 rows and 50 columns at random (several other
random selections yield similar results), we cluster the
data by running k means algorithm with k = 500. We
treat each cluster as a bandit arm with mean reward
as the empirical mean of the individual rating in the
cluster, and the context as the centroid of the cluster.
This way, we obtain a bandit setting with K = 500
and d = 50.

Assuming (reward, context) coming from a linear
model (with bias, see Section 3.1), we use ALB-Norm to
estimate the bias and θ∗ simultaneously. In panel (g),
we plot the cumulative reward accumulated over time.
We observe that the reward is accumulated over time
in an almost linear fashion. We also plot the norm
estimate, ‖θ∗‖ over epochs in panel (h), starting with
an initial estimate of 25. We observe that within 6
epochs the estimate stabilizes to a value of 11.1. This
shows that ALB-Norm adapts to the actual ‖θ∗‖.

6 Conclusion

We considered refined model selection for linear ban-
dits, by defining new notions of complexity. We
gave two novel algorithms ALB-Norm and ALB-Dim that
successively refines the hypothesis class and achieves
model selection guarantees; regret scaling in the com-
plexity of the smallest class containing the true model.
This is the first such algorithm to achieve regret scal-
ing similar to an oracle that knew the problem com-
plexity. An interesting direction of future work is to
derive regret bounds for the case when the dimension
is a measure of complexity, that hold uniformly over
all θ∗, i.e., have no explicit dependence on γ.
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Figure 1: Synthetic and real-data experiments, validating the effectiveness of Algorithm 1 and 2. All the results
are averaged over 25 trials.
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Birgé, L., Massart, P., et al. (1998). Minimum contrast
estimators on sieves: exponential bounds and rates
of convergence. Bernoulli, 4(3):329–375.

Carpentier, A. and Munos, R. (2012). Bandit the-
ory meets compressed sensing for high dimensional
stochastic linear bandit. In Artificial Intelligence
and Statistics, pages 190–198.

Chapelle, O. and Chang, Y. (2010). Yahoo! learn-
ing to rank challenge overview. In Proceedings of
the 2010 International Conference on Yahoo! Learn-
ing to Rank Challenge - Volume 14, YLRC’10, page
1–24. JMLR.org.

Chatterji, N. S., Muthukumar, V., and Bartlett, P. L.
(2019). Osom: A simultaneously optimal algo-
rithm for multi-armed and linear contextual bandits.
arXiv preprint arXiv:1905.10040.

Cherkassky, V. (2002). Model complexity control
and statistical learning theory. Natural computing,
1(1):109–133.

Chu, W., Li, L., Reyzin, L., and Schapire, R. (2011).
Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, pages
208–214.

Cutkosky, A. and Boahen, K. (2017). Online learn-
ing without prior information. arXiv preprint
arXiv:1703.02629.

Dani, V., Hayes, T. P., and Kakade, S. M. (2008).
Stochastic linear optimization under bandit feed-
back.

Devroye, L., Györfi, L., and Lugosi, G. (2013). A prob-
abilistic theory of pattern recognition, volume 31.
Springer Science & Business Media.

Foster, D. J., Krishnamurthy, A., and Luo, H. (2019).
Model selection for contextual bandits. In Advances
in Neural Information Processing Systems, pages
14714–14725.

Ghosh, A., Chowdhury, S. R., and Gopalan, A. (2017).
Misspecified linear bandits. In Thirty-First AAAI
Conference on Artificial Intelligence.

Krikheli, M. and Leshem, A. (2018). Finite sam-
ple performance of linear least squares estima-
tors under sub-gaussian martingale difference noise.
In 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
4444–4448. IEEE.

Krishnamurthy, A., Wu, Z. S., and Syrgkanis, V.
(2018). Semiparametric contextual bandits. arXiv
preprint arXiv:1803.04204.

Lai, T. L. and Robbins, H. (1985). Asymptotically ef-
ficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22.



Avishek Ghosh, Abishek Sankararaman, Kannan Ramchandran

Locatelli, A. and Carpentier, A. (2018). Adaptivity to
smoothness in x-armed bandits. In Conference on
Learning Theory, pages 1463–1492.

