
Appendix
Competing AI: How does competition feedback affect machine learning?

A Extended Discussion

Due to space constraints, we continue a supplementary discussion here (Appendix A). Experimental details and
supplementary figures can be found in Appendix B and mathematical details can be found in Appendix C.

A.1 Economic & Multi-Agent Theory

Many of the concepts and quantities we study in this work have parallels in economic theory [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
For example, quality of prediction is a notion of consumer welfare. The economics literature tends to focus on
competition between firms or mathematical agents, rather than on specific ML predictors. It would be an interesting
direction for future work to connect and extend our learning competition framework from the economic perspective.

A.2 Softmax Model

We include additional details and justifications for the model proposed in Section 2. Our proposed model of user
choice satisfies Luce’s choice axioms [11, 12, 13, 14] and emerges from the established information-theoretic notion
of rational inattention in economics [15, 16, 17, 18]. The softmax form in particular can be derived from optimal
decision making under information processing constraints [19, 20, 21].

A.3 Feedback Loops in ML Systems

Feedback loops, where two systems repeatedly influence and have access to only the decisions of the other, have
been studied in supervised and reinforcement learning [22]. A related and interesting example includes the feedback
in online reviews on digital media platforms [23, 24, 25]. Existing works examine feedback loops in the single-agent
setting [26], with particular branches proposing metrics to recover counterfactuals of consumer preferences fixing
consumer strategy [27, 28]. The effects of competition in ML holds significant implications to sociology [29, 30],
economics [31, 32, 33], electoral systems [34, 35], and recommendation systems [36, 37, 38, 39]. [40] studies an
interesting but substantially different model of bandits in matching markets. The model we study here is also
distinct from standard settings for online learning or active learning, where typically a single algorithm gets to
explore and select data. In our setup, each data selects one among several competing algorithms.

B Experimental Details

The implementation for the experiments may be found on GitHub in repository: tginart/competing-ai.

B.1 Supervised learning

We ran three datasets for our supervised learning simulations: Postures [41, 42], Adult Income [42], and
FashionMNIST [43]. Postures has 5 classes. Adult Income has 2 classes. FashionMNIST has 10 classes. In the
main text we reported results for NN and MLP. Our implementation is in Python [44] using Pytorch [45] and
Numpy [46] frameworks.

B.1.1 Hyperparameters and Training Protocols

Seed samples For each data set we set a number of seed samples that was sufficient to train a model to perform
slightly (a few percentage points) better than random guessing. For Postures and Adult we set a seed size of
3 samples. For FashionMNIST we set a seed size of 100.
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Algorithm 1 Competing predictors in supervised learning

Input: Set of competing predictors {A(1),...,A(k)}, general population distribution D, prediction quality function q.
# To initialize, all predictors warm-start with s∈N i.i.d. seed data
for i∈ [k] do

IID random sample D(i)
seed :={(x

(i)
0,j ,y

(i)
0,j)}

s
j=1∼D

Train a predictor A(i)
1 using D(i)

seed.
end for
# The competition begins
for 1≤ t<T do

Random sample (xt,yt)∼D # User samples from the general population
For all i∈ [k], predictor A(i)

t proposes a prediction ŷ(i)t , i.e., ŷ(i)t =A
(i)
t (xt)

User selects a winner wt∈ [k] based on {q(yt,ŷ(1)t ),...,q(yt,ŷ
(k)
t )} # User decides which predictor to query based on the

prediction quality
Winner updates the current model A(wt)

t and defines A(wt)
t+1 by retraining with a new datum (xt,yt)

end for

NN For NN, we always use one nearest-neighbor to keep things simple. Because the method is non-parametric,
training the model just consists of appending each new sample to the data matrix. Refer to [47, 48] for more details
on the nearest-neighbor algorithm.

MLP For the MLP, we use the same architecture hyper-parameters for each α in order to ensure consistency.
All predictors used the same hyper-parameters and training protocol as well. We selected these by doing a small
amount of manual tuning. We use Pytorch’s Adam optimizer [49] to train our MLPs (with default settings). For
all datasets, we use 1 hidden layer. At the start of the competition, we used Pytorch’s default initialization. After
this, we never reinitialized the weights. Instead, we always fine-tune the weights from the previous training pass.
Refer to [50] for more details about MLPs.

For Postures the input width is 16 and the hidden width is 16. We used a learning rate of 10−3. After the initial
training on the seed samples, we retrained after every 4th new data point was added to the set. When training,
we used we batch size of (up to) 32. We randomly shuffled the data for each training instance. We trained until
we had updated on 1,000 data points or reached 32 epochs (whichever was met first – this depended on the number
of data samples the predictor had observed).

For Adult Income the input width is 50 and the hidden width is 64. We used a learning rate of 10−3. After
the initial training on the seed samples, we retrained after every 32nd new data point was added to the set. When
training, we used we batch size of (up to) 32. We randomly shuffled the data for each training instance. We trained
until we had updated on 1,000 data points or reached 32 epochs.

For FashionMNIST the input width is 784 and the hidden width is 400. We used a learning rate of 10−4. After
the initial training on the seed samples, we retrained after every 500th new data point was added to the set. When
training, we used we batch size of (up to) 50. We randomly shuffled the data for each training instance. We trained
until we had reached 30 epochs.

Number of Iterations The simulation takes time (roughly) quadratic in the number of iterations because of
the frequent retraining that takes place. For Postures and Adult, we run the competition for 2,000 rounds when
using the NN and we run the competition for 4,000 rounds when using the MLP. For FashionMNIST we run the
competition for 10,000 rounds for both algorithms.

B.2 Collaborative Filtering

Wedescribe the protocol for the collaborative filtering experiments in detail. Recall that at each round t, one ofm users
is sampled uniformly at random. The sampled user at time t, denoted Ut, must then query one of k recommenders.
The selected recommender then recommends one of r items. We have an underlying preference matrix,M ∈ [0,1]r×m

such thatMij is the j-th user’s preference score for item . The goal of the users is to maximize the the preference score

Preference Matrix For our simulation we set r←12 andm←64. We sweep over k as seen in Fig. 4. We sample
Wij ∼N(0,1) for W ∈Rm×3 and we sample Vij ∼N(0,1) for V ∈Rr×3. We compute M ′=VWT and then affine
scale M ′ onto [0,1] to produce the final preference matrix M . The final rank of M is 4 (the rank increases by 1
due to the affine scaling).



Users Eachuser operates independently of the otherswithout sharing data or otherwise communicating. Users treat
each recommender as an arm in a k-arm bandit problem. Users operate as if the arms are stationary in time (although
this is actually false since the recommenders can improve in time). The reward each user obtains from each recommen-
dation is dictated the underlying preference matrix. Each user uses an ε-greedy strategy to SELECT a recommender.
When user i is selecting ε←τ−0.3

i where τi is the total number of rounds in which user i has participated thus far.

Recommenders Recommenders use online matrix factorization to reconstruct the underlying preference matrix.
Each recommender uses an ε-greedy strategy to recommend items to users based on their current representation.
Recommenders do not directly observeMij when they recommend item i to user j. Instead, they observe noisy
feedback sampled from a Bernoulli trial with mean Mij . Recommender a has their own copy of Ŵ (a) ∈ Rm×4

and V̂ (a) ∈ Rr×4 which are initialized with independent uniform random entries. See algorithm below for the
psuedo-code for this implementation. The dependence on a is implicit (again, each recommender solves their own
instance of the problem with their own data).

