
Variational inference for nonlinear ODEs

Variational inference for nonlinear ordinary differential equations:
Supplementary Materials

Sanmitra Ghosh1 Paul J. Birrell2,1 Daniela De Angelis1,2

{sanmitra.ghosh,paul.birrell,daniela.deangelis}@mrc-bsu.cam.ac.uk
1MRC Biostatistics Unit, University of Cambridge, 2Public Health England, Colindale

9 Appendix A

9.1 Chemical Langevin equation

Over an infinitesimal interval (t, t+ dt] the reaction hazards will remain constant almost surely (Golightly and
Gillespie, 2013). Thus, the occurrence of a reaction event can be considered as the occurrence of an event of
a Poisson process with independent realisations for each type of reactions. Therefore we can write as dRt the
v-dimensional vector of the number reaction events of each type within the infinitesimal time interval. The
i-th element of this vector is simply a Poisson(hi(Xt, ci)dt random variable, where i = 1, . . . , v. Hence the
corresponding mean and variance of dRt are given by

E[dRt] = h(Xt, c)dt, Var[dRt] = diag(h(Xt, c)), (27)

and thus we can write
dRt = h(Xt, c)dt+ diag

(√
h(Xt, c)

)
dWt, (28)

as an Ito stochastic differential equation, where Wt is a v-dimensional vector of standard Brownian motion, that
has the same mean and variance as the true MJP describing the stochastic kinetic system. Since we know that
dXt = SdRt, therefore the increment in the number of molecules is immediately given by

dXt = Sh(Xt, c)dt+ S diag
(√

h(Xt, c)
)
dWt. (29)

Noting that Var[dXt] = S diag(h(Xt, c))ST , we can write the above SDE in an alternate form given by

dXt = Sh(Xt, c)dt+
√
S diag(h(Xt, c))ST dWt, (30)

such that both Xt and Wt are now u-dimensional vectors. This stochastic differential equation is known as the
chemical Langevin equation, and represents the diffusion process which most closely matches the dynamics of the
associated true MJP. This completes our heuristic derivation of the CLE. For a more formal derivation CLE we
refer the reader to Gillespie (2000).



Variational inference for nonlinear ODEs

9.2 Further details of LNA

We obtain the LNA by expanding the solution Xt of the CLE into a deterministic term plus a residual noise as
follows:

Xt = ΩZt + ΩMt. (31)

Substituting this into the rescaled CLE given by Equation (13) we obtain

dZt +
1√
Ω
dMt = Sf(Zt +Mt/

√
Ω, c)dt+

√
S diag(f(Zt +Mt/

√
Ω, c))ST dWt. (32)

We then Taylor expand the rate function around Zt to obtain

f(Zt +Mt/
√

Ω, c) = f(Zt, c) +
1√
Ω
FtMt +O(Ω−1). (33)

Substituting Equation (33) into Equation (32) and collecting the O(1) terms gives us the ODE for Zt given by

dZt
dt

= Sf(Zt, c), (34)

and collecting terms of O(1/
√

Ω) gives us the SDE satisfied by the residual process Mt:

dMt = SFtMtdt+
√
S diag(f(Zt, c))ST dWt. (35)

10 Appendix B

10.1 Choice of integration technique for Adjoint sensitivity

Implementing the adjoint sensitivity method requires the integration of three systems. These are the original
ODE system f

(
X(t),θ

)
, the vector-matrix products between the adjoint state a(t) and i) the Jacobian of the

ODE velocity function: ∂f
∂X with respect to the system state X(t), and ii) the Jacobian of the velocity: ∂f

∂θ with
respect to the parameter. Note that integrating the system ii) requires a continuous solution of X(t) for all t
and consequently integrating iii) requires continuous solutions of both X(t) and a(t). Clearly, when the original
system is large then this becomes infeasible due to high memory costs.

Recently Chen et al. (2018) used the adjoint sensitivity method to extend automatic differentiation to an ODE.
Since, the motivating systems in that work were all black-box ODEs with velocity fields described by neural
networks, having large state and parameter dimensions, thus continuous solutions could not be used. As a result
Chen et al. (2018) simultaneously solved the three systems, mentioned above, backward in time with an adaptive
numerical ODE solver. However, this clever reversible formulation assumes that the ODE integrator is reversible.
This is not the case for first order adaptive ODE solvers.