Lugosi, G., Nobel, A. B., et al. (1999). Adaptive model
selection using empirical complexities. The Annals
of Statistics, 27(6):1830–1864.

Luo, H. and Schapire, R. E. (2015). Achieving all with
no parameters: Adanormalhedge. In Conference on
Learning Theory, pages 1286–1304.

Lykouris, T., Sridharan, K., and Tardos, É. (2017).
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Appendix

A Detailed Description of OFUL+

We now discuss the algorithm OFUL+. A variation of this was proposed in Chatterji et al. (2019) in the context
of model selection between linear and standard multi-armed bandits. As seen in the OFUL+ sub-routine of
Algorithm 1, we use µ̃i,t to address the bias term in the observation, which we define shortly. The parameters b
and δ appears in the construction of the confidence set and the regret guarantee. Furthermore, assume that the
algorithm OFUL+ is run for T̃ rounds.

Let As be the arm index played at time instant s and Ti(t) be the number of times we play arm i until time
t. Hence Ti(t) =

∑t
s=1 1 {As = i}. Also, let b be the current estimate of ‖θ∗‖. Also define,

ḡi,t =
1

Ti(t)

t∑
s=1

gi,s1 {As = t}.

With this, we have

µ̃i,t = ḡi,t + σ

[
1 + Ti(t)

T 2
i (t)

(
1 + 2 log

(
K(1 + Ti(t))

1/2

δ

))]1/2

+ b

√
2d

Ti(t)
log

(
1

δ

)
(2)

In order to specify the confidence interval Ct, we first talk about the least squares estimate θ̂ first. Using the
notation of Chatterji et al. (2019), we define

θ̂t =
(
α>K+1:tαK+1:t + I

)−1
α>K+1:tGK+1:t

where αK+1:t is a matrix with rows α>AK+1,K+1, . . . , α
>
At,t

and GK+1:t = [gAK+1,K+1 − µ̃AK+1,K+1, . . . , gAt,t −
µ̃At,t]

>. With this, the confidence interval is defined as

Ct =
{
θ ∈ Rd : ‖θ − θ̂t‖ ≤ Kδ(b, t, T̃ )

}
, (3)

and Lemma 2 of Chatterji et al. (2019) shows that θ∗ ∈ Ct with probability at least 1− 4δ.

We now define the quantity Kδ(b, t, T̃ ). Note that we track the dependence on the complexity parameter
‖θ∗‖. We have

Tmin(δ, T̃ ) =

(
16

ρ2
min

+
8

3ρmin

)
log

(
2dT̃

δ

)
,

Mδ(b, t) = b+

√
2σ2

(
d

2
log

(
1 +

t

d

)
+ log

(
1

δ

))
, (4)

Υδ(b, t, T̃ ) =
10

3

b+ 2 + σ

√√√√1 + 2 log

(
2KT̃

δ

)
×

log

(
2KT̃

δ

)
+

√√√√t log

(
2KT̃

δ

)
+ log2

(
2KT̃

δ

) , (5)

Kδ(b, t, T̃ ) =

Mδ(b, t) + Υδ(b, t, T̃ ) if 1 < t < Tmin,
Mδ(b,t)√
1+ρmin t/2

+ Υδ(b,t,T̃ )
1+ρmin t/2

if t > Tmin.
(6)

B Proofs of the main results

In this section, we collect the proof of our main results. We start with the norm-based complexity measure.
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B.1 Proof of Theorem 1

We first take Lemma 1 for granted and conclude the proof of Theorem 1 using the lemma. Suppose we play
Algorithm 1 for N epochs. The cumulative regret is given by

R(T ) ≤ C1(2τ +K)‖θ∗‖+

N∑
i=1

R(δi, bi)(Ti),

where R(δi, bi)(Ti) is the cumulative regret of the OFUL+
δi

(bi) in the i-th epoch. As seen (by tracking the

dependence on ‖θ∗‖) in Chatterji et al. (2019), the cumulative regret of OFUL+
δi

(bi) scales linearly with bi.
Hence, we obtain

R(T ) ≤
N∑
i=1

biR(δi, 1)(Ti).

