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Abstract

We apply the reparameterisation trick to ob-
tain a variational formulation of Bayesian in-
ference in nonlinear ODE models. By invok-
ing the linear noise approximation we also ex-
tend this variational formulation to a stochas-
tic kinetic model. Our proposed inference
method does not depend on any emulation of
the ODE solution and only requires the exten-
sion of automatic differentiation to an ODE.
We achieve this through a novel and holistic
approach that uses both forward and adjoint
sensitivity analysis techniques. Consequently,
this approach can cater to both small and
large ODE models efficiently. Upon bench-
marking on some widely used mechanistic
models, the proposed inference method pro-
duced a reliable approximation to the poste-
rior distribution, with a significant reduction
in execution time, in comparison to MCMC.

1 Introduction

A major practical hindrance to the use of Bayesian
inference for nonlinear ordinary differential equation
(ODE) models is rooted in the computational burden
of MCMC algorithms which require repeated numeri-
cal integration of an ODE. For complex models such
computational burden appears prohibitive. Despite
its potential usefulness in ODE inference problems,
variational inference (Jordan et al.l [1999; Wainwright
et al., [2008) has seldom been the chosen method for
inference in comparison to MCMC. The fundamental
limitation arises from the fact that variational inference
requires expectations of the likelihood with respect to
the approximating density. In ODE inference problems
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this expectation is intractable. In more broader terms
this is the case for any likelihood distribution that is
parameterised using a nonlinear function. Thus, all
classical applications of variational inference were lim-
ited to probabilistic models where this expectation is
analytically tractable.

In this paper we build on recent advances (Kingma
et al., 2014; Kucukelbir et al., |2017) in variational
inference that enables Bayesian inference of parameters
of nonlinear functions such as a neural network, which
can be evaluated and differentiated using automatic
differentiation (AD) (Baydin et al.,|2017)), and posit the
ODE parameter estimation task as a model agnostic
(as our method remains same for any ODE model and
likelihood distribution) variational inference problem.

A variety of ODE based methods exist (see Chapter 9
in [Sarkka and Solin| (2019)) for approximating the tran-
sition distribution of a stochastic model. Our proposed
variational formulation can be easily adopted to carry
out inference in such models using any chosen ODE
based approximation. We demonstrate this through
the application of the linear noise approximation (LNA)
(Kampen, 2007 of a stochastic kinetic model.

2 Inference of ODE parameters

We begin by first introducing the Bayesian framework
for inference in a coupled non-linear ODE defined as
dX(t)
dt

= f(X(1),0) (1)

where X (t) € R is the solution, at each time point, of
the system composed of K coupled ODEs — the state
vector — and @ € R? is the parameter vector that we
wish to infer. f(-) is a non-linear function representing
the vector field. Let X(xo;0) denote the solution
of the above system of equations at some specified
time points given a set of parameters @ and initial
conditions Xg. In certain models the initial conditions
are unknown and these are then estimated along with
the model parameters. In these cases we simply extend
the parameter vector 8 to include the unknown initial
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conditions. Also, for notational clarity we omit the
dependence of xg and denote the parameterised ODE
solution as X (0) := X (xg;0) throughout the rest of
this paper.

Consider a set of noisy experimental observations
y € RT*K observed at T experimental time points,
{t; 312", for the K states. We can obtain the likelihood
p(y| X (0)) and combine that with a prior distribution
p(0) on the parameters, using the Bayes theorem, to
obtain the posterior density as

P(6ly) = 2 p(y| X(6))p(6), )

where Z = [p(y|X(0))p(0)do is the intractable
marginal likelihood. Due to this intractability we resort
to approximate inference and apply MCMC.

2.1 Variational inference

Using variational inference we can approximate p(6|y)
with a tractable distribution ¢(8|A) from a family of
distributions ¢(-|\), indexed by A, by minimising the
Kullback-Leibler divergence KL(q(8|)||p(6|y)). Direct
optimisation of KL(q||p) is intractable. Alternatively,
an equivalent quantity, a lower bound to the marginal
likelihood, is maximised. This quantity often referred
to as the evidence lower bound (ELBO) (Jordan et al.
1999)) is a tractable objective given by

L(X) = E[log p(y| X (8))p(8)] — E[log ¢(6| )]
= E[log p(y| X (0))p(60)] + H[q(6|N)]

where H denotes the entropy of a distribution and the
above expectations are with respect to ¢(@|A). The
goal is then to maximise the ELBO with respect to A
in order to find a (possibly unique) A* that gives the
tightest bound.

(3)

Note that for an ODE model the first term in Equa-
tion that is the expectation of the joint density is
intractable. Thus, classical mean-field variational infer-
ence algorithms, relying upon this expectation, cannot
be applied directly to an ODE problem. Next, we show
how this intractability can be overcome using Monte
Carlo (MC) quadrature.

3 Variational inference for ODEs

Note that if gradient of the ELBO, w.r.t the variational
parameter A, is available then variational inference can
be formulated as a simple gradient descent problem as
follows:

A= A+nVAL(A), (4)

where 7 is a learning rate. For an ODE model this
gradient formulation requires the gradient of an in-
tractable expectation. Using the reparameterisation

trick [Kingma et al.| (2014); [Rezende et al.| (2014]); Tit-
sias and Lazaro-Gredilla (2014) we can express the
variational approximation ¢(@|\) as a non-centred pa-
rameterisation (Papaspiliopoulos and Roberts, |2003)).
That is we can write 6 as the output of an invertible,
differentiable function g(A, €) using a parameter-free
distribution p(€). Using this reparameterisation of
q(0]A) we can push the gradient inside the expectation,
which in turn can be approximated by MC quadrature.
The resulting MC estimate, using L samples, of the
gradient of the ELBO is given by

VaLuc(A) = VaH[g(0|A)]

+ % ZXZ Vo [log {p(le(GZ))p(Ol)H Vag(A, e)

(5)
where ' = g(X,e®) and €® ~ p(e). Using the MC
estimation of the derivative of the ELBO, and con-
sidering the fact that we will be using differentiable
probability distributions for the likelihood and priors,
we can find the desired A* using the following update:

A= A+ VaLuc(A). (6)

Note that a variety of stochastic gradient descent al-
gorithms (the stochasticity in this case results from
the MC estimation) can be employed to carry out the
optimisation.