Algorithm 2 Online Matrix Factorization Update for Collaborative Filtering

Input: User index i, item index j, Ỹ ∼Bern(Mij), number of observations for pair (i,j), denoted νij , learning rate γ
and regularization penalty λ

M̂ij← νij−1

νij
M̂ij+

1
νij
Ỹ # Update running average pair (i,j)

V̂i← V̂i−γ(M̂ij−ViWT
j )Ŵj−λV̂i # Update row from user matrix

Ŵj←Ŵj−γ(M̂ij−ViWT
j )V̂

(a)
i −λŴ (a)

j # Update row from item matrix

For our simulation we use λ=10−4 and γ=0.1. When recommender a chooses an item to select for user i they
select maxj{V̂ (a)

i Ŵ
(a)T
j } with probability 1−ε and a uniformly random item with probability ε. For consistency

with the users, we set ε←τ−0.3
a where τa is the number of recommendations given out by the recommender a thus far.

B.3 Additional Experiments

We include some additional experiments and figures. In particular, we sweep wider ranges of α and we also include
some additional simulations using logistic regression as the prediction algorithm.

In Fig. 6 we report the experiment in Fig. 3 using the logistic regression model. The trends are similar to what
we saw with the MLP and NN models. In Fig. 7 we report the experiment in Fig. 4 but for a wider range of α.
When α is large the prediction quality for users is monotone increasing and when α it is monotone decreasing.

(a) Adult – Log. Reg.
(b) Postures – Log. Reg.

Figure 6: Figure 3 experiment with Log. Reg.
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(a) Adult – NN (b) Adult – Log. Reg. (c) Adult – MLP

(d) Postures – NN (e) Postures – Log. Reg. (f) Postures – MLP

Figure 7: Figure 4 experiment with a larger sweep of α reported

C Mathematical Details

We include mathematical and theoretical details here. This includes formal definitions for the learning competition
as well as proofs of the theorems in Sec. 4.

C.1 Definitions

We proceed by formally defining the details of the competition dynamics which the theorems in the main text
use. This particular instance can be generalized to include a wider range of scenarios, including the collaborative
filtering simulations.

Definition C.1. (Supervised Prediction Competition)

Prediction competition G=(D,A,SELECT,T ) where

1. D is a general population distribution over X×Y⊆Rd×{1,...,|Y|} defining a supervised classification task
2. A={A(1),..,A(k)} is a set of k competing predictors such that each predictor A(i) updates a learning algorithm

over time as described in Sec. 2 of the main text.
3. A selection rule SELECT :Rk→ [k] is a function over Rk, i.e., a space of k prediction qualities, and outputs

one of the k predictors.
4. T ∈N is the number of rounds in the competition.

When it is unambiguous we may identify a predictor A(i) with their index, i∈ [k]. As mentioned in Sec. 2, we
will use the softmax rule, parameterized by 0≤α≤∞ as our user choice model at each round. We use 0-1 loss for `.



C.2 Proofs

C.2.1 Proof of Theorem 4.1

We proceed to restate and prove Thm 4.1. Note that many non-parametric methods are C-approximations to the
Bayes error rate. For example, the nearest neighbors method is a 2-approximation [51]. Here, we use the standard
notion of a C-approximation ratio in optimization (see [52]).

Theorem C.2 (Theorem 4.1). Suppose users have perfect information (α=∞) and each predictor is trained using
a non-parametric method that is asymptotically a C-approximation to the Bayes error rate. Let s= |D0| be the
number of i.i.d. seed samples that each predictor starts with and assume s≥5. Then there exists D such that for
any k>1, limt→∞

Rkt
R1
t

=∞.

Proof. It will suffice to construct a distribution that can be easily analyzed. Let P denote this distribution. At a high-
level, the strategy will be to construct a noise-free ground truth P that results in any particular predictor’s expected
error rate to be bounded away from 0. This suffices to complete the claim, since any non-zero expected risk is sufficient.

We proceed to define the distribution P . Let PX be a distribution over R.

PX(x)=


1
s x=1

1− 1
s x=0

0 else

and the marginal PY |X is defined by Y =X.

Fix an arbitrary predictor. Let E be the event that this fixed predictor’s seed set will lack any points labeled 1. Then:

Pr(E)=

(
1− 1

s

)s
≥ 1

4
(1)

Where the inequality holds for any positive s. On the other hand, let F be the event that at least one other
of the k−1 remaining predictors do sample a seed set that does contain a point labeled 1. Then:

Pr(F)=1−
(

1− 1

s

)s(k−1)

≥1−e−k+1 (2)

Since the events are independent, combining them yields:

Pr(F∩E)≥ 1

4
(1−e−k+1) (3)

Finally, to complete the argument, we point out that in the event F∩E , the fixed predictor will never obtain
a sample labeled 1 because they cannot predict a 1 due to the fact that they lack any such points in their seed
sets. Meanwhile, there exists another predictor who does have a seed point labeled 1 and will correctly predict
all points labeled 1. Thus, the fixed predictor will never obtain a zero error rate. In particular we have that

Rkt ≥Pr(F∩E∩{Y =1})=
1

4ks
(1−e−k+1)>0 (4)

for all t.

Of course, it is unavoidable that the error rate not decay to 0 for large s, but the linear rate of decay in the seed
size is also not particularly fast.

It is clear that because PY |X is deterministic, a C-approximation should also converge to zero in large t, but
we have shown that Rkt is bounded away from 0 for all t when k>1. This completes the proof.
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C.2.2 Proof of Theorem 4.2

It is worth clarifying that for the Thm 4.2, proved below, we will be assuming that the nearest-neighbor algorithm
uses a majority vote tie-breaking procedure when the nearest-neighbor is non-unique.
Theorem C.3 (Theorem 4.2). Suppose k= 2 and both predictors use the nearest-neighbor algorithm. Assume
that Pr(Y =f(X))>1−ε for some function f and ε< 1

3 , and α> log 1−ε
ε . Let s= |D0| be the number of i.i.d. seed

samples that each predictor starts with and assume s≥2. Then there exists D such that

lim
t→∞

R2
t

R1
t

≥1+
(4ε(1−ε))s/2

9
√

2s

(
1

2
−ε
)(

1−2
1−ε

1−ε+εeα

)2

A slightly looser version that removes ε dependence holds whenever α> log(2):

lim
t→∞

R2
t

R1
t

≥1+
1

54
√

2s

(
8

9
√
s

)s/2(
1− 2

2+eα

)2

Proof. Suppose X=0. Let f be constant with f(·)=1. Let Y =1 with probability 1−ε and Y =0 with probability
ε for some ε< 1

2 . This joint distribution PXY satisfies the assumptions. The fact that Y |X is non-deterministic
is essential. Without this, as long as α is finite, an interpolating non-parametric method would asymptotically
ε-cover the input domain, which would result in no penalty.

We will use the following proof strategy with P as our example distribution. For some event E :

R2
t ≥Pr(E)R2

t |E+(1−Pr(E))R∗ (5)

which implies

R2
t

R∗
≥1+

Pr(E)(R2
t |E−R∗)
R∗

(6)

where R2
t |E denotes the expected error rate conditioned on event E and R∗ is the Bayes error rate. We will also

show that under P :

lim
t→∞
R1
t→R∗=ε (7)

Combining (6) and (7) will then yield the claim. To show (7), we can simply note that the fraction of 1s in
the predictor’s data set will concentrate around 1−ε due to the law of large numbers [53]. Since this will be the
majority, the majority tie-breaker will be in effect, meaning that the predictor will always predict 1. This prediction
is the Bayes optimal prediction. This implies (7) holds.

To finish the proof, we must give expressions or bounds for Pr(E) and R2
t |E under a suitably defined event E .

Let Q0(t) and Q1(t) be the fraction of 1s in the data sets for each predictor, respectively, at round t. Thus, Qi(0)
is the fraction of 1s in the seed set of agent i.

sQi(0)∼Bin(s,1−ε) (8)

We can use the following bounds on the deviations of a Binomial [54, 55, 56] to yield the following bounds:

exp

(
−sD(

1

2
||1−ε)

)
≥Pr(Qi(0)<

1

2
)≥ 1√

2s
exp

(
−sD(

1

2
||1−ε)

)
(9)

Where i∈{0,1} and D(a||b) is the binary relative entropy, given by

D(a||b)=alog(
a

b
)+(1−a)log(

1−a
1−b

) (10)

Using elementary logarithmic identities we can simplify:



exp

(
−sD(

1

2
||1−ε)

)
=(4ε(1−ε))s/2 (11)

The tail bound inequalities simplify into:

√
2sB≥Pr(Qi(0)<

1

2
)≥B (12)

Where, as a shorthand, we let B= (4ε(1−ε))
s
2√

2s
.

