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Abstract
This papers studies how competition affects
machine learning (ML) predictors. As ML
becomes more ubiquitous, it is often deployed
by companies to compete over customers. For
example, digital platforms like Yelp use ML to
predict user preference and make recommen-
dations. A service that is more often queried
by users, perhaps because it more accurately
anticipates user preferences, is also more likely
to obtain additional user data (e.g. in the form
of a Yelp review). Thus, competing predictors
cause feedback loops whereby a predictor’s
performance impacts what training data it
receives and biases its predictions over time.
We introduce a flexible model of competingML
predictors that enables both rapid experimen-
tation and theoretical tractability. We show
with empirical and mathematical analysis that
competition causes predictors to specialize for
specific sub-populations at the cost of worse
performance over the general population.
We further analyze the impact of predictor
specialization on the overall prediction quality
experienced by users. We show that having
too few or too many competing predictors in a
market can hurt the overall prediction quality.
Our theory is complemented by experiments
on several real datasets using popular learning
algorithms, such as neural networks and
nearest neighbor methods.

1 Introduction

This paper studies what happens when machine learning
(ML) predictors compete against each other. ML sys-
tems are deployed in ever more ubiquitous applications
ranging from commerce to healthcare. It is becoming
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increasingly common for competing companies in
similar markets to use ML to improve their services
and attract customers or users. For example, platforms
like Yelp1 and Tripadvisor2 both use ML to predict user
preferences and make personalized recommendations for
restaurants and other experiences. A user is more likely
to use Yelp over Tripadvisor if they believe Yelp will give
them a better recommendation than Tripadvisor (and
vice-versa). Many users leave reviews, likes, or other
forms of engagement on the platform that they end up
using. Finally, the platform can use this feedback as
new data to improve their predictive algorithms. The
catch is that this form of user data is not an unbiased
sample from the general population of users. Rather, it
is biased by the fact that users that leave Yelp reviews
are more likely to use Yelp more than, say, Tripadvisor.

CompetingML predictors can emerge in diverse settings.
Competing search engines predict the most relevant web
links given a user’s search query. Competing lenders use
their ML predictors to assess client credit and offer loan
packages. In the ML-as-a-service industry, companies
routinely compete to sell their ML algorithms to clients.
While the details of the competition vary across settings,
a key characteristic is that competition generates tem-
poral dynamics and feedback loops for the learning algo-
rithms. A predictor’s performance at one time instance
could impact the training data it (or its competitor) ob-
serves. Training sets are no longer independent samples
from the general population distribution (this is the sta-
tistical definition of sampling bias). In turn, this affects
the performance and bias of the predictor over time.

In this paper, we propose a model of competing predic-
tors that captures the key features of these interactions
and feedback loops. We investigate several common
classes of predictors, including neural networks and
nearest-neighbor models. Through experiments and
theoretical analysis, we demonstrate that competition
leads to specialization: while predictors perform better
for specific sub-populations, they perform worse on the

1
https://blog.yelp.com/2019/08/yelp-is-releasing-a-new-

personalized-app-experience
2
https://www.tripadvisor.com/engineering/personalized-

recommendations-for-experiences-using-deep-learning/
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general population distribution compared to when there
is no competition. Moreover, we show that the quality-
of-service experienced by users in this ecosystem of ML
predictors is non-monotonic with respect to the number
of competing predictors. The quality-of-service for users
is diminishedwhen there are too few or toomany compet-
ing predictors. There is an optimal number of competing
predictors that provides the best quality-of-service for
users. This optimal number depends on several factors.
One critical factor is how well the users can individually
identify the predictor that’s best suited for them.

Contributions As ML systems become ever more
widely used, often by competing companies, it is increas-
ingly important to model and characterize the effects
of competition on ML. This topic is under-explored in
ML. We summarize our main contributions as follows:

1. We introduce a novel model for competing predic-
tors, which enables both large-scale experiments
and theoretical analysis. Our model is generally
useful for exploring statistical, algorithmic, and
economic phenomena concerning the feedback
dynamics between populations of competing
predictors and users.