3.1 Constraint on the choice of the
approximation

For a large number of inference problems we may con-
strain the ODE parameters to be positive. For this
purpose we generally put prior distributions with sup-
port on positive reals. Such priors immediately restrict
the class of available distributions for ¢(@|A). In order
to alleviate this constraint, Kucukelbir et al.| (2017) pro-
posed to transform the support of the latent variable, in
our case the ODE parameters 6, to the unconstrained
real line RP. To do this we define, following (Kucukel
bir et al., 2017), a diffeomorphism, T : RZ; — RP,
and subsequently the transformed parameter vector
¢ = T(0). The posterior density p(0ly), with the
above transformation, is given by

p(6ly) o p(yl X (T~ ($))p(T " (¢)) | det @

7

where Jp—1(¢) is the Jacobian of the inverse of T'. This
transformation lets us choose an approximating distri-
bution ¢(¢|\) with unconstrained support, such as a
Gaussian. Samples on the original parameter space can
be recovered by inverting the transformed parameter
samples: @ = T~1(¢), & ~ q(¢p|\). Thus, in summary
we need to choose and apply two transformation 7(0)
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and g(A, €), the former for transforming the support of
the model parameters and the latter for the non-centred
parameterisation.

Considering these transformations, we can now re-write
the expression for the gradient of the ELBO as follows:

Valuc(A) = VaH[q(d|N)]

L
" % > Voo [logpy X (T (@))p(T(6)
=1
+log | det Jp1(6") | [Vag(r, )

(8)
where @ = T~1(¢) and @' = g(X,e®), €D ~ p(e).

AD, after extending to an ODE, can be used to obtain
this gradient to carry out the update in Equation @
The computational graph for evaluating the ELBO and

its gradient is shown in Figure

3.2 Full-rank Gaussian variational
approximation

A common choice of variational approximation is a
factorised (among the dimensions of ¢) distribution
q(@) = H? q:(¢;), for example a Normal distribu-
tion with a diagonal covariance. However, these fac-
torised distributions would always lack the ability
to capture the strong correlation among the parame-
ters of a nonlinear ODE. Instead, we use a full-rank
Gaussian distribution as the variational approximation:
q(d|A) = N(¢|p,X), where the vector A = (p, )
concatenates the mean vector p and the covariance ma-
trix 3 and represents the variational parameters. To
ensure that the covariance matrix X remains positive
semidefinite we can parameterise the covariance using
Cholesky factorisation, ¥ = LLT, where we use AT
to denote the transpose of the matrix A with a slight
abuse of notation. Thus, the variational approxima-
tion becomes: ¢(¢|A) = N(¢|u, LLT). Furthermore,
to have a unique L we parameterise the diagonal el-
ements by taking their logarithm. Hence, the varia-
tional parameters X = (u, (Lo, Ldmg)T) live in the
unconstrained space RPHP(P+1)/2  where we use the
shorthands Lg;q4 1= logdiag(L) and Loy := L; jeiz;
to denote the D(D+1)/2 real-valued entries parameter-
ising L. The required re-parameterisation, ¢ = g(\, €),
then simply follows as the location-scale transform
¢=p+ Le, €~ N(0,1).

The true posterior distribution for an ODE might not
resemble a Gaussian density. However, modelling ¢
with a Gaussian density in the unconstrained space
will induce a non-Gaussian density on the constrained
parameters 8. Moreover, a full-rank Gaussian has
the potential to capture, adequately, the nonlinear
correlation structure of the true posterior distribution.

4 Inference in stochastic kinetic
models

Consider a reaction network with u species Xi,..., X,
and v reactions Ri,...,R,. We can write a typical
reaction R; as:

Ri: panXi+.. 40Xy = an X1+ +¢uXu. (9)

Let the vector X, = (X1(t),..., X, (t)) denote the num-
ber of molecules of each of the u species. The model
dynamics can be described by defining a rate (or haz-
ard) function h; (X, ¢;), depending on a rate constant
¢; giving the overall hazard of the occurrence of reac-
tion R;. Under the assumption of mass action kinetics
this hazard function is given by

u
hi(X,ei) =a [ (Xj(t)) i=1,...,u. (10)
j=1 \ Pij

We are primarily interested in the inference of the vector
of rate constants ¢ = (c1,...,¢,). This system can be
modelled as a Markov Jump Process (MJP), where
the probability of a reaction of type ¢ occurring within
an infinitesimal time interval (¢,t + dt] is h;(X, ¢;).
With the occurrence of a type ¢ reaction the system
state changes via the i-th row of the net effect matrix
A e R¥*¥, with (4, j)-th component: A; ; = g;; — pij-
Conveniently, we will use the stoichiometry matrix
S = AT. With a specified vector of rate constants c
and an initial system state Xy, an MJP can be exactly
simulated using the stochastic simulation algorithm
(SSA) (Gillespie, 1977)).