We proceed to define a suitable E . In order to do so, we define event F(τ), parameterized by 0≤τ≤∞, as follows:

F(τ)=

 ⋂
0≤l<τ

{Q0(l)<
1

2
<Q1(l)}

∪
 ⋂

0≤l<τ

{Q1(l)<
1

2
<Q0(l)}

 (13)

Let ι=argmini{Qi(0)} and ῑ=argmaxi{Qi(0)}. Let E=F(∞). Recall that Ŷ (j)
t is agent j’s prediction at time

t. Observe that F(t) implies both Ŷ (ι)
t =0 and Ŷ (ῑ)

t =1 due to the majority rule. With E now defined, we proceed
to concoct a bound for Pr(E).

In eventF(0), it must be the case that predictor ι has at least one fewer 1s than 0s in the seed set and predictor ῑ has
at least onemore 1 than 0. En route for our bound onPr(E) we derive the lower bound forPr(F(0)) as follows. Notice
thatF(0) can be easily expressed in terms of {Qi(0)≤ 1

2 )} which makesB an ideal expression for bounding Pr(F(0)).

Pr(F(0))≥B(1−
√

2sB) (14)

In turn, this yields us the following:

Pr(E)≥Pr(E|F(0))Pr(F(0))≥Pr(E|F(0))B(1−
√

2B) (15)
Thus, we are left with the task of bounding Pr(E|F(0)) to find an expression to bound Pr(E). We proceed by using
random walk theory ([57, 58] are suitable references for the uninitiated). We will study an integer-valued stochastic
process over the integers. At time t∈N, Xt ∈Z. Furthermore, Xt+1 ∈{Xt−1,Xt,Xt+1,}. The distribution over
the increments is defined by (q,p,r) as follows:

Pr(Xt+1 =Xt−1)=q and Pr(Xt+1 =Xt+1)=p and Pr(Xt+1 =Xt)=r (16)

We denote the random walk distribution by RW(q,p,r) and write {X}∞t=0∼RW(q,p,r) to associate the random
variable to the distribution. We will also define and use an independent copy of the random walk, denoted by
{X′}∞t=0 ∼ RW(q′,p′,r′). The analysis of random walks is a rich subject and many techniques are known for
computing various probabilities for events of interest. Of particular utility here is the fact that if X0 =1 and q

q+p<
1
2 ,

then the probability that the walk never reaches the origin is given by

Pr(Xt>0,∀t)=1− 2q

q+p
(17)

This result that can be obtained by solving a recurrence relation, as in [57, 58]. Notice that the probability that
a random walk with bias (q,p,r) ever reaches the origin is the same as a random walk with bias ( q

q+p ,
p
q+p ,0). We

will assume that the random walks start at 1: X0 =X′0 =1.

For convenience, we will define events H(τ) as follows.

H(τ)=
⋂

0≤l≤τ

({Xl>0}∩{X′l>0}) (18)

As we will see, our target Pr(E|F(0)) can be bounded by the probability that the random walks in question
never reach the origin: Pr(H(∞)) = Pr(Xt> 0,X′t> 0,∀t). To see how this works, we begin by considering the
following choices for (q,p,r) and (q,p,r):
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(q,p,r)=

(
ε

1+eα
,
(1−ε)eα

1+eα
,
1−ε+εeα

1+eα

)
(19)

(q′,p′,r′)=

(
1−ε

1+eα
,
εeα

1+eα
,
(1−ε)eα+ε

1+eα

)
(20)

Also note that it is easy to give Pr(H(∞)) in terms of (q, p, r) and (q′, p′, r′) by noting that
Pr(H(∞))=Pr(Xt>0,∀t)Pr(X′t>0,∀t).

Pr(H(∞))=

(
1− 2q

q+p

)(
1− 2q′

q′+p′

)
(21)

The reason for this choice will be made apparent later. By assumption we know that α is not too small and
ε is not too large. Precisely, the conditions are: α> log 1−ε

ε and ε < 1
2 . With elementary algebra one can verify

these conditions are sufficient to imply that q
q+p<

1
2 and q′

q′+p′ <
1
2 .

We proceed to construct a relationship between Xt and Qῑ(t) and between X′t and Qι(t). We introduce S(t)=
SELECT(t) as a shorthand notation. Let 1(·) denote the indicator function. ConsiderWt andW ′t defined as below:

Wt=

(
s+

t∑
l=1

1(S(l)= ῑ)

)
(2Qῑ(t)−1) (22)

W ′t =

(
s+

t∑
l=1

1(S(l)= ι)

)
(1−2Qι(t)) (23)

Intuitively,W is renormalizing Qῑ from # of 1s
total # to (# of 1s)−(# of 0s) (and analogously forW ′t and Qι). Under

this transform, we can express F(τ) in terms ofW andW ′ as follows:

F(τ)=
⋂

0≤l<τ

({Wl>0}∩{W ′l >0}) (24)

Because, of course,Wt>0 if and only if Qῑ> 1
2 (and analogously forW ′t and Qι). Recalling that SELECT uses

the softmax rule and with Bayes rule [57, 59] we can obtain the following expressions for the distribution over the
increments to W and W ′. Notice that when conditioning on F(t−1), we know that Ŷ (ι)

t = 0 because learner ι’s
dataset must have a majority of 0s. Similarly, Ŷ (ῑ)

t =1.

Pr(Wt=Wt−1−1|F(t−1))=Pr(S(t)= ῑ,Yt=0|F(t−1))=
ε

1+eα
=q (25)

Pr(Wt=Wt−1+1|F(t−1))=Pr(S(t)= ῑ,Yt=1|F(t−1))=
(1−ε)eα

1+eα
=p (26)

Pr(Wt=Wt−1|F(t−1))=Pr(S(t)= ι|F(t−1))=
1−ε+εeα

1+eα
=r (27)

Pr(W ′t =W ′t−1−1|F(t−1))=Pr(S(t)= ι,Yt=1|F(t−1))=
1−ε

1+eα
=q′ (28)

Pr(W ′t =W ′t−1+1|F(t−1))=Pr(S(t)= ι,Yt=0|F(t−1))=
εeα

1+eα
=p′ (29)

Pr(W ′t =W ′t−1|F(t−1))=Pr(S(t)= ῑ|F(t−1))=
(1−ε)eα+ε

1+eα
=r′ (30)

This reveals the reasoning behind the choices for (q,p,r) and (q′,p′,r′). We proceed to bound the increments
of W and W ′ by using X and X′, but this requires a bit more work. Observe that (W,W ′)t are coupled whereas
(X, X′)t are independent. The trick will be the couple (W,W ′)t and (X, X′)t in a prudent way. To this end, we
will introduce a third random process, (Z,Z ′)t. First, define ρ̄(t) and ρ(t) as follows:

ρ̄(t)= min
m∈St({Xj})

m (31)



ρ(t)= min
m∈St({X′j})

m (32)

where St is a set-valued function defined over sequences {xj}∞j=0 as:

St({xj})={i : i∈N,
i∑

j=1

1(xj 6=xj−1)≥ t} (33)

where N is the set of natural numbers (including zero). Intuitively, ρ̄(t) is computing the index of process X
that corresponds to t-th non-zero increment (and analogously for ρ(t) and X′). As for Zt and Z ′t:

Zt=Xρ̄(t) (34)

Z ′t=X′ρ(t) (35)

Intuitively Zt corresponds to the sequence one would obtain from Xt with the zero increments deleted (and
analogously for Z ′t and X′t). Let

Z(τ)=
⋂

0≤l<τ

({Zl>0}∩{Z ′l>0}) (36)

AnyXt sequence that reaches the origin in finite time will do so with the non-zero increments deleted, which implies
that Zt will also reach the origin (and analogously for Z ′t andX′t). This implies the key fact that eventZ(∞) occurs if
H(∞) occurs. Also,H(∞) occurs almost surely ifZ(∞) occurs. EventsZ(∞) andH(∞) are equivalent up to a set of
measure zero. Namely, the measure zero event that either Xt or X′t produces a finite number of non-zero increments.