2. Through empirical and theoretical analysis, we
show that user decisions create a feedback loop
through which each ML predictor specializes
toward a particular sub-population over time; often
at the cost of worse performance over the general
population of users.

3. We analyze the effect of competition on the
quality-of-service for the users. We show that
the overall quality can be non-monotonic in the
number of competing ML predictors.

2 Model for competing predictors

We assume there is some supervised ML task that
requires algorithms to make predictions for users. The
prediction task corresponds to a general population
distribution D. For (x,y)∼D we can think of x∈X as
representing the relevant user attributes or features and
y ∈ Y as the predictive target. We have k competing
predictors, {A(1), ... ,A(k)}. Predictor i has an initial
batch of training data D(i)

0 that are independently and
identically distributed (i.i.d.) samples from D. The ini-
tial training dataD(i)

0 corresponds to the data that each
predictor starts with—e.g. data from an initial pilot.
We typically think of |D(i)

0 | as small. We refer to this
initial data as seed data. LetD(i)

t denote the dataset that
the i-th predictor has up to and including time t. A(i)

t

is the predictor that is trained on D(i)
t−1. At each time

t, a new sample (xt,yt)∼D is drawn, representing the
t-th user in some user stream. Each predictor outputs
ŷ
(i)
t =A

(i)
t (xt). Then, the user selects one of the k predic-

tors as a winner, denoted by wt. The winning predictor
wt gets the datum (xt,yt): D

(wt)
t = D

(wt)
t−1 ∪ {(xt,yt)}

and D(i)
t =D

(i)
t−1 for i 6=wt. We can think of predictors

as agents seeking to maximize their query rate and
users as agents seeking to maximize the accuracy of
the predictor they select. We model predictors with
both common parametric and non-parametric ML
algorithms. For simplicity, in our experiments and
theory we will consider competitions in which predictors
are symmetric, meaning they use the same learning
algorithm. We proceed to describe our user model.

A flexible model for user choice We would
like to model how a user chooses among the set of
competing predictors. For starters, assume that Y in
the prediction task is categorical and the prediction
quality, q(yt,ŷt)=1{yt= ŷt}, is binary. We consider the
case when users do not have prior biases towards any
predictor. Instead, we stipulate that the probability
that a user selects predictor should only depend on the
tuple qt=(q(yt,ŷ

(1)
t ),...,q(yt,ŷ

(k)
t )), meaning that user

selection probability is only a function of the prediction
quality. We denote the user selection operation
SELECT. The SELECT encodes the conditional
distribution for wt over [k] given qt where [k] :={1,...,k}.
We can think of SELECT as a randomized operation
that outputs the winner, i.e., wt = SELECT(qt).
Equivalently, wt is a random variable parameterized
by qt. Given that wt only depends on qt, the sole
parameter that uniquely characterizes a user’s choices
is the difference in probability that the user selects
a correct predictor over an incorrect predictor. We
refer to this as the correctness advantage, PADV, in the
system. For any qt such that for some i 6= j, yt = ŷ

(i)
t

and yt 6= ŷ(j)t , we define correctness advantage3 as

PADV :=Pr(wt= i|qt)/Pr(wt=j |qt).

Without loss of generality, we can equivalently use the
widely-used softmax parameterization for PADV:

Pr(wt= i |qt)=
1

Z
e

(
αq(yt,ŷ

(i)
t )

)

where Z =
∑
j∈[k] exp

(
αq(yt,ŷ

(j)
t )
)

and thus
PADV=exp(α).