Let us now consider the problem of inferring ¢ given
a realisation of the time evolution of the system state
Y € RTX" observed at T discrete time points. Note
that the MJP has an intractable likelihood. Thus, to
arrive at a posterior distribution p(c|Y), often an ABC
approximation

P(elY) = pelel®) = plel{ - 3 1o, X) <9 }),

m=1

(11)
is used where X := {X;}])' denotes a simulated tra-
jectory obtained through SSA. p(-) denotes a distance
function, such as the Euclidean distance between the
trajectories Y and X. 1(-) is the indicator function, € a
chosen tolerance and M is the chosen number of simu-
lations. We can obtain the exact posterior when € — 0.
Similar to MCMC, all ABC methods are simulation
intensive and thus a faster alternative is desirable.

4.1 Linear noise approximation

Assuming a constant hazard over the infinitesimal time
interval (¢,¢ + dt], the MJP can be approximated (see
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Figure 1: Computational graph for evaluating the ELBO: The function Odelnt(-) represents a numerical ODE
solver that can produce a continuous (dense) solution. A nonlinear ODE solution does not have an analytical
expression, thus we implement a custom Op (see Figure [2]) to facilitate this function. (a) ELBO for inference
in an ODE model. (b) ELBO for the LNA approximation that involves one ODE solve between each pair of
observation. In this case each ODE is initialised with value of the observation at the previous time point.

Appendix A) using the following Ito stochastic differen-
tial equation, known as the chemical Langevin equation
(CLE) (Gillespie, 2000)):

dX, = Sh(X;, e)dt + /S diag(h(X,. ¢))STAW,, (12)

where W; is a u-dimensional vector of standard Brow-
nian motion. The linear noise approximation (LNA)
further approximates the MJP by linearising the drift
and the noise (diffusion) terms in the CLE.

We begin by replacing the hazard in Equation with
a rescaled form: Qf(X;/Q,c), where Q2 is the volume
of the container in which reactions take place. We thus
have the rescaling of the CLE as:

dX, = QS F(X,/Q, e)di+\/QS diag(f(X,/Q, ) STdW;.

(13)
We now write the solution of the CLE as a deterministic
term plus a residual noise as follows (Kampen, [2007):
X, = QZ, + VQM,. The evolution of Z;, and M, are
given by the set of an ODE and SDE (see Appendix
A) as follows:

Az,
0 = S Zt7 ’
—t = Sf(20,0) "

M, = SEM,dt + /S diag(f (2. ¢))STAW,,

where Iy € RV** is the Jacobian matrix with (7, j)-th

components: %&tt;c) The expansion of X} into
J

Z, My along with Equation comprises the LNA

approximation. Given a Gaussian initial value My ~
N (myg, Vo), the residual at time ¢ is given, upon solving
the linear SDE explicitly, by M; ~ N (my, V;) where
the mean and covariance are given by the following
ODEs (Golightly and Gillespie, [2013)):

? = SFymy,
d‘t/ (15)
th = V,FT'ST 4+ S diag(h(Z:, ¢))ST 4+ SFV;.

The ODEs for Z;,ms,V; need to be solved numeri-
cally with inital values: Zy = Xp/Q,mo = (X —
QZO)/\/Q,VO = Ouxuy, Xp is a user supplied initial
number of molecules. The state at time ¢ is then
obtained as X; ~ N(Q2Z; + vVQmy, QV;). The linear
noise approximation of the system state A} is shown
to produce close approximation of the MJP, for high
concentration scenarios (Golightly and Gillespie, [2013)).

4.2 Inference using LNA

A realisation, using the LNA, of an MJP can be ob-
tained at discrete time points by sampling X; from a
Gaussian parameterised by the solution of the ODEs
for Z;, m; and V;. However, solving the ODE for Z;
once for the entire time horizon may lead to a poor
approximation (Giagosl 2010). Thus, to alleviate this
problem Z; can be set to X;/Q at each t and solved
along with V; within each time interval. In that case,
my = 0 for all t and need not be solved. This results
in X, ~ N(Q2Z,,QV,) for each t. Given an observed
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noise-free realisation (data) Y = X at T experimental
time points {ti}ingl, the desired posterior distribution

for c is then given by

prna(c|Y) o p(e)p(Yle)

T—-1

:p(c) p(yti yti—l’c)
;;[1 (16)
T-1

= p(c) H N(ytL taw le)v

i=1
where due to the noise-free nature of the observations
we solve the ODEs for Z;,, Vi, using Vs, , as the initial
number of molecules. Thus, we solve these ODEs
once between each pair of observations. Pseudocode

for calculating the likelihood above is given below in
Algorithm

Algorithm 1 LNA likelihood calculation

Input: Y, ¢, Q, {ti}iT:_Ol.

Initialise ¢ = 0, Z¢, = Y,/ and Vi, = Oyxa-

fori=1toT —1do
Solve the ODEs for Z;,, Vi, given by Equation
and within [¢;_1,%;] with initial values:
Zti—l ) Wi—l :
Obtain likelihood factors:
N(ytq tai’Q‘/%t)'
Set Z;, = Vi, /2 and set Vi, as a Oy xy-

end for

Obtain likelihood as product of the factors: p(Y|c) =

HZTZZI p(yti ytifl ) C)‘

Result: p(Y|c)

p(yti|yti—1’c) =

Note that prya(c|Y) is differentiable and thus the
variational formulation derived earlier can be easily
applied. Plugging this posterior in Equation (8]) we
have the ELBO for LNA given by

VaLuc(A) = VaH[q(¢|A)]
L
+ % ; Vg [logpITH(@)p(T(¢") (17)

+ log ‘ det Jr—1 (1) ‘ ]VAg()\,e(l))

where ¢ = T71(¢) and ¢' = g(A, eD),
The corresponding computational graph for evaluating
the ELBO, for the LNA approximation, is shown in

Figure

5 ODE sensitivity analysis

Suppose we are given a cost function, such as the ELBO,
on the ODE solution at the measurement times:

C(X(t) =Y e(X(t::9)). (18)

i

e ~ p(e).