Pr(Z(∞))=Pr(H(∞)) (37)

It remains to coupleWt with Zt andW ′t with Z ′t. We do so as follows by defining ψ̄(t) and ψ(t)

ψ̄(t)∼Bin(t,r) (38)

ψ(t)= t−ψ̄(t) (39)

Wt=Zψ̄(t)+W0−1 (40)

W ′t =Z ′ψ(t)+W ′0−1 (41)

Notice that because r+r′=1, the marginals are preserved which makes this a valid coupling. Also notice that the
event Z(∞) implies F(∞)|F(0) outside of the measure zero event that either ψ̄(t) or ψ(t) remain bounded as t→∞:

Pr(F(∞)|F(0))≥Pr(Z(∞)) (42)

Pr(E|F(0))=Pr(F(∞)|F(0))≥Pr(Z(∞))=Pr(H(∞)) (43)

We proceed to establish the bound on Pr(E|F(0)). Consider the following:

Pr(E|F(0))=Pr(F(∞)|F(0))≥Pr(H(∞))=

(
1− 2q

q+p

)(
1− 2q′

q′+p′

)
(44)

Thus, we can combine our bounds for Pr(F(0)) and Pr(E|F(0)) to obtain a bound on Pr(E):

Pr(E)≥B(1−
√

2sB)

(
1− 2q

q+p

)(
1− 2q′

q′+p′

)
(45)
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It now remains to get a bound for R2
t |E . Of course, this is easy now that we have ascertained that in event E ,

we know that ι (ῑ) always has a majority 0s (1s) thus always predicts 0 (1). From this it follows immediately by
taking an average that

R2
t |E=

1

2
∀t =⇒ lim

t→∞
R2
t |E=

1

2
(46)

Combining the bounds gives:

lim
t→∞

R2
t

R1
t

≥1+
Pr(E)(R2

t |E−R∗)
R∗

≥1+
1

ε
B(1−

√
2sB)

(
1− 2q

q+p

)(
1− 2q′

q′+p′

)(
1

2
−ε
)

(47)

At the expense of a looser bound, we can simplify the bound by a series of additional approximations in order
to obtain an interpretable expression:

(
1− 2q

q+p

)(
1− 2q′

q′+p′

)
≥
(

1− 2q′

q′+p′

)2

=

(
1−2

1−ε
1−ε+εeα

)2

(48)

Which follows because q′

q′+p′ >
q

q+p .

We can also crudely simplify the B-term as follows. Recall:

B=
(4ε(1−ε))s/2√

2s
(49)

With the assumption that ε≤1/3 we note that the following holds:

max
0≤ε≤1/3

{4ε(1−ε)}=8/9 (50)

As well as the following identity:

(4ε(1−ε))≥ε for 0≤ε≤1/3 (51)

Together, we can bound B from both above and below:

(8/9)s/2√
2s

≥B≥ εs/2√
2s

(52)

Allowing us to conclude:

1−
√

2sB≥1/9 (53)

And,

B(1−
√

2sB)≥B

9
≥ εs/2

9
√

2s
(54)

Thus, we arrive at a neater expression in terms of ε, s, and α:

lim
t→∞

R2
t

R1
t

≥1+
(4ε(1−ε))s/2

9
√

2s

(
1

2
−ε
)(

1−2
1−ε

1−ε+εeα

)2

(55)

≥1+
εs/2

9
√

2s

(
1

2
−ε
)(

1−2
1−ε

1−ε+εeα

)2

(56)

Finally, due to monotonicity of the expression in ε we can remove the dependence on ε by fixing ε= 1
3 :



lim
t→∞

R2
t

R1
t

≥1+
1

54
√

2s

(
8

9
√
s

)s/2(
1− 2

2+eα

)2

(57)

C.2.3 Proof of Theorem 4.3

It will be helpful to separately prove a lemma for use in Theorem 4.3’s proof. This lemma upper bounds the variance
of a symmetrical truncated Binomial with the variance of a usual Binomial with the same number of trials as support
left in the truncated Binomial. To clarify notion in the proof of the lemma, note that we define f(x) ∝g(x) to mean:

f(x)=Cg(x) ∀x∈X (58)

where C is some fixed constant independent of x and the equation holds over all choices of x in some set X which
can be inferred from context.
Lemma C.4. If X∼Bin(2n, 12 ), then for any integer c such that n>c>0:

Var(X|n−c≤X≤n+c)≥Var(Bin(2c,1/2))=
c

2

Proof. As a notional shorthand, we will use Xtr to denote the truncated version of X:

Xtr∼X|{n−c≤X≤n+c} (59)

By the definition of truncation, Pr(Xtr =x)∝Pr(X=x) for all x in the truncated support. From this, it follows
that Xtr inherits symmetry and unimodality from X. Furthermore, from the Binomial pmf it also directly follows
that Pr(X=x)∝

(
n
x

)
because p= 1

2 . Let Xsup denote the usual Binomial defined over the truncated support:

Xsup∼Bin(2c,1/2)+n−c (60)

The constant translation is just an aesthetic to keep the supports of Xsup and Xtr identical. Observe that for
both Xsup and Xtr, n is both the mean and the mode outcome (keep in mind the symmetry and unimodality of
both). We will complete the proof by showing that:

1≥Pr(Xtr =n+j)

Pr(Xtr =n)
≥Pr(Xsup =n+j)

Pr(Xsup =n)
for all j in the support (61)

Notice that this inequality would imply that Xtr is strictly less concentrated that Xsup, and since they have the
same support, are unimodal, and are symmetric, it follows thatXtr has higher variance. We proceed to demonstrate
this key inequality.

Based on our established proportionality rules we can express the inequality in terms of factorials:

Pr(Xtr =n+j)

Pr(Xtr =n)
=

(
2n
n+j

)(
2n
n

) =
(n!)2

(n+j)!(n−j)!
=

j∏
i=1

n−i
n+i

(62)

Pr(Xsup =n+j)

Pr(Xsup =n)
=

(
2c
c+j

)(
2c
c

) (c!)2

(c+j)!(c−j)!
=

j∏
i=1

c−i
c+i

(63)

In order to compare these quantities, consider the following:

j∏
i=1

c+1−i
c+1+i

>

j∏
i=1

c−i
c+i

(64)

In order to see the correctness of the above inequality, consider any particular term in the product:
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c+1−i
c+1+i

>
c−i
c+i

(65)

(c+1−i)(c+i)>(c+1+i)(c−i) (66)

2i>0 (67)

From which we can conclude that the inequality over the entire product:
∏j
i=1

c+1−i
c+1+i >

∏j
i=1

c−i
c+i must hold since

it holds over each term and all are positive. By inductively applying the product inequality, we can then conclude
the key inequality because n>c:

j∏
i=1

n−i
n+i

≥
j∏
i=1

c−i
c+i

(68)

Theorem C.5 (Theorem 4.3). Suppose the data is generated from a linear model Y =XW+ε with E(ε|X) = 0.
Assume each predictor is uses an ordinary least-squares linear regression. Let s≥ 1 be the number of i.i.d. seed
samples each predictor starts with. We have the following:

(i) If α>0 and k≥2 then limt→∞supD
Rkt
R1
t
≥1+ 1

3567s3/2

(ii) If α=∞ then limt→∞supD
Rkt
R1
t
≥ 2k
k+1

Proof. For both parts it will be helpful to recall the seminal result of White which shows the consistency of the
OLS estimate for linear models [60]. Thus, R1

t converges to the minimum mean square error.