One simple technique to avoid reverse solving the system ODEs is the idea of checkpointing. That is we avoid a
continuous solution of the original system and simply store X(ti) for each of the i-th measurement time points.
We can then solve the systems ii) and iii) simultaneously and backward in time by first employing a continuous
forward solution of the original system starting from the nearest checkpoint and then using this continuous
solution to solve in turn ii) and iii). We have provided code for both a full continuous as well as a checkpointed
solution of the original system.

We recommend using a checkpointed solution when both K, the size of the original system sate, and D, the
parameter dimension, are large and D > K. A continuous solution would suffice when K is not large but D > K.
The need to solve the original system backward in time arises from the extreme constraints posed by a neural
network, but for most mechanistic models such constraints may not be relevant.

10.2 Choosing between forward and adjoint sensitivity for evaluating the VJP

Forward sensitivity requires solving K × D ODEs once. In comparison the adjoint method requires solving
2K +D ODEs between each pair of time points. This is since the adjoint ODE needs to be perturbed by the



Variational inference for nonlinear ODEs

gradient of the cost function with respect to the ODE solution at each time point. Since the perturbed system is
slightly different for each pair of time points the solver might cumulatively incur significantly higher steps (and
evaluations of the right hand side) when compared to solving between the first and last time points only once, as
in the forward sensitivity method.

For large systems where K ×D >> 2K +D adjoint method should be the default choice. But for smaller systems
where K ×D ≈ 2K +D adjoint method should be chosen only when the number of calls to the ODE solver is the
same if forward method had been used. This was the case for the linear noise approximation example. However,
for similar small systems, that is where K ×D ≈ 2K +D, the forward sensitivity would benefit if significantly
more calls to the solver is required for the adjoint method due to handling many measurement time points. Thus,
the choice between these methods cannot be trivially reduced to using adjoint method, by default, whenever we
have a system where D > K.

Our above recommendations are reflect the timing results for our benchmarking examples and are consistent with
the findings in Rackauckas et al. (2018). For this reason we have evaluated the VJP using both method. Using
our holistic approach one can try a few iterations of variational inference using each of this sensitivity techniques
and choose the most suitable one.

10.3 Calculating the state and parameter Jacobians

The state and parameter Jacobians: ∂f
∂X , ∂f

∂θ required in both the sensitivity methods can be formed explicitly.
This can be done using manual derivation or symbolic differentiation. Alternatively, using automatic differentiation
the vector-matrix products (see main text) can be directly evaluated without evaluating the matrices. Since, we
have used SciPy’s ODE solver thus using the SymPy symbolic system for calculating these matrices explicitly
was significantly faster than using PyTorch’s VJP routine. However, for models with a large state or parameter
dimensions avoiding explicit calculation of these matrices may appear beneficial.

We like to point out that writing a solver from scratch and the associated sensitivity methods in PyTorch, or any
other AD package that supports just-in-time compilation, can be an altogether different approach than the ones
we have taken, and mentioned above. Our approach on the other hand can be easily integrated with domain
specific modelling software, that use legacy solvers, with just the additional effort of implementing a suitable
Python wrapper.

11 Appendix C

11.1 SIR model marginal density plots

Figure 4 compares the marginal distributions, shown as kernel density plots, for the SIR model between VI and
NUTS using forward (figure 4(a)) and adjoint (figure 4(b)) based VJP. Note that these marginal distribution
were summarised in Table 1.

11.2 SIR model pairwise joint density plots

Figure 5 shows the pairwise joint density plots for results obtained from running VI and NUTS. Notice how
well the strong correlation is captured by VI in comparison to NUTS. These plots are based on running VI and
NUTS with forward sensitivity, since this method for VJP was found to be faster than adjoint. However, we get
similar density plots (not shown here for brevity) corresponding to adjoint sensitivity based VJP.

11.3 Protein Transduction model marginal density plots

Figure 6 compares the marginal distributions, shown as kernel density plots, for the protein transduction model
between VI and NUTS. Note that these marginal distribution were summarised in Table 1.