Sensitivity analysis can be used to obtain the gradient
of the cost function w.r.t the ODE parameters. By

the chain rule w requires the model sensitivities

859(“. In forward sensitivity analysis we can obtain
the model sensitivities, at each time point, as the so-
lution to an initial value problem by augmenting the
state-space of system ODEs (Equation (T))) with the

sensitivity terms, Skq(t):

(0N _ 050X o
Cdt 00y 09X 09y 00y’

Skd(t) (19)

where g—)’; is the Jacobian of the velocity function f

with respect to the current state X (¢), and aand is the
gradient of the velocity with respect to the d-th param-
eter. This augmented ODE (X (t), Skq(t)) can then be
solved together using a chosen numerical method. In
adjoint sensitivity analysis (Rackauckas et al.l 2018) the
gradient of a scalar-valued cost function C(-), whose
input is the ODE solution, can be computed directly.
The first step is to solve a backwards ODE, the adjoint

problem:
da(t) T Of
dt X’
where at each experimental time point t; this backward
ODE is perturbed by w. The gradient of the
cost function with respect to the ODE parameters can
be evaluated by another quadrature as follows:

0 tiv1
c _ a(to)Taf(Xa(;O)’ ) +Z/t a(t)Tg—gdt

a0

(21)
Note that a continuous solution of the system and the
adjoint states is required for this scheme which can
be memory intensive if K is large. |Chen et al.|(2018)
avoided this bottleneck by solving the system, the
adjoint and the cost function ODEs simultaneously and
backward in time. However, this approach implicitly
assumes reversibility of ODE solvers. One can also
use a checkpointing (of a forward solve of X(t), at
each t;), scheme that uses backward integration for the
adjoint and cost function only. See Appendix B for
more details on this.

= —a(t) (20)

Forward sensitivity requires K x D ODEs to be solved,
in comparison to 2K + D for adjoint, which becomes
infeasible for systems with large parameter dimension.
However, as shown in [Rackauckas et al.| (2018)) forward
sensitivity can be much more efficient for small number
of parameters. Interestingly, many widely used mecha-
nistic models fall in this category. See Appendix B for
a discussion of the choice between these methods.

5.1 Extending AD to an ODE

In automatic differentiation a function composition is
broken down to a sequence of elementary operations,
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or ops in short, applied to the inputs as well as other
intermediate variables that have analytical expressions
for outputs and derivatives. Clearly for any composi-
tion of function involving an ODE, without analytical
expressions, it is impossible to express them using the
supported (library) ops of most standard AD packages.
To overcome this limitation we will give a recipe for
defining a custom (user supplied) operation that utilises
sensitivity analysis techniques described previously.

To illustrate the functionality of the custom op let us
introduce a simple example where we want to evaluate
an arbitrary differentiable function ¢ : RT*K — R,
whose input is a parameterised ODE solution, X (0).
We want to compute its function value z = £(X(6))
and its gradient % with respect to the parameter
vector using a custom ODE op and we further assume
that both the function £(X (0)) and its gradient X (0)
can be expressed analytically. The custom op receives
two arguments (see Figure [2). The first is simply
the ODE parameters 0 and the second is the adjoint,
%@7 where the latter being analytically tractable
is evaluated by library ops. The first input is used
to calculate the custom op’s output, that is the ODE
solution, while the latter is used to evaluate the action

of the op’s Jacobian on the adjoint:

92 9e(x(0)" 0X(0)
00 9x(6) 00

= 22
90 (22)
the vector-Jacobian product (VJP), which is returned
as and when the custom op’s gradient is queried. Note
that this is also the down-stream adjoint when 6 is the
output of another function.

VJP using forward sensitivity: In this case we mul-
tiply the ODE sensitivity a)gée)’ obtained along-with
the numerical solution, to the op’s second input, the
adjoint %7 directly to obtain the desired VJP
given by Equation . Since we are numerically im-
plementing the VJP we need to rearrange the adjoint

%((:))) and the sensitivity a)gée) to produce a vector

and a matrix respectively using the vec : R"*™ — R™™
operation which stacks the column of an n X m ma-
trix to produce an nm-dimensional vector. Applying

vec(%((:)))) we obtain the flattened T'K-dimensional

adjoint vector and subsequently we rearrange the sen-
sitivities to obtain a TK x D matrix. We can now
evaluate the desired numerical VJP for the custom op
as a matrix-vector product.

VJP using adjoint sensitivity: By repeatedly solv-
ing the cost function ODE given by Equation ,
and noting that the cost function ODE in this case
is %, the VJP can be directly evaluated, without
obtaining the Jacobian explicitly as in forward sen-
sitivity. The custom op’s second input, the adjoint

%(XL((;))) = (a(tg),...,a(tr)), at each time point is

used to perturb the adjoint ODE, in Equation .