Using Lemma 1, we obtain, with probability at least 1− 8δ1,

R(T ) ≤ C1(2τ +K)‖θ∗‖+ (c1‖θ∗‖+ c2)

N∑
i=1

R(δi, 1)(Ti)

Theorem 3 of Chatterji et al. (2019) gives,

R(δi, 1)(Ti) ≤ C(
√
K +

√
d)
√
Ti log

(
KTi
δi

)
(7)

with probability exceeding 1− 5δi. With the doubling trick, we have

Ti = 2i−1T1, δi =
δ1

2i−1
.

Substituting, we obtain

R(δi, 1)(Ti) ≤ C1(
√
K +

√
d)
√
Ti log

(
KTi
δi

)[
(2i− 2) log

(
KT1

δ1

)]
with probability at least 1− 5δi.

Using the above expression, we obtain

R(T ) ≤ C1(2τ +K)‖θ∗‖+ (C2‖θ∗‖+ C3)

N∑
i=1

(
√
K +

√
d)
√
Ti

[
(2i− 2) log

(
KT1

δ1

)]
with probability

≥ 1− 8δ1 − 5δ1

(
1 +

1

2
+ ..N -th term

)
≥ 1− 8δ1 − 5δ1

(
1 +

1

2
+ ...

)
= 1− 8δ1 − 10δ1

= 1− 18δ1,

where the term 8δ1 comes from Lemma 1. Also, from the doubling principle, we obtain

N∑
i=1

2i−1T1 = T ⇒ N = log2

(
1 +

T

T1

)
.
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Using the above expression, we obtain

R(T ) ≤ C1(2τ +K)‖θ∗‖+ (C2‖θ∗‖+ C3)

N∑
i=1

(
√
K +

√
d)
√
Ti

[
(2i− 2) log

(
KT1

δ1

)]

≤ C1(2τ +K)‖θ∗‖+ 2(C2‖θ∗‖+ C3)(
√
K +

√
d) log

(
KT1

δ1

) N∑
i=1

i
√
Ti

≤ C1(2τ +K)‖θ∗‖+ 2(C2‖θ∗‖+ C3)(
√
K +

√
d) log

(
KT1

δ1

)
N

N∑
i=1

√
Ti

≤ C1(2τ +K)‖θ∗‖+ 2(C2‖θ∗‖+ C3)(
√
K +

√
d) log

(
KT1

δ1

)
log

(
T

T1

) N∑
i=1

√
Ti

≤ C1(2τ +K)‖θ∗‖+ C(‖θ∗‖+ 1)(
√
K +

√
d) log

(
KT1

δ1

)
log

(
T

T1

)√
T ,

where the last inequality follows from the fact that

N∑
i=1

√
Ti =

√
TN

(
1 +

1√
2

+
1

2
+ ..N -th term

)
≤
√
TN

(
1 +

1√
2

+
1

2
+ ...

)
=

√
2√

2− 1

√
TN

≤
√

2√
2− 1

√
T .

The above regret bound holds with probability at least 1− 18δ1.

B.2 Proof of Lemma 1

Let us consider the i-th epoch, and let θ̂Ei be the least square estimate of θ∗ at the end of epoch i. From the
above section, the confidence interval at the end of epoch i, is given by

CEi =
{
θ ∈ Rd : ‖θ − θ̂Ei‖ ≤ Kδi(bi, Ti, Ti)

}
where we play OFUL+

δi
(bi) during the i-th epoch, and Ti is the number of total rounds in the i-th epoch. By

choosing T1 > Tmin(δ, T ), we ensure that Ti ≥ Tmin(δ, Ti). From equation (6), and ignoring the non-dominant
terms, we obtain

Kδi(bi, Ti, Ti) =
Mδi(bi, Ti)√
1 + ρmin Ti/2

+
Υδi(bi, Ti, Ti)