Proof of (ii) We first prove part (ii). It is sufficient to construct a PXY satisfying the linear model assumptions
that can be easily analyzed. In this proof, we construct PXY such that with perfect information and OLS updates,
the learning dynamics reduce into the sequential K-means dynamics studied in [61]. To be more precise, the
resultant random process over the tuple of each predictor’s OLS weight estimates is almost the same as that over
the tuple of centroids in sequential K-means, in a sense that will be made formal in this proof. First we restate
the notion of a sequential K-means process, originally defined in [61].

Definition C.6. (Sequential K-means process)

Let P be a non-atomic distribution over R with bounded first and second moments. Let V (t) ∈ RK be a
vector-valued random process. At time t = 0, define Vκ(0) ∼ Q under the product coupling (i.e. independently
sampled) and N(t)=0∈NK

We define Vκ(t) for t > 0 recursively as follows. Z(t) ∼ Q is an i.i.d sample from the distribution. Let
i(t)=argminκ∈{1,...,k}|Vκ(t)−Z(t)|. Then, N(t)=N(t−1)+1i(t) where 1i(t) is the one-hot vector at index i(t) and

Vj(t)=

{
1

Nj(t)
(Nj(t−1)Vj(t−1)+Z(t)) j= i(t)

Vj(t−1) j 6= i(t)

For sequential K-means processes, the following holds [61]:

Lemma C.7. (J. MacQueen, 1967)

Let V ∈Rd be a a sequential k-means process. Then V converges a.s. to an unbiased partition jointly satisfying:

(i)Vj(∞)=argmin
v∈Sj

∫
z∈Sj

(v−z)2dQ(z)

and



(ii) Sj={z :j=argmin
[K]

|Vj(∞)−z|}⊂R

Equivalently, these conditions state that Vj is the centroid of its Voronoi interval [62, 63] with respect to the vector V .

We proceed to give a reduction from the competitive learning market with OLS predictors with a particular
choice of PXY . In turn, this will enable us to concretely characterize the weight estimates asymptotically via
MacQueen’s lemma.

LetW =1. Let PX be a point mass at 1. Let εi∼Unif(−δ,δ) for 0<δ. In this construction, PY ∼Unif(1−δ,1+δ)

since Y =1+ε. In the scalar case, the OLS rule is Ŵ = Xn•Y n
||Xn||2 . For the assumed distribution, the weight estimate

is determined by the empirical mean:

Ŵ =

∑
iyi
n

=1+ε̄= Ŷ (69)

Let Ŵt(i) denote the i-th predictor’s weight estimate at round t, with Ŵ0(i) being the initial estimate based on
the the seed samples. Let νt(a)=s+

∑t
j=01(SELECT((j)=a) denote the total number of observations made by

agent a by round t (where 1() is the indicator function ). When there is no ambiguity, we will write at=SELECT(t)
as shorthand.

At round t, the OLS update is given by:

Ŵt(at)←
νt(i)−1

νt(i)
Ŵt−1(at)+

1

νt(i)
yt (70)

Under the assumption of perfect information and rational consumers (α=∞) we have that:

at=argmin
a∈A

|Ŵt(a)−yt| (71)

In prose, at time t, the sample Yt is averaged into the closest of the OLS estimates at time t. This is precisely
the update rule use in [61] to describe the sequential K-means. However, while the update rule is the same,
there remains one blemish that we must smooth over before we can apply MacQueen’s lemma. Namely, that the
intializations between our case and the sequential K-means are not the same, since here the seed dataset can consist
of more than one example. It turns out, however, that this issue is easily remedied by noting that the tail of any
sequentialK-means process is conditionally independent of Y (t) given only V (t) and N(t). In other words, for τ >0:

V (t+τ) |= (Y (0),..,Y (t))|(V (t),N(t)) (72)

Therefore, when we have s seed points per k agents, we may construct an equivalence relation between the our
process at time 0 and the sequential K-means process at time (s−1)k via:

∀i :Ni((s−1)k)←νi(0)=s (73)
and

V ((s−1)k)←Ŵ (0) (74)

Thus, we can treat our process Ŵt as a sequential K-means process conditioned on the sequence head as just
stated. From the definition of the sequential K-means process, it is clear that conditioning on this measure zero
event remains well-posed. Furthermore, we can conclude that it does not alter the convergence of the tail because
for any I⊂RK we have that

Pr(Ŵ (0)∈I)>0 (75)
if and only if

Pr({V ((s−1)k)∈I}∩{Ni((s−1)k)=s,∀i})>0 (76)
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which establishes absolute continuity [64] of the corresponding probability measures over the possible initialization.
From this follows the a.s. convergence of Ŵ [65], and we may dispense with the issue of the initialization and
conclude that Ŷ converge a.s. to an unbiased partition (recalling that Ŷ =Ŵ for our chosen PXY ).

It remains to make use of MacQueen’s lemma to finish our claim. To do so, we point out the well-known result
that there is only one unbiased partition of the uniform distribution over an interval (1−δ,1+δ) [66], namely, the
uniform quantization that sets:

Ŷi(∞)=
i2δ

k+1
−δ+1 (77)

or some permutation thereof. Also notice that this result is translation invariant. Translating the interval
corresponds to a translation of the quanta.

It remains to compute the expected MSE over the Yi(∞), noting that a priori, each predictor is uniformly likely
to converge to any of the quanta.

E[(Y −Ŷ (∞))2]=

n∑
i=1

Pr[Ŷ (∞)=
i2δ

k+1
−δ+1]E[(Y − i2δ

k+1
+δ−1)2] (78)

=

k∑
i=1

Pr[Ŷ (∞)=
i2δ

k+1
−δ]

∫ δ

−δ

1

2δ
(δ− i2δ

k+1
+y)2dy (79)

=
1

k

k∑
i=1

1

2δ

∫ δ

−δ
(δ− i2δ

k+1
+y)2dy (80)

=
1

k

k∑
i=1

1

2δ

(
8δ3(3i2+3i(k+1)+(k+1)2)

3(k+1)2

)
(81)

=
2δ2k

3(k+1)
(82)

To complete the proof, we point out thatW ∗=1 and that the MMSE for predicting Y given X is given by:

MSE∗(PY |X)=
δ2

3
(83)

And that we may lower bound the supP
Rkt
R1
t
with our particular choice of PXY .

Thus, taking the limit:

lim
T→∞

sup
P

RkT
R1
T

≥ lim
T→∞

E[(Y −Ŷ (T )2]

R1
T

=
E[(Y −Ŷ (∞)2]

MSE∗(PY |X)
=

2k

(k+1)
(84)

This completes the proof of part (ii).

Proof of (i) We now turn out attention to the proof of part (i). It will suffice to construct a different distribution
that can be easily analyzed. Let X= 1

2∆ and define ε as follows:

ε=

{
1
2∆ with prob. 12
− 1

2∆ with prob. 12

Thus, we have that Y = 0 with prob. 1/2 and Y = ∆ with prob. 1/2. The MMSE estimate W ∗ = 1 and the
corresponding MSE is 1

4∆2. Let µi = 1
# samples for i

∑
jyj denote the empirical mean of the samples observed by

agent i. The OLS estimate will satisfy Ŷi = 1
2∆Ŵi = µi. Due to the OLS-specified bijection between Ŷ and Ŵ

we will work with Ŷ for convenience without loss of precision.



Recall we have n predictors. At round t=0, each has been seeded with s i.i.d samples. Let µi be the empirical
mean of the seed samples for the i-th predictor. Recall that OLS estimate Ŷi=µi.