3If either ŷ(i)
t = yt or ŷ(i)

t 6= yt for all i∈ [k], then a user
chooses a competitor uniformly at random.
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For simplicity, we use temperature parameter α in lieu
of PADV throughout this work; this parametrization
does not limit user behavior. To be clear, the user does
not necessarily know the true yt (otherwise there may
not be a need for the predictors). Moreover it is not
necessary that the user observes all of the predictions ŷ(i)t
when making a selection. It is sufficient that the user has
some side information onwhich predictors are likely to be
correct. The degree of this correlation can be captured by
α. This model is simple and flexible, and it captures the
essence of the interaction between predictors and users.
We can view the temperature parameter α as indicating
how informed the user selections are. When α = 0,
the user has zero information and uniformly at random
selects a predictor. As α increases, the user is more likely
to select the algorithm that makes the correct prediction.
Therefore, α is a natural metric of information efficiency
. In many settings, users might be more likely to select
a predictor that makes a correct prediction than an
incorrect predictor (i.e. α≥0). This might be because
users have some private signals or experiences, and also
because users typically want to pick the highest quality
prediction. Because this is more realistic, we primarily
focus on α≥0 for our experiments and analysis.

For simplicity, wewill largely deal with temperatureα for
the remainder of the paper, while remembering the direct
connection between α and the correctness advantage.
Another advantage of the softmax parameterization is
that it easily generalizes to regression settings by replac-
ing q with any generic loss function ` (such as MSE). In
the main text of this work, we will assume α is a system
constant and thus is fixed for all users. In Appendix B,
we further generalize and let α depend on the particular
user that is making the selection by sampling each user’s
α parameter from a standard normal distribution. This
reflects that individual users have varying amounts of
prior information about the predictors. We found that
this yields in highly similar results (refer to Appendix B).

One simplification that we make in our model is that
only the selected predictor receives (xt,yt). There are
several possible modeling variation on this: for example,
one could allow the non-selected predictors to add
xt (not yt) to its database and this could be used for
semi-supervised learning. One could also allow the user
selection to depend not just on the current predictions
but also on predictor reputation. Additionally, one could
assume that only some fraction of users actually leave
feedback, which would mean that the winner observes
yt only some fraction of the time. These are interesting
directions for follow up exploration. In this paper, we
make the simplifications in order to capture the key
essence due to competition in purely supervised learning.

3 Experiments

We present simulations of competing learners in the
supervised (Sec. 3.1) and collaborative filtering settings
(Sec. 3.2). We investigate the effects of competition on
the predictors and the users and empirically characterize
predictor specialization and non-monotonicity of the
quality-of-prediction.

3.1 Supervised Learning

We use several popular benchmark datasets for D:
Postures (Gardner et al., 2014; Dua and Graff,
2017), Adult Income (Dua and Graff, 2017), and
FashionMNIST (Xiao et al., 2017). For Postures and
Adult Income in particular, each datum corresponds
to data from one individual, which is particularly
appropriate for our motivating competition setting. We
explore the effects of different information efficiency
value α. For each dataset, we fix a small number
of i.i.d. seed samples (order 100 - 102) and run the
simulation for a large number of rounds (order 103 to
104). We perform our experiments with the widely-used
multi-layer perceptron (MLP) as an example of
parametric predictors and nearest-neighbors (NN) as
an example of non-parametric predictors. In Appendix
B we also report similar simulations conducted with
a logistic regression model as well as full details of all
the experiments. While there are many other classes
of predictors to explore, we believe that the standard
models used here cleanly capture the key insights.

Competition drives predictor specialization
We performed experiments with four competing
predictors (similar results are seen for other number of
predictors). In Fig. 1 we present heatmaps indicating
the accuracy of the four competing predictors on each of
the label classes. Red (blue) indicates that a predictor is
better (worse) than the average predictor on that class.

When α=0, the user uniformly at random selects a pre-
dictor and the lack of competition results in all of the pre-
dictors being close to average accuracy. As α increases,
we see a clear trend towards greater variations in class-
conditional accuracy among the predictors, indicating
specialization. A stark example of this can be observed
for the competing