1 + ρmin Ti/2
,

with

Mδi(bi, Ti) ≤ bi + c1σ
√
d log

(
Ti
dδi

)
and

Υδi(bi, Ti, Ti) = 4bi
√
Ti log

(
2KTi
δi

)
+ c2σ

√
Ti log

(
2KTi
δi

)
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Substituting the values, considering the dominating terms, and for a sufficiently large Ti, we obtain

Kδi(bi, Ti, Ti) ≤
7bi log

(
2KTi
δi

)
√
ρmin Ti

+ C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)

≤
7bi log

(
2KT
δi

)
√
ρmin Ti

+ C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)
where C is an universal constant. From Lemma 2 of Chatterji et al. (2019), we know that θ∗ ∈ CEi with
probability at least 1− 4δi. Hence, we obtain

‖θ̂Ei‖ ≤ ‖θ∗‖+ 2Kδi(bi, Ti, Ti) ≤ ‖θ∗‖+
14bi log

(
2KTi
δi

)
√
ρmin Ti

+ 2C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)
Recall from Algorithm 1 that at the end of the i-th epoch, we set the length Ti+1 = 2Ti, and the estimate of
‖θ∗‖ is set to

bi+1 = max
θ∈CEi

‖θ‖.

From the definition of CEi , we obtain

bi+1 = ‖θ̂Ei‖+Kδi(bi, Ti, Ti) ≤
7bi log

(
2KTi
δi

)
√
ρmin Ti

+ C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)
.

Re-writing the above expression, with probability at least 1− 4δi, we obtain

bi+1 ≤ ‖θ∗‖+

7 log
(

2KTi
δi

)
√
ρmin

 bi√
Ti

+

Cσ log
(

2KTi
δi

)
√
ρmin

 √d√
Ti

≤ ‖θ∗‖+ ip
bi√
Ti

+ iq

√
d√
Ti

≤ ‖θ∗‖+ ip
bi

2
i−1
2

√
T1

+ iq

√
d

2
i−1
2

√
T1

(8)

where we use the fact that δi = δ1
2i−1 and Ti = 2

i−1
2 T1, and we have

p =

14 log
(

2KT1

δ1

)
√
ρmin


and

q =

2Cσ log
(

2KT1

δ1

)
√
ρmin

 .

Hence, we obtain

bi+1 − bi ≤ ‖θ∗‖+ iq

√
d

2
i−1
2

√
T1

−
(

1− ip 1

2
i−1
2

√
T1

)
bi.

From the construction of bi, we have −bi ≤ −‖θ∗‖. Hence provided

T1 ≥
i2p2

2i−1
,
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which is equivalent to the condition T1 ≥ 3p2 (using the fact that i2

2i−1 ≤ 3 for i ≥ 1), we obtain

bi+1 − bi ≤
(
ip

1

2
i−1
2

√
T1

)
‖θ∗‖+ iq

√
d

2
i−1
2

√
T1

.

From the above expression, we obtain

sup
i
bi <∞.

with probability

≥ 1− 4δ1

(
1 +

1

2
+

1

4
+ ...

)
= 1− 8δ1.

Invoking Equation (8) and using the above fact in conjunction yield (with probability at least 1− 8δ1)

lim
i→∞

bi ≤ ‖θ∗‖.

However, from construction bi ≥ ‖θ∗‖. Using this, along with the above equation, we obtain

lim
i→∞

bi = ‖θ∗‖.

with probability exceeding 1 − 8δ1. So, the sequence {b0, b1, ...} converges to ‖θ∗‖ with high probability, and
hence our successive refinement algorithm is consistent.

Rate of Convergence: Since

bi − bi−1 = Õ
(
i

2i

)
, (9)

with probability greater than 1−4δi, the rate of convergence of the sequence {bi}∞i=0 is exponential in the number
of epochs.