Let i+ =argmax{Ŷi} and i−=argmin{Ŷi}. For now, we will assume that these extreme predictors are unique,
and later address the case in which they are not.

Let ât = SELECT(t). In the limit as ∆→∞ we have that only the two extreme predictors, ai+ and ai− will
ever win consumer queries: Pr(ât=ai+ |Y =∆)→1 and Pr(ât=ai− |Y =0)→1 as ∆→∞. To see this, observe that:

Pr(ât=ai+ |Y =∆)

Pr(ât=aj |Y =∆)
=

exp
(
α(∆−µi+)2

)
exp(α(∆−µj)2)

=exp
(
α(µ2

i+−µ
2
j+2∆(µi+−µj))

)
(85)

And so, when j 6= i+ and α>0:

lim
∆→∞

Pr(ât=ai+ |Y =∆)

Pr(ât=aj |Y =∆)
=∞ (86)

because of the fact that µi+≥µj . In the case when the inequality is strict, we can immediately conclude that:

lim
∆→∞

Pr(ât=ai+ |Y =∆)=1 (87)

and more precisely, for some ϕ>0

Pr(ât=ai+ |Y =∆)=1−Θ(e−ϕ∆) (88)

Due to the fact that number outcomes (i.e. the consumer decision) is finite and a probability vector is normalized.
If the argmax is not unique, then in the first round at which Y = ∆, one of the maximizing predictors will be
selected arbitrarily, which will break the equality. Along those lines, note that Ŵi+ is monotone increasing after
observing more samples of Y =∆. A similar argument holds in the case when Y =0.

Combining these two cases, we conclude that only the 2 extreme predictors will ever receive additional samples,
whereas the other n−2 predictors will maintain the weight estimates based solely on their seed samples.

Later on, it will be useful to let ∆ scale with the number of rounds T . This does not pose a difficulty when the
scaling is chosen judiciously. With ∆=

√
T , it is easy to verify that the aforementioned limits hold over all rounds.

Let E(τ) be the event that ât=ai+ for all 1≤ t<τ with Yt=∆. Then:

Pr(E(T ))≥
∏

1≤t<T

Pr(ât=ai+ |Yt=∆,E(t−1))≥
∏

1≤t<T

Pr(â0 =ai+ |Y0 =∆) (89)

because of the conditional independence of consumer decisions and monotone increasing trajectory of Ŵi+ in
time. However, recalling the convergence rate in ∆ previously established:

Pr(E)=Θ(1−e−ϕ
√
T )T (90)

And thus, with the superpolynomial convergence we still obtain:

lim
T→∞

Pr(E)=1 (91)

We will return to this analysis later to complete the proof. For now, we can proceed to lower bound the gap by
taking a weighted average of the MSE in between the extremal and non-extremal predictors. For the two extreme
predictors, we will have that Ŷ →∆ and Ŷ →0. In this case the MSE is 1

2∆2 for both.

For the remaining non-extremal predictors, we can bound the expected MSE as follows. Since they do not
obtain further samples beyond the seed set, we can directly analyze the expected MSE of the OLS estimate under
s seed samples. However, we must still account for the fact that we are conditioning on the event that these are
non-extremal estimates. This is rather cumbersone and is difficult to do exactly, but we can use the following 3
steps of approximations to obtain a lower bound.

(i) The conditional variance of a non-extremal estimate is most reduced when n=3.
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Ŷi+ =max{Ŷj}nj=1 (92)

Ŷi−=min{Ŷj}nj=1 (93)

Thus, we have that Ŷj ∈ [Ŷi− ,Ŷi+ ] for all j. Recall we are seeking a lower bound on

Var(Ŷj |j 6= i+,j 6= i−)=Var(Ŷj |Ŷj ∈ [Ŷi− ,Ŷi+ ]) (94)

From this, we immediately obtain that for n′′≥n′:

Var(Ŷj |j 6= i+,j 6= i−,n=n′)≤Var(Ŷj |j 6= i+,j 6= i−,n=n′′) (95)

because the cdf of Ŷi+ (Ŷi−) is monotone increasing (decreasing) in n, given that it is the maximum (minimum)
of n i.i.d random variables. Therefore, lowering bounding the case when n=3 is sufficient to lower bound all cases.

(ii) We may lower bound the probability of a lower tail deviations of Ŷi− by ignoring that it is the minimum
– i.e. treating it as any generic i.i.d sample – and then by using the standard bound [55]:

Pr(Bi(s, 12 )<k)≥ 1
15exp

(−16
k (k/2−k)2

)
(Recalling that Ŷ ∼ ∆

2sBi(s, 12 ) ).

Setting a deviation of
√
s

4 results in a lower bound of 1
15e on the lower tail. We can use symmetry to apply the

argument to Ŷi+ as a lower bound to the upper tail. Thus, we have that

Pr(
∆

2
+

∆
√
s

4
≤ Ŷi−≤

∆

2
−∆
√
s

4
)≥ 1

1764
(96)

(iii) Once an interval has been established, we can treat the non-extremal estimate Ŵj as a truncated Binomial.
By Lemma C.4, we can lower bound the variance of the truncated Binomial with a Binomial over the truncated
support. If Z∼Bi(s, 12 ) then

Var

(
Z|{
√
s

4
≤Z− s

2
≤
√
s

4
}
)
≥
√
s

8
(97)

and

Var

(
∆

2s
Z|{
√
s

4
≤Z− s

2
≤
√
s

4
}
)
≥ ∆

16s3/2
(98)

Recalling that Ŷj∼ ∆
2sBi(s, 12 ), we have the variance conditioned on event H={j 6= i+,j 6= i−} is lower bounded

as follows:

Var(Yj |H)=Var(Yj |H,F)Pr(F)+Var(Yj |H,F̄)(1−Pr(F))≥Var(Yj |H,F)Pr(F) (99)

And since we know have a bound for Pr(F) and Var(Yj |H,F) we conclude:

Var(Yj |H)≥Var(Yj |H,F)Pr(F)≥ ∆2

(7056×4)s3/2
(100)

Where F={Ŷi−≤ ∆
2 −

∆
√
s

4 ,Ŷi−≥ ∆
2 + ∆

√
s

4 }

Note that Ŷj is unbiased. From this, it follows that the excess MSE risk is given by its variance. Define
δ= Ŷj−EŶj= Ŷj−∆

2 .

MSE(Ŷj)=E[
1

2
(
∆

2
−δ)2+

1

2
(
∆

2
+δ)2]=

∆2

4
+Eδ2 =MSE∗+Var(Ŷj)



Note that we have established that for the extremal predictors, the asymptotic MSE is ∆2

2 , and for the
non-extremal predictors, the asymptotic MSE is at least ∆2

4 + ∆2

(7056×4)s3/2
. Combining these in-expectation gives:

k−2
k (∆2

4 + ∆2

(7056×4)s3/2
)+ 2

k
∆2

2

Thus, to conclude the proof, let us scale ∆=
√
T :

lim
T→∞

sup
P

RkT
R1
T

≥ lim
T→∞

k−2
k (∆2

4 + ∆2

(7056×4)s3/2
)+ 2

k
∆2

2

∆2

4

≥1+
1

7056s3/2
+

2

k
.

which yields the inequality in part (ii).

C.2.4 Proof of Theorem 4.4.