X(0) = (X(to:0),.... X (t7-1:0))
Forward pass output:
DE(X(0)) The ODE solution
X(0) 9X(6) XD _ (4(10) altr_1)
Forward pass output: Input 1: 9X(0) 0)5-- ey fr—1
The ODE solution The adjoint Input 1:
The adjoint

Custom ODE op functionalities
using forward sensitivity

Custom ODE op functionalities
using adjoint sensitivity
Forward pass operation:

Solve original ODE forward in time
densely

X (0) = Odelnt(tg, tr—1;6)

Forward pass operation:
Solve augmented ODE

X(6), X0 — Odelnt(t, tr_1;6)

Backward pass operatiion:
Evaluate the matrix-vector product
0: _ 2X(0)T 0X(0)
00 — 0X(0) 00

Backward pass operatiion:
Interpolate original states, Solve adjoint
and cost function ODEs backward in time

%XO) — Odelnt(t7_1, tr-s, altr—1), X (t7-1); )
Repeat for intervalsi{tT_1,tt—2], ..., [t1,to]

Input 2:
The ODE Backward pass
parameters output:The VIP
9z
o %

Input 2:
The ODE Backward pass
parameters output:The VIP
Dz
6 %

Figure 2: Block diagram showing the functionalities of
a custom ODE op, for a simple illustrative example.

Using a custom ODE op as described above (see Figure
we can now evaluate the gradient of the ELBO in
Equation w.r.t A, end-to-end using AD, as long as
differentiable density functions are used for the prob-
abilistic components. Our custom op recipe can be
used with most AD package and any off-the-shelf ODE
solver. Note that either the system Jacobians %’; ,
or the corresponding matrix-vector products in ,
(21)) can be calculated in a number of ways including
AD. We have discussed these options in Appendix B.

6 Related work

Variational inference for ODEs: |[Meeds et al.
(2019)) proposed an amortised inference scheme ap-
plicable to ODEs. However, this method relied on
backpropagation through an ODE solver steps which
introduces numerical errors and high memory overload.
Using our AD approach for ODEs, high precision off-
the-shelf solvers can be easily used. |Gorbach et al.
(2017)) applied the mean-field variational inference to
ODEs using gradient matching. However, this method
suffers from the limitations of gradient-matching (see
below). Moreover, mean-field approximation is inade-
quate to represent the complex ODE posteriors.

Gradient matching using a Gaussian process (GP)
to emulate the velocity field, (Macdonald et al., [2016}
Wenk et al., [2019) can speed-up inference in ODEs.
However, such approaches require complete observabil-
ity [[] of the ODE states. This is the case in a handful

!By observability we mean that observations are avail-
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of models. Moreover, this approach is only applicable
to Gaussian likelihood. Our variational formulation is
applicable to problems with partially observed systems
and non-Gaussian likelihoods (see section .

Linear noise approximation has been used previ-
ously for Bayesian inference, using MCMC, in stochas-
tic models in [Fearnhead et al.| (2014); |Giagos| (2010));
Golightly and Wilkinson| (2015). By introducing the
variational formulation along with LNA, we provide a
faster alternative to these approaches.

AD for ODE solvers using adjoint sensitivity analy-
sis was proposed in [Chen et al.|(2018) for ODEs with
a velocity field described by neural networks. This
method is designed around the constraints posed by an
extremely large system. Our approach is more holistic
as we propose a framework useful for both small and
large systems.

7 Benchmarking

In order to evaluate the efficacy of variation inference
we used two models: i) the SIR and ii) protein transduc-
tion model. To test our inference method using LNA we
have used the stochastic Lotka-Volterra predator-prey
model.

For the first two problems we have compared the varia-
tional inference estimate against a corresponding “gold-
standard” MCMC estimate, where we have used the
No-U-Turn (NUTS) algorithm (Hoffman and Gelman),
2014)) because of its widespread use. For the stochastic
model we have compared variational inference using
our LNA approach to the ABC-SMC (Toni et al., 2009)
algorithm with a SSA based simulator of the MJP.

We have used Pytorch to implement our custom ODE
op and have used the LSODA solver (Petzold} [1983)
through SciPy’s Python wrapper. To obtain the system
Jacobians, g—)’;, g—g, we have used the SymPy package as
this has deep integration with Numpy and was found to
be faster than AD. However, we have provided code to
obatain these using AD as well. We have also used the
Pyro (Bingham et al., [2019) probabilistic programming
package, to easily compare variational inference with
the NUTS algorithm. For the ABC-SMC we have
written bespoke Python code with the SSA simulator
written in C++4-. The code can be accessed from https!
//github.com/sgbg10/VBODE

In all the examples, for variational inference, we have
used a stochastic gradient algorithm proposed in [Ku4
cukelbir et al.|(2017) which is a mixture of RmsProp
(Tieleman and Hinton, |2016) and AdaGrad (Duchi
et al., 2011)) for carrying out the optimisation. We

able for all the ODFE states

set the learning rate scale to 0.5 and have used 10,000
iterations with L = 1 throughout.

We considered 1000 independent samples generated
using MCMC representing, pointwise, the underlying
true posterior as the “gold standard”. For the first two
examples, two chains of NUTS is run for 1000 iterations
after an initial 500 warmup iterations. The NUTS sam-
ples, from the two chains, are then thinned to obtain
the 1000 samples. NUTS being a high ESS sampler
needs 1000 post-warmup iterations to produce roughly
~ 1000 independent samples from the posterior. For
plotting and summarising the posterior distributions,
and comparing to the “gold standard” we used 1000
samples from the variational approximation throughout.
We have used VI to refer to the variational inference
method.