Uniform upper bound on bi for all i: We now compute a uniform upper bound on bi for all i. Consider

the sequence

{
i

2
i−1
2

}∞
i=1

, and let tj denote the j-th term of the sequence. It is easy to check that supi ti = 1.5,

and that the sequence {ti}∞i=1 is convergent. With this new notation, we have

b2 ≤ ‖θ∗‖+ t1
pb1√
T1

+ t1
q
√
d√
T1

.

with probability exceeding 1− 4δ1. Similarly, for b3, we have

b3 ≤ ‖θ∗‖+ t2
pb1√
T1

+ t2
q
√
d√
T1

≤
(

1 + t2
p√
T1

)
‖θ∗‖+

(
t1t2

p√
T1

p√
T1

b1

)
+

(
t1t2

p√
T1

q
√
d√
T1

+ t2
q
√
d√
T1

)
.

with probability at least 1 − 4δ1 − 4δ2 = 1 − 6δ1. Similarly, we write expressions for b4, b5, .... Now, provided
T1 ≥ C1 (max{p, q} b1)

2
d, where C1 > 9 is a sufficiently large constant, the expression for bi can be upper-

bounded as

bi ≤ (c1‖θ∗‖+ c2) , (10)
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with probability

≥ 1− 4δ1

(
1 +

1

2
+

1

4
+ ...upto i-th term

)
≥ 1− 4δ1

(
1 +

1

2
+

1

4
+ ...

)
= 1− 8δ1.

Here c1 and c2 are constants, and are obtained from summing an infinite geometric series with decaying step
size. We also use the fact that b1 ≥ 1, and the fact that δi = δ1

2i−1 .

B.3 Proof of Theorem 2

We shall need the following lemma from Krikheli and Leshem (2018), on the behaviour of linear regression
estimates.

Lemma 2. If M ≥ d and satisfies M = O
((

1
ε2 + d

)
ln
(

1
δ

))
, and θ̂(M) is the least-squares estimate of θ∗, using

the M random samples for feature, where each feature is chosen uniformly and independently on the unit sphere
in d dimensions, then with probability 1, θ̂ is well defined (the least squares regression has an unique solution).
Furthermore,

P[||θ̂(M) − θ∗||∞ ≥ ε] ≤ δ.

We shall now apply the theorem as follows. Denote by θ̂i to be the estimate of θ∗ at the beginning of any
phase i, using all the samples from random explorations in all phases less than or equal to i− 1.

Remark 6. The choice T0 := O
(
d2 ln2

(
1
δ

))
in Equation (1) is chosen such that from Lemma 3, we have that

P
[
||θ̂(d

√
T0e) − θ∗||∞ ≥

1

2

]
≤ δ

Lemma 3. Suppose T0 = O
(
d2 ln2

(
1
δ

))
is set according to Equation (1). Then, for all phases i ≥ 4,

P
[
||θ̂i − θ∗||∞ ≥ 2−i

]
≤ δ

2i
, (11)

where θ̂i is the estimate of θ∗ obtained by solving the least squares estimate using all random exploration samples
until the beginning of phase i.

Proof. The above lemma follows directly from Lemma 2. Lemma 2 gives that if θ̂i is formed by solving the

least squares estimate with at-least Mi := O
((

4i + d
)

ln
(

2i

δ

))
samples, then the guarantee in Equation (11)

holds. However, as T0 = O
(
(d+ 1) ln

(
2
δ

))
, we have naturally that Mi ≤ 4ii

√
T0. The proof is concluded if we

show that at the beginning of phase i ≥ 4, the total number of random explorations performed by the algorithm
exceeds i4id

√
T0e. Notice that at the beginning of any phase i ≥ 4, the total number of random explorations

that have been performed is

i−1∑
j=0

5id
√
T0e = d

√
T0e

5i − 1

4
,

≥ i4id
√
T0e,

where the last inequality holds for all i ≥ 4.

The following corollary follows from a straightforward union bound.
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Corollary 3.

P

⋂
i≥4

||
{
θ̂i − θ∗||∞ ≤ 2−i

} ≥ 1− δ.

Proof. This follows from a simple union bound as follows.