As a clarification, when we refer to pairwise covariance ρ, we refer to:

ρ=Cov(W1,W2)=E(W1W2)−E(W1)E(W1) (101)

whereW1 =1(Ŷ 1 =Y ) andW2 =1(Ŷ 2 =Y ) for Ŷ 1 and Ŷ 2 denote the predictions from agent 1 and agent 2 respec-
tively. Notice thatE(W1W2) equals the probability that both predictions are correct. At any given time t, the quantity
E(W1W2) itself is stochastic, given that it depends on the particular sample path taken by the random competition up
until the given time. In our proof, we will use P (t) to denote the measure over predictor correctness at a given time t

In order to proceed, we must first recall the definition of Aτ from the main text: Aτ =E(1{Ŷ (wτ )
τ =Yτ}). Note

that this expectation implicitly takes place over the entire randomness in the learning competition G (refer to
Def. C.1). For the purposes of this Theorem, from a formal perspective, we will be comparing the the quantities
Aτ corresponding to different instances of {Gκ}∞κ=1 that vary only in the number of predictors. We write Akτ to
refer to the expectation over the randomness of learning competition Gk with k predictors:

Akτ =EGk(1{Ŷ (wτ )
τ =Yτ})

Theorem C.8. Assume a learning competition at round τ . Define A(A(i);D)=1−R(A(i);D) and Ak(t)=1−Rkt .
When the parameter t is omitted, assume t= τ : Ak =Ak(τ). Define δ=A1−A2 and ε=Ak(0)− 1

2 . Let ρ be the
pairwise covariance between two predictors. Assume the following holds:

1. There is sufficient data to train two predictors well: 0<δ< 1
6

2. Predictors are weak with only seed data: ε<1/14
3. The predictors are not too correlated: ρ<Ak−A2

k−6δ

4. The expected accuracy of a predictor monotonically increases with dataset size: EG

[
A(A

(i)
t ;D)|r= |D(i)

t |
]

Then there exists 0<c1<c2<∞ such that if c1<α<c2 then Akτ at round τ is maximized by some k∗ number
of predictors such that 1<k∗<∞. In particular, c1< log A1−(A1−δ)2−ρ

A1−(A1−δ)2−ρ−2δ and c2> log (1−4ε)A1

1−A1
.

Proof. For notational convenience, we slightly modify the notation for expected accuracy Ak(t) compared with
the notation Akt introduced in the main text. We have move the time index t from a subscript into a parenthetical
function argument and moved the number of predictors k from a superscript to a subscript.

By assumption, we have that predictors at round 0 are weak predictors, meaning they are independently accurate
with probability Ak(0)= 1

2 +ε. Note we thus have ε<1/14 by the assumption. As we will see shortly, in the limit
of infinite predictors, the algorithm’s performance after obtaining additional samples is immaterial.

As defined in the main text, let denote Akτ the expected prediction quality for users at time τ of Gk. In other words,
Akτ is the expected prediction quality for users when the competition has k learners. Let Ŷ (i)

τ be the i-th learner’s
prediction at time τ (or equivalently let Ŷ (a)

τ be learner a’s prediction). When it is unambiguous to do so, we will define
wτ =SELECT(qτ ) as described in Section 2 of the main text. Because most of the variables in this proof are implicit
at time τ , when the time is not explicitly stated or sub-scripted, assume that the variable refers to time τ , henceforth.
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Akτ =
∑
a∈A

Pr[a=wτ ]Pr[Ŷ (a)
τ =Yτ |a=wτ ] (102)

where we recall from the definition of SELECT:

Pr[a=wτ ]=
exp(α1{Ŷ (a)

τ =Yτ})
Zτ

(103)

where Zτ =
∑
a∈Aexp(α1{Ŷ (a)

τ =Y }).

We proceed to give an expression for Pr[a=at] in the limit as k→∞. Let Bτ ⊂A be the subset of predictors
that have been queried at least once by some time τ (subscript on the B is omitted when it may be safely inferred).
It follows that |B||A| ≤

τ
k which implies |B||A|→ 0 as k→∞. From this, it follows that the Pr[a∈B]≤ τeα

k which also
vanishes as k gets large. With this, we can revise Eq. 102 as follows:

Akτ =
∑
a∈B

Pr[a=wτ |a∈B]Pr(Ŷ a=Y |a=wτ )+
∑
a/∈B

Pr[a=wτ |a /∈B]Pr(Ŷ a=Y |a /∈B) (104)

Here, notice that if wτ /∈B, then Pr(Ŷ a =Y |a /∈B) = Pr(Ŷ a =Y |a=wτ ) because all predictors that have not
been selected are modeled as weak learners and are thus interchangeable.

We give the following lower and upper bounds for A, which can be easily derived using the law of total probability
[59] and the fact that 0≤A≤1:

Pr(wt /∈Bt)
(
Akt |{wt /∈Bt}

)
≤Akt ≤Pr(wt /∈Bt)

(
Akt |{wt /∈Bt}

)
+Pr[wt∈Bt] (105)

Where becauseAkt is already an expectation, we use the notationAkt |{at /∈Bt} to mean the conditional expectation.

Taking the limit in k vanishes Pr[a∈Bt], yielding:

A∞t =A∞t |{wt /∈Bt} (106)

We proceed to compute this quantity A∞|{at /∈B}. To do so, we make use of the weak predictor assumption.
From that, may treat the aggregate predictions from predictors not in Bt as following a Binomial distribution with
success probability of 1

2 +ε. Define κt= |A/Bt|∈ [k−t,k−1]=Θ(k). Let Vt be the number of weak predictors with
correct predictions at time t. Then V ∼Bin(κt,

1
2 +ε). Let µ denote the mean of V , EV =µ. Then, the conditional

probability that the consumer at t selects any correct weak predictor is:

Pr(Ŷ wt =Y |wt /∈Bt,V =ν)=
νeα

ν(eα−1)+κ
(107)

Let us rewrite V in terms of its deviation from its mean: V =µ+∆ for implicitly defined random deviation ∆.
By the central limit theorem [59, 64, 67, 68], we know that deviations of the Binomial with κ trials [59, 64, 67]
are order Θ(

√
k) implying Pr(|∆| ≥Ck0.6)→ 0 as k→∞ for any finite C. Thus, let us introduce the deviation

into the above equation and normalize by κ:

Pr(Ŷ wt =Y |wt /∈Bt,∆=∆)=
(µκ+ ∆

κ )eα

(µκ+ ∆
κ )(eα−1)+1

=
( 1

2 +ε+ ∆
κ )eα

( 1
2 +ε+ ∆

κ )(eα−1)+1
(108)

By the aforementioned line of reasoning, because the the risk is bounded, we may ignore any large deviations
for ∆ with respect the mean when taking a limit in k. Computing the limit is direct and yields:

lim
k→∞

( 1
2 +ε+ ∆

κ )eα

( 1
2 +ε+ ∆

κ )(eα−1)+1
=

( 1
2 +ε)eα

( 1
2 +ε)(eα−1)+1

=
eα

eα+1−χ
(109)

For χ= 4ε
2ε+1 . Notice that ε<

1
6 implies χ< 1

2 . From this we establish: A∞= eα

eα+1−χ . By definition, we know
A1 =A1.

Given that the joint distribution for 2 predictors is determined by the marginals and the covariance, we can
solve for A2. We introduce P , the probability measure over the correctness of each of the two predictors at a fixed



time t (the dependence from P on t is only stated here and omitted in notation). P11 denotes the probability that
both predictors are correct and P00 denotes the probability that both are incorrect. P10 denotes the probability
that the first predictor is correct and the second is incorrect and P01 denotes the probability of the opposite. There
are the four possible outcomes under measure P for only two predictors (k=2). Of course, P itself is a randomized
object, given that it depends on the randomness generated by the competition G until time t.

We find A2
t in terms of P :

A2
t =EP∼G2(P11+

eα

eα+1
(P10+P01)) (110)

where the above follows directly from the structure of the competition.

From the definition of covariance we know that:

ρ=P11−(P11+P10)(P11+P01) (111)

Substituting for P11 yields:

A2
t =EP∼G2

[
ρ+(P11+P10)(P11+P01)+

eα

eα+1
(P10+P01)

]
(112)

Furthermore (we drop the explicit expectation over G2):

A2
t =E[ρ]+E[(P11+P10)(P11+P01)]+

eα

eα+1
E(P10+P01) (113)

And notice that P11+P10 is the marginal probability that the first predictor is correct. Thus, P11+P10 =A(A(1);D)
and P01 +P11 =A(A(2);D) by definition (for predictor i we may omit the parenthesis in the superscript, i.e. we
write Ai instead of A(i)).