11.4 Protein Transduction pairwise joint density plots

In the following figures we show the pairwise joint density plots for results obtained from running VI with forward
(figure 7) sensitivity.



Variational inference for nonlinear ODEs

(a) (b)

Figure 4: SIR model marginal density plots: (a) using Forward and (b) using Adjoint sensitivity based VJP.

The pairwise plots for the NUTS results are shown in figure 8, again using forward sensitivity based VJP. Similar
to the SIR model results we notice that VI can capture the strong correlations in the posteriors well. See for
example the joint densities between parameters p2, p3 and p5, p6. Such good quality estimates as delivered by our
proposed method is crucial in scientific data analysis applications such as uncertainty quantification in complex
systems and inverse problems.

11.5 Protein Transduction model fit plots

In figure 9 we show the model fit to the simulated data. The model fit is shown by drawing the mean and 95%
credible intervals from the posterior predictive distributions. This model fit is based on the results obtained after
running VI and NUTS with forward sensitivity based VJP. Again for brevity we have not shown here similar
plots corresponding to adjoint sensitivity based VJP, which produces similar results.

11.6 Protein Transduction model additional results

For the protein transduction model, in order to generate the simulated data for benchmarking inference we
have used artificial noise corruption. For this reason we repeated the inference processes using two additional
realisations of noise corrupted simulated data. We found similar estimates to what we reported in the main
text and above while carrying out this repeat of the inference steps using both VI and NUTS. We did this to
ensure that our findings are consistent and not an artefact of artificial noise corruption. In figure 10 we plot the
marginal distributions obtained from running VI and NUTS with one of the additional datasets. The run-time
corresponding to VI-FOR, VI-ADJ, NUTS-FOR, NUTS-ADJ were found to be 456, 1050, 2420 and 6101
seconds respectively.

11.7 Lotka-Volterra model marginal density plots

Figure 11 compares the marginal distributions, shown as kernel density plots, for the stochastic Lotka-Volterra
model between VI and ABC-SMC using forward and adjoint based VJP.



Variational inference for nonlinear ODEs

(a) (b)

Figure 5: SIR model pairwise joint density plots: (a) for VI and (b) for NUTS.

11.8 Lotka-Volterra pairwise joint density plots

Figure 12 shows the pairwise joint density plots for results obtained from running VI and ABC-SMC. These
plots are based on running VI with adjoint sensitivity.

11.9 Lotka-Volterra model fit plots

In figure 13 we show the model fit to the simulated data. This model fit is based on the results obtained after
running VI and with adjoint sensitivity based VJP.



Variational inference for nonlinear ODEs

(a) (b)

Figure 6: Protein transduction model marginal density plots: (a) using Forward and (b) using Adjoint
sensitivity based VJP. The black line denotes the true generative parameter values.



Variational inference for nonlinear ODEs

Figure 7: Protein transduction pairwise joint density plots obtained from running VI with forward sensitivity
based VJP.



Variational inference for nonlinear ODEs

Figure 8: Protein transduction pairwise joint density plots obtained from running NUTS with forward
sensitivity based VJP.



Variational inference for nonlinear ODEs

(a) (b)

(c) (d)

(e)

Figure 9: Model fit plots for protein transduction model. Mean (solid lines) and the 95% credible intervals
(dashed lines) of the posterior predictive distributions are plotted. These plots are based on running VI and
NUTS with forward sensitivity based VJP.



Variational inference for nonlinear ODEs

(a) (b)

Figure 10: Protein transduction model marginal density plots for one of the additional artificial dataset:
(a) using Forward and (b) using Adjoint sensitivity based VJP. The black line denotes the true parameter
values.

(a) (b)

Figure 11: Stochastic Lotka-Volterra model marginal density plots: (a) using Forward and (b) using
Adjoint sensitivity based VJP. The black line denotes the true parameter values. The black line denotes the
true parameter values.



Variational inference for nonlinear ODEs

(a) (b)

Figure 12: Lotka-Volterra model pairwise joint density plots: (a) for VI (with adjoint sensitivity) and (b) for
ABC-SMC.

Figure 13: Lotka-Volterra model fit plots for inference using VI-ADJ and ABC-SMC. Mean (solid lines)
and the 95% credible intervals (dashed lines) of the posterior predictive distributions are plotted.