P

⋂
i≥4

{
||θ̂i − θ∗||∞ ≤ 2−i

} = 1− P

⋃
i≥4

{
||θ̂i − θ∗||∞ ≥ 2−i

} ,
≥ 1−

∑
i≥4

P
[
||θ̂i − θ∗||∞ ≥ 2−i

]
,

≥ 1−
∑
i≥4

δ

2i
,

≥ 1−
∑
i≥2

δ

2i
,

= 1− δ

2
.

We are now ready to conclude the proof of Theorem 2.

Proof of Theorem 2. We know from Corollary 3, that with probability at-least 1−δ, for all phases i ≥ 4, we have

||θ̂i − θ∗||∞ ≤ 2−i. Call this event E . Now, consider the phase i(γ) := max
(

4, log2

(
1
γ

))
. Now, when event E

holds, then for all phases i ≥ i(γ), Di is the correct set of d∗ non-zero coordinates of θ∗. Thus, with probability
at-least 1− δ, the total regret upto time T can be upper bounded as follows

RT ≤
i(γ)−1∑
j=0

(
25iT0 + 5id

√
T0e
)

+

⌈
log25

(
T
T0

)⌉
∑
j≥i(γ)

Regret(OFUL(1, δi; 25iT0)

+

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

5jd
√
T0e. (12)

The term Regret(OFUL(L, δ, T ) denotes the regret of the OFUL algorithm (Abbasi-Yadkori et al. (2011)), when
run with parameters L ∈ R+, such that ‖θ∗‖ ≤ L, and δ ∈ (0, 1) denotes the probability slack and T is the time

horizon. Equation (12) follows, since the total number of phases is at-most

⌈
log25

(
T
T0

)⌉
. Standard result from

Abbasi-Yadkori et al. (2011) give us that, with probability at-least 1− δ, we have

Regret(OFUL(1, δ;T ) ≤ 4

√
Td∗ ln

(
1 +

T

d∗

)(
1 + σ

√
2 ln

(
1

δ

)
+ d∗ ln

(
1 +

T

d

))
.

Thus, we know that with probability at-least 1 −
∑
i≥4 δi ≥ 1 − δ

2 , for all phases i ≥ i(γ), the regret in the
exploration phase satisfies

Regret(OFUL(1, δi; 25iT0) ≤ 4

√
d∗25iT0 ln

(
1 +

25iT0

d∗

)

×

(
1 + σ

√
2 ln

(
2i

δ

)
+ d∗ ln

(
1 +

25iT0

d∗

))
. (13)
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In particular, for all phases i ∈ [i(γ), dlog25

(
T
T0

)
], with probability at-least 1− δ

2 , we have

Regret(OFUL(1, δi; 25iT0) ≤ 4

√
d∗25iT0 ln

(
1 +

25T

d∗

)

×

(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

25T

d∗

))
,

= C(T, δ, d∗)
√

25iT0, (14)

where the constant captures all the terms that only depend on T , δ and d∗. We can write that constant as

C(T, δ, d∗) = 4

√
d∗ ln

(
1 +

25T

d∗

)(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

25T

d∗

))
.

Equation (14) follows, by substituting i ≤ log25

(
T
T0

)
in all terms except the first 25i term in Equation (13).

As Equations (14) and (12) each hold with probability at-least 1 − δ
2 , we can combine them to get that with

probability at-least 1− δ,

RT ≤ 2T025i(γ) +

log25

(
T
T0

)
+1∑

j=0

C(T, δ, d∗)
√

25jT0 + 25d
√
T0e5

log25

(
T
T0

)
,

≤ 2T025i(γ) + 25
√
T + C(T, δ, d∗)

log25

(
T
T0

)
+1∑

j=0

√
25jT0,

(a)

≤ 50T0
2

γ4.65
+ 25

√
T + 25

√
TC(T, δ, d∗),

= O

(
d2

γ4.65
ln2

(
1

δ

))
+ Õ

(
d∗

√
T ln

(
1

δ

))
.

Step (a) follows from 25 ≤ 24.65.