A2
t =E[ρ]+E[A(A1;D)A(A2;D)]+

eα

eα+1
E(P10+P01) (114)

where ∼ denotes equality of distribution.

Below, we break up the expectation of (P10 + P01) into two terms and we add P11 − P11 and
(P11+P10)(P11+P01)−(P11+P10)(P11+P01) to each term for a net effect of zero.

E(P10+P01)=E[P10+P11−P11+(P11+P10)(P11+P01)−(P11+P10)(P11+P01)] (115)

+E[P01+P11−P11+(P11+P10)(P11+P01)−(P11+P10)(P11+P01)] (116)

Regrouping the terms produces:

E(P10+P01)=E
[
A(A1;D)−ρ−A(A1;D)A(A2;D)

]
+E

[
A(A2;D)−ρ−A(A1;D)A(A2;D)

]
(117)

As a shorthand, let a= eα

eα+1 .

Substituting it back into the full equation yields:

A2
t =(1−2a)E[ρ]+aE(A(A1;D))+aE(A(A2;D))+(1−2a)E[A(A1;D)A(A2;D)] (118)

Notice that we may assume A(A2;D) and A(A1;D) are negatively correlated. This follows from the assumption
that EG

[
A(A

(i)
t ;D)|r= |D(i)

t |
]
is monotone increasing in r. Because |D(1)

t |+ |D
(2)
t |= t−2s, as one predictor gets

more data, the other must get less (the −2s term comes from accounting for the seed sets). Thus, by assumption:

E[A(A1;D)A(A2;D)]≤E[A(A1;D)]E[A(A2;D)] (119)
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Because a≥1/2 we know that (1−2a)≤0:

(1−2a)E[A(A1;D)A(A2;D)]≥(1−2a)E[A(A1;D)]E[A(A2;D)] (120)

Implying,

A2
t ≥(1−2a)E[ρ]+aE(A(A1;D))+aE(A(A2;D))+(1−2a)E[A(A1;D)]E[A(A2;D)] (121)

A2
t =E[ρ]+E[A(A1;D)A(A2;D)]+

eα

eα+1
E(P10+P01) (122)

By the symmetry assumption (i.e. predictors 1 and 2 use the same algorithm), we have that:

A(A1;D)∼A(A2;D) (123)

Implying,

A2
t ≥(1−2a)E[ρ]+2aE(A(A2;D))+(1−2a)E[A(A2;D)]2 (124)

Since ρ is given by assumption, we have the simplification that Eρ=ρ. Further, recalling the definition of A2

yields the simplification that EA(A2;D)=A2(t). Simplifying and rearranging yields:

A2
t ≥ρ+A2

2+
2eα(A2−ρ−A2

2)

eα+1
(125)

This lower bound onA2 will suffice to get us through the rest of the argument. Note that if bothA2>A1 andA2>A∞
hold, then the theorem stands. For expediency, we will prove a sufficient condition instead. Namely, we will show that
given the assumed initial conditions, we have that A2>A1>A∞. The reason for choosing this particular order is not
fundamental since the potential order A2>A∞>A1 would also be sufficient. However, the since the quantity A1 is
trivial, it is simpler to tame the pairwise comparisons A2>A1 and A1>A∞ than the comparison between A2>A∞.

Before proceeding, we briefly pause to provide the reader with a bit of intuition. In a sense, we can see that A2 is
larger than A1 when the boost gained from having the user selection outweighs the penalty due to the competition
between the predictors. Thus, we need a lower bound on α in order for A2>A1. On the other hand, if α is too
large, then we get too much of a boost from user selection in the k→∞ limit making A∞ too large. If we want
A2>A∞ we also need an upper bound on α. We proceed to quantify these bounds and show that under the assumed
conditions, in between these bounds remains the sweet spot interval for α in which both A2 >A∞ and A2 >A1

which implies the non-monotonic phenomena.

Let us examine the constraints placed on key quantities A1, ρ, δ, ε, and α based on the two inequalities. Recall
A2 =A1−δ. Of course, there are an intrinsic set of constraints on these five quantities by assumption or definition:

1>A1>
2

3
(126)

1

6
>δ>0 (127)

α≥0 (128)

1≥ρ≥−1 (129)

1

4
>χ>0 (130)

As discussed previously, there is a 1-to-1 mapping between χ to ε given byχ= 4ε
2ε+1 . This mapping happens to be

concave in ε to χ, so any tangent line to the curve serves as on overestimate from ε to χ. Noting that (χ,ε)=( 1
4 ,

1
14 )

lies on the curve lets us conclude that χ(ε)<4ε. This will later on helpful when transforming bounds into terms of ε.



The question remains what subset of this region remains after imposing that A2>A1>A∞. In other words, how
should we refine this subset in order to accomplish the desired relationships in A? Let us begin by analyzing A2>A1:

ρ+(A1−δ)2+
2eα(A1−δ−ρ−(A1−δ)2)

eα+1
>A1 (131)

It is not difficult to check (perhaps by using a computer algebra system such as Mathematica1) that this inequality
is satisfied if the additional constraints hold:

α> log
ψ−ρ

ψ−ρ−2δ
and ψ−2δ>ρ where ψ=A1−(A1−δ)2 (132)

Loosely, these conditions say that ρ cannot be too large. This is natural since the users gain no benefit from
two learners when they are perfectly correlated.

We can proceed to look at the second pairing: A1>A∞:

A1>
eα

eα+1−χ
(133)

Elementary algebra yields:

log
(1−χ)A1

1−A1
>α (134)

It remains to show that this interval log (1−χ)A1

1−A1
>α> log ψ−ρ

ψ−ρ−2δ is guaranteed to exist.

To do this, note that since 0<χ< 1
6 and 1>A1>2/3 we have that:

(1−χ)A1

1−A1
> min

0<x< 1
6 ,

2
3<a<1

(1−x)a

1−a
=

5

3
(135)

Thus we are left to ponder the inequality: 5/3> ψ−ρ
ψ−ρ−2δ . As before, with the aid of computer algebra2 we can

translate the above inequality into constraints on the quantities of interest. The following additional constraint
on ρ is sufficient to imply A2>A∞:

ρ<ψ−6δ (136)

To conclude, then there exists an non-empty interval for α given by:

log
(1−χ)A1

1−A1
>α> log

ψ−ρ
ψ−ρ−2δ

(137)

such that we can guarantee:

1<k∗<∞ (138)

if the following also hold:

A1>
2

3
(139)

1

6
>δ (140)

1For example, using the following one line Mathematica command: Reduce[{1 > rho > -1, expalpha > 1, 1 > A1
> 2/3, 1/5 > delta > 0, (-delta + A1)^2 + (2 expalpha (-delta + A1 - (-delta + A1)^2 - rho))/(1 + expalpha)
+ rho > A1}, {expalpha}]

2For example, using the following one line Mathematica command: Reduce[{A1-A1^2 -2delta + 2A1 delta - delta^2 >
rho >-1 ,1/5>delta>0, 1 > A1 > 2/3, (A1 - A1^2 + 2A1 delta - delta^2 - rho)/(A1 - A1^2 - 2 delta +2 A1 delta
- delta^2 - rho) <5/3},{rho}]
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1

4
>χ (141)

A2−A2
2−6δ>ρ (142)

Finally, we translate back to ε from χ by nothing that since χ < 4ε it follows: log (1−χ)A1

1−A1
> log (1−4ε)A1

1−A1
.

Transforming the constraints then yield:

1

14
>ε (143)

log
(1−4ε)A1

1−A1
>α> log

ψ−ρ
ψ−ρ−2δ

(144)
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