7.1 The SIR compartmental model

The SIR model (Anderson et al., [1992) of infectious
disease models the number of susceptible (.S), infected
(I), and recovered (R) people in a population subjected
to an epidemic. The SIR model, for a population of N
people, is defined by the following ODE system:

ds 1 dl 1 dR

a _BSN’ a —ﬁsﬁ -1, r =1, (23)
where the infection 8 and recovery - rates are unknown
parameters. Also, we have N = S(t) + I(t) + R(t). To
illustrate the model fitting, we used data on common
colds infections in Tristan da Cunha obtained from
Toni et al.|(2009). This data consists of the number
of infections I, ps and number of recoveries Ryps for a
period of 21 days. The population size is N = 300. We
used only the number of infections time-series as data
for inference. In addition to 3, v we also estimated the
initial susceptibility, so = S(¢ = 0)/N, assuming the
initial recovered fraction ro = 0 and thus ig = 1 — sg.
As this is count data we have used a Poisson likelihood,
y(t)|5,7, so ~ Poisson(I(t)), and placed the following
priors: 8 ~ Gamma(2,1), v ~ Gamma(2,1) and sg ~
Beta(0.5,0.5).

We summarise the posterior marginals in Table |1} Ta-
ble [2| compares the run-time of VI (using both the
sensitivity techniques for the VJP) to NUTS. We no-
ticed a significant speed-up for VI and a good match
to the NUTS estimates. The model fit to the data
is shown in Figure [3| The density plots are shown in
Appendix C.

7.2 Protein transduction model

This model was first introduced in [Vyshemirsky and
Girolami| (2008]), and has been used consistently to
benchmark gradient-matching algorithms (see [Wenk
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Table 1: We summarise the mean + standard deviation of the posterior distribution of each parameter for
the three examples. We used VI-FOR,, VI-ADJ to denote estimates from VI run with the forward and adjoint

based VJP. Similarly, we denote NUTS-FOR, NUTS-ADJ to point out the associated VJP type.

THE SIR MODEL

VI-ADJ

NUTS-FOR

NUTS-ADJ

1.7182 £0.1171
1.2077 £ 0.0979
0.9960 £ 0.0013

1.7099 £0.1171
1.2077 £ 0.0760
0.9959 £ 0.0014

1.7182 £ 0.1163
1.2088 £ 0.0799
0.9960 £ 0.0012

VI-ADJ

NUTS-FOR

NUTS-ADJ

0.0683 + 0.0016
0.5865 + 0.0162
0.0498 £+ 0.0091
0.2964 £+ 0.0061
0.0205 £+ 0.0020

0 TRUE VALUE VI-FOR

8 - 1.7182 £ 0.1171
¥ - 1.2077 £ 0.0979
So - 0.9960 + 0.0013

THE PROTEIN TRANSDUCTION MODEL

0 TRUE VALUE VI-FOR

p1 0.07 0.0682 4 0.0017
P2 0.6 0.5855 4+ 0.0168
3 0.05 0.0497 4+ 0.0107
P4 0.3 0.2943 4+ 0.0060
s 0.017 0.0203 4 0.0020
Pe 0.3 0.4218 4+ 0.0819

0.4301 £+ 0.0868

0.0681 + 0.0015
0.5876 + 0.0147
0.0507 £ 0.0095
0.2955 + 0.0051
0.0197 £ 0.0018
0.3997 + 0.0769

0.0680 + 0.0015
0.5877 £ 0.0153
0.0513 £ 0.0094
0.2958 + 0.0052
0.0198 + 0.0018
0.4063 = 0.0765

THE STOCHASTIC LOTKA-VOLTERRA MODEL

c TRUE VALUE VI-FOR VI-ADJ ABC-SMC

c1 0.53 .5356 +0.0209  0.5356 £+ 0.0209 0.5314 4+ 0.0226
100 X c2 0.25 0.2484 +0.0092 0.2484 £ 0.0092  0.2434 + 0.0096
c3 0.3 0.2988 +0.0091  0.2988 £ 0.0091  0.3227 + 0.0163

et al| (2019) and references there in). This system is
described by the following ODEs:

$=—pS—paSR+psRS, dS =S,

: R
R=—p2SR+p3Rs + ps——"5—,
2 3 5p6+Rpp

: (24)
Rs = p2SR — psRs — paRs,
. R
Ryp = paRs — ps—%—,
PP Ds +Rpp
where the unknown parameters 8 = (pi,...,D6)

need to be estimated. @ We reproduced the ex-
perimental setup introduced in |Dondelinger et al.
(2013) where the system was simulated within
the time interval [0,100], and the states X(¢) =
(S(t),dS(t), R(t), Rs(t), Rpp(t)) at discrete time points
t=1[0,1,2,4,5,7,10, 15,20, 30, 40, 50, 60, 80, 100] were
corrupted with a Gaussian noise with ¢ = 0.01, to
form the observed data y. The parameters for the sim-
ulation was set to 8 = (0.07,0.6,0.05,0.3,0.017,0.3).
The initial values xo were set to [1,0,1,0,0] and as-
sumed to be known, as done in previous benchmark-
ing studies cited above. The likelihood is a Gaussian,
p(y|0) = [[, N(X(t:),0%), where [ is a 5 x 5 iden-
tity matrix. We place a Gamma(1,2) prior on all the
parameters.

The posterior estimates are summarised in Table [I| and
the run-times are again furnished in Table The
density and model-fit plots are shown in Appendix C.
In this case, for both forward and adjoint VI runs,

we noticed a significant (almost dramatic) speed-up.
This model is known to be challenging and thus the
NUTS algorithm tunes to a small step-size and slows
down. We repeated the inference process using two
more realisations of the artificial noise. Additional
results are summarised in Appendix C.