C ALB-Dim for Stochastic Contextual Bandits with Finite Arms

C.1 ALB-Dim Algorithm for the Finite Armed Case

The algorithm given in Algorithm 3 is identical to the earlier Algorithm 2, except in Line 8, this algorithm uses
SupLinRel of Chu et al. (2011) as opposed to OFUL used in the previous algorithm. In practice, one could
also use LinUCB of Chu et al. (2011) in place of SupLinRel. However, we choose to present the theoretical
argument using SupLinRel, as unlike LinUCB, has an explicit closed form regret bound (see Chu et al. (2011)).
The pseudocode is provided in Algorithm 3.

In phase i ∈ N, the SupLinRel algorithm is instantiated with input parameter 25iT0 denoting the time
horizon, slack parameter δi ∈ (0, 1), dimension dMi

and feature scaling b(δ). We explain the role of these input
parameters. The dimension ensures that SupLinRel plays from the restricted dimension dMi

. The feature scaling
implies that when a context x ∈ X is presented to the algorithm, the set of K feature vectors, each of which is

dMi dimensional are φ
dMi (x,1)
b(δ) , · · · , φ

dMi (x,K)
b(δ) . The constant b(δ) := O

(
τ
√

log
(
TK
δ

))
is chosen such that

P

[
sup

t∈[0,T ],a∈A
‖φM (xt, a)‖2 ≥ b(δ)

]
≤ δ

4
.

Such a constant exists since (xt)t∈[0,T ] are i.i.d. and φM (x, a) is a sub-gaussian random variable with parameter
4τ2, for all a ∈ A. Similar idea was used in Foster et al. (2019).
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Algorithm 3: Adaptive Linear Bandit (Dimension) with Finitely Many arms

1: Input: Initial Phase length T0 and slack δ > 0.
2: β̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do
4: Ti = 25iT0, εi ← 1

2i , δi ← δ
2i

5: Di := {i : |β̂i| ≥ εi
2 }

6: Mi := inf{m : dm ≥ maxDi}.
7: for Times t ∈ {Ti−1 + 1, · · · , Ti} do
8: Play according to SupLinRel of ? with time horizon of 25iT0 with parameters δi ∈ (0, 1), dimension

dMi
and feature scaling b(δ) := O

(
τ
√

log
(
TK
δ

))
.

9: end for
10: for Times t ∈ {Ti + 1, · · · , Ti + 5i

√
T0} do

11: Play an arm from the action set A chosen uniformly and independently at random.
12: end for
13: αi ∈ RSi×d with each row being the arm played during all random explorations in the past.
14: yi ∈ RSi with i-th entry being the observed reward at the i-th random exploration in the past
15: β̂i+1 ← (αTi αi)

−1αiyi, is a d dimensional vector
16: end for

C.2 Regret Guarantee for Algorithm 3

In order to specify a regret guarantee, we will need to specify the value of T0. We do so as before. For

any N , denote by λ
(N)
max and λ

(N)
min to be the maximum and minimum eigen values of the following matrix:

ΣN := E
[

1
K

∑K
j=1

∑N
t=1 φ

M (xt, j)φ
M (xt, j)

T
]
, where the expectation is with respect to (xt)t∈[T ] which is an

i.i.d. sequence with distribution D. First, given the distribution of x ∼ D, one can (in principle) compute λ
(N)
max

and λ
(N)
min for any N ≥ 1. Furthermore, from the assumption on D, λ

(N)
min = Õ

(
1√
d

)
> 0 for all N ≥ 1. Choose

T0 ∈ N to be the smallest integer such that

√
T0 ≥ b(δ) max

(
32σ2

(λ
(d
√
T0e)

min )2
ln(2d/δ),

4

3

(6λ
(d
√
T0e)

max + λ
(d
√
T0e)

min )(d+ λ
(d
√
T0e)

max )

(λ
(d
√
T0e)

min )2
ln(2d/δ)

)
. (15)

As before, it is easy to see that

T0 = O

(
d2 ln2

(
1

δ

)
τ2 ln

(
TK

δ

))
.