7.3 Stochastic Lotka-Volterra model

The stochastic Lotka—Volterra model (Wilkinsonl, [2018)
has been widely used for benchmarking (see [Fearnhead
et al.| (2014); |Giagos (2010))). This model describes a
population comprising of two competing species: preda-
tors which die with rate co and reproduce with rate c;
by consuming prey, which in turn reproduce with rate
c3. This system can be defined through the following
list of reactions:

R1 : X1 i) 2X1
Ry: X1+ Xo 22X, (25)
R3 . X2 i> @,

where we denote by X;, Xs the prey and predator
species respectively. We further denote the corre-
sponding numbers of the species as the system state
Xy = (X1(t), Xa(t)). The hazard vector for this system
is h(X;, c) = (1 X1 (1), co Xy (8) Xa(t), c3Xa(t)). Follow-
ing, |Fearnhead et al.| (2014) we assume that 2 = 1.
Thus, f(X;,¢) = h(X, ¢). The stoichiometry S and
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the Jacobian F; matrices are given by

1 -1 0 o 0
S = (0 1 _1> 5 Ft = CQZQ(t) CgZ1(t)

0 C3.
(26)
We set the initial values as Xy = (100,100) and the
rate constants as ¢ = (0.5,0.0025,0.3). With these
settings we generate the observed data Y, for the dis-
crete time points ¢ = [0 : 5 : 50], by simulating the
MJP. For inference we place the following priors on
the rates: ¢; ~ Beta(2,1) ¢z x 100 ~ Half A(0,1) and
cs ~ Beta(1,2). We carry out variational inference
with the LNA approximation as described in section
We also ran the ABC-SMC algorithm with the
SSA simulator. For ABC-SMC we used 1000 particles
with an adaptive tolerance schedule and a multivariate
perturbation kernel. We set the number of repeated

simulations M = 10 (see Equation (TI)).

Summaries of the posterior marginals are furnished in
Table [l Table P] compares the run-times. Similar to
the previous examples we noticed a significant speed-up
for VI in comparison to the ABC-SMC. The density
and model-fit plots are again shown in Appendix C.

25 SN - e Observations
420 e ™ vi
$1s 7 \ NUTS
=] PA ~
510 _e / v ~
- 5 /” ® 4 som T ® -a . ~——
s e ~___ T
0 ®__ - Temaemaa T oo
R R IR RN N N N N NS RO
25 o=
20 e Sa,
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Figure 3: Model fit plots for inference using Forward
(top) and Adjoint sensitivty (bottom) with the
SIR model on the Tristan da Cunha common colds
data (Toni et al., 2009). Mean (solid lines) and the
95% credible intervals (dashed lines) of the posterior
predictive distributions are plotted.

7.4 Discussion

Throughout we did not notice an underestimation of
the posterior variances, a pathology of mean-field vari-
ational approximation. In fact, the joint distributions
(see Appendix C) from variational inference were almost
indistinguishable to their MCMC/ABC counterparts.
This means that the full-rank approximation is able

Table 2: Run-times in seconds, rounded-off to nearest
integer, for all the different inference methods run on
the three model examples. These were run on a 3.6
GHz machine with 16 GB memory.

METHODS SIR  LOTKA-VOLTERRA PROTEIN
VI-FOR 171 7904 446
VI-ADJ 398 5272 1012
NUTS-FOR 344 - 3707
NUTS-ADJ 827 - 10303
ABS-SMC —— 13072 ——

to capture the correlation structure of the parameters
well.

Interestingly, the adjoint based VI appears to be faster
than the forward one for the LNA example. The LNA
likelihood, unlike the first two examples, requires same
number of calls to the ODE solver for both sensitivity
method, since the system needs to be solved between
each pair of measurements. The adjoint VJP calcula-
tion involves fewer (2u+v = 15 vs u x v = 18) coupled
ODEs in comparison to forward VJP. Thus, adjoint is
faster in this case.

The protein model is the trickiest due to identifiability
problems. For this model, through a few pilot runs, we
found that up to 10,000 iterations are required. We
identified convergence by monitoring the ELBO, and
also comparing the marginal, joint distributions with
the corresponding estimates obtained through MCMC.
We then simply fixed this number for the other models,
although fewer iterations for the SIR, Lotka-Volterra
models would have sufficed.

8 Conclusion

We presented a variational formulation of Bayesian
inference of ODE parameters. We applied this formula-
tion to stochastic models using the LNA approximation.
Furthermore, we proposed a holistic framework for ex-
tending automatic differentiation to ODEs. We bench-
marked the benefits of this approach by evaluating
our proposed approach on three biological mechanistic
models where we observed a significant speed-up of
the parameter estimation process, without any signifi-
cant lack in the quality of estimates in comparison to
sampling based (MCMC/ABC) alternative inference
methods.

Acknowledgements

We like to thank the anonymous reviewers for their
helpful comments and suggestions. We also like to
thank Gary Mirams, Martin Robinson and the PINTS



Variational inference for nonlinear ODEs

team for discussion and feedback on some aspects of
this work. SG was supported by the Medical Research
Council (Unit programme number MC UU 00002/11).

References

Roy M Anderson, B Anderson, and Robert M May.
Infectious diseases of humans: dynamics and control.
Oxford university press, 1992.

Atilim Giines Baydin, Barak A Pearlmutter, Alexey An-
dreyevich Radul, and Jeffrey Mark Siskind. Auto-
matic differentiation in machine learning: a survey.
The Journal of Machine Learning Research, 18(1):
5595-5637, 2017.