Furthermore, following the same reasoning as in Lemmas 3 and 2, one can verify that for all i ≥ 4,

P
[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i .

Theorem 3. Suppose Algorithm 3 is run with input parameters δ ∈ (0, 1), and T0 as given in Equation (15),
then with probability at-least 1− δ, the regret after a total of T arm-pulls satisfies

RT ≤ 2T0 max

(
254,

2

γ4.65

)
+ 308(1 + ln(2KT lnT ))3/2

√
Tdm∗ + 100

√
T .

The parameter γ > 0 is the minimum magnitude of the non-zero coordinate of β∗, i.e., γ = min{|β∗i | : β∗i 6= 0}.

In order to parse the above theorem, the following corollary is presented.

Corollary 4. Suppose Algorithm 3 is run with input parameters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in

Equation (15) , then with probability at-least 1− δ, the regret after T times satisfies

RT ≤ O
(

d2

γ4.65
ln2(d/δ)τ2 ln

(
TK

δ

))
+ Õ(

√
Td∗m).
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Proof of Theorem 3. The proof proceeds identical to that of Theorem 2. Observe from Lemmas 2 and 3, that

the choice of T0 is such that for all phases i ≥ 1, the estimate P
[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i . Thus, from an

union bound, we can conclude that

P
[
∪i≥4‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

4
.

Thus at this stage, with probability at-least 1− δ
2 , the following events holds.

• supt∈[0,T ],a∈A ‖φM (xt, a)‖2 ≤ b(δ)

• ‖β̂i−1 − β∗‖∞ ≤ 2−i, for all i ≥ 4.

Call these events as E . As before, let γ > 0 be the smallest value of the non-zero coordinate of β∗. Denote by

the phase i(γ) := max
(

4, log2

(
2
γ

))
. Thus, under the event E , for all phases i ≥ i(γ), the dimension dMi

= d∗m,

i.e., the SupLinRel is run with the correct set of dimensions.

It thus remains to bound the error by summing over the phases, which is done identical to that in Theorem
2. With probability, at-least 1− δ

2 −
∑
i≥4 δi ≥ 1− δ,

RT ≤
i(γ)−1∑
j=0

(
25jT0 + 5j

√
T0

)
+

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

Regret(SupLinRel)(25iT0, δi, dMi,b(δ))

+

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

5j
√
T0,

where Regret(SupLinRel)(25iT0, δi, dMi,b(δ)) ≤ 44(1 + ln(2K25iT0 ln 25iT0))3/2
√

25iT0dMi
+ 2
√

25iT0. This
expression follows from Theorem 6 in ?. We now use this to bound each of the three terms in the display above.
Notice from straightforward calculations that the first term is bounded by 2T025i(γ) and the last term is bounded

above by 25d
√
T0e5

log25

(
T
T0

)
respectively. We now bound the middle term as

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

Reg(SupLinRel)(25jT0, δi, d
∗
m, b(δ))

≤ b(δ)



⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

44(1 + ln(2K25iT0 ln 25iT0))3/2
√

25iT0dMi + 2
√

25iT0

 .
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The first summation can be bounded as⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

44(1 + ln(2K25iT0 ln 25iT0))3/2
√

25iT0dMi

≤

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

44(1 + ln(2KT lnT ))3/2
√

25iT0d∗m,

≤ 44(1 + ln(2KT lnT ))3/275
log25

(
T
T0

)√
T0d∗m,

= 308(1 + ln(2KT lnT ))3/2
√
Td∗m,

and the second by ⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

2
√

25iT0 ≤ 50
√
T .

Thus, with probability at-least 1− δ, the regret of Algorithm 3 satisfies

RT ≤ 2T025i(γ) + 308(1 + ln(2KT lnT ))3/2
√
Td∗m + 100

√
T ,

where i(γ) := max
(

4, log2

(
2
γ

))
. Thus,

RT ≤ 2T0 max

(
254,

2

γ4.65

)
+ 308(1 + ln(2KT lnT ))3/2

√
Td∗m + 100

√
T ,

as 25 ≤ 24.65