Eli Bingham, Jonathan P Chen, Martin Jankowiak,
Fritz Obermeyer, Neeraj Pradhan, Theofanis Kar-
aletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D Goodman. Pyro: Deep universal probabilis-
tic programming. The Journal of Machine Learning
Research, 20(1):973-978, 2019.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural ordinary differen-
tial equations. In Advances in neural information
processing systems, pages 6571-6583, 2018.

Frank Dondelinger, Maurizio Filippone, Simon Rogers,
and Dirk Husmeier. ODE parameter inference using
adaptive gradient matching with Gaussian processes.
In Proc. 16th Int’l Conf. on Artificial Intelligence
and Statistics, pages 216-228, 2013.

John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. Journal of machine learning
research, 12(Jul):2121-2159, 2011.

Paul Fearnhead, Vasilieos Giagos, and Chris Sherlock.
Inference for reaction networks using the linear noise
approximation. Biometrics, 70(2):457-466, 2014.

Vasileios Giagos. Inference for auto-regulatory ge-
netic networks using diffusion process approxima-
tions. PhD thesis, Lancaster University, 2010.

Daniel T Gillespie. Exact stochastic simulation of
coupled chemical reactions. The journal of physical
chemistry, 81(25):2340-2361, 1977.

Daniel T Gillespie. The chemical langevin equation.
The Journal of Chemical Physics, 113(1):297-306,
2000.

Andrew Golightly and Colin S Gillespie. Simulation
of stochastic kinetic models. In In Silico Systems
Biology, pages 169-187. Springer, 2013.

Andrew Golightly and Darren J Wilkinson. Bayesian
inference for markov jump processes with informative
observations. Statistical applications in genetics and
molecular biology, 14(2):169-188, 2015.

Nico S Gorbach, Stefan Bauer, and Joachim M Buh-
mann. Scalable variational inference for dynamical
systems. In Advances in Neural Information Pro-
cessing Systems, pages 4806-4815, 2017.

Matthew D Hoffman and Andrew Gelman. The no-
u-turn sampler: adaptively setting path lengths in
hamiltonian monte carlo. Journal of Machine Learn-

ing Research, 15(1):1593-1623, 2014.

Michael 1T Jordan, Zoubin Ghahramani, Tommi S
Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine
learning, 37(2):183-233, 1999.

N. G. Van Kampen. Stochastic Processes in Physics
and Chemistry (Third Edition). North-Holland, 2007.

D P Kingma, Max Welling, et al. Auto-encoding vari-
ational bayes. In Proceedings of the International
Conference on Learning Representations (ICLR), vol-
ume 1, 2014.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, An-
drew Gelman, and David M Blei. Automatic dif-
ferentiation variational inference. The Journal of
Machine Learning Research, 18(1):430-474, 2017.

Benn Macdonald, Mu Niu, Simon Rogers, Maurizio Fil-
ippone, and Dirk Husmeier. Approximate parameter
inference in systems biology using gradient matching:
a comparative evaluation. BioMedical Engineering
OnLine, 2016.

Ted Meeds, Geoffrey Roeder, Paul Grant, Andrew
Phillips, and Neil Dalchau. Efficient amortised
Bayesian inference for hierarchical and nonlinear
dynamical systems. In Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97

of Proceedings of Machine Learning Research, pages
4445-4455. PMLR, 2019.

Omiros Papaspiliopoulos and Gareth Roberts. Non-
centered parameterisations for hierarchical models
and data augmentation. Bayesian Statistics, 7:307—
326, 01 2003.

Linda Petzold. Automatic selection of methods for solv-
ing stiff and nonstiff systems of ordinary differential
equations. SIAM journal on scientific and statistical
computing, 4(1):136-148, 1983.

Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit,
Xingjian Guo, Mike Innes, Jarrett Revels, Joakim Ny-
berg, and Vijay Ivaturi. A comparison of automatic
differentiation and continuous sensitivity analysis for
derivatives of differential equation solutions. arXiv
preprint arXiv:1812.01892, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In Pro-
ceedings of the 31st International Conference on Ma-



Variational inference for nonlinear ODEs

chine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 1278-1286. PMLR, 2014.

Simo Sarkka and Arno Solin. Applied stochastic differ-
ential equations. Cambridge University Press, 2019.

T. Tieleman and G Hinton. Lecture 6.5-rmsprop: di-
vide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Ma-
chine Learning, 4, 2016.

Michalis Titsias and Miguel Lazaro-Gredilla. Doubly
stochastic variational bayes for non-conjugate infer-
ence. In Proceedings of the 81st International Con-
ference on Machine Learning, volume 32 of Proceed-
ings of Machine Learning Research, pages 1971-1979.
PMLR, 2014.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P.H
Stumpf. Approximate Bayesian computation scheme
for parameter inference and model selection in dy-
namical systems. Journal of the Royal Society Inter-

face, 6(31):187-202, February 2009.

Vladislav Vyshemirsky and Mark A Girolami. Bayesian
ranking of biochemical system models. Bioinformat-
ics, 24(6):833-839, 2008.

Martin J Wainwright, Michael I Jordan, et al. Graph-
ical models, exponential families, and variational
inference. Foundations and Trends®) in Machine
Learning, 1(1-2):1-305, 2008.

Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S.
Gorbach, Andreas Krause, and Joachim M. Buh-
mann. Fast gaussian process based gradient matching
for parameter identification in systems of nonlinear
odes. In Proceedings of Machine Learning Research,
volume 89 of Proceedings of Machine Learning Re-
search, pages 1351-1360, 2019.

Darren J Wilkinson. Stochastic modelling for systems
biology. CRC press, 2018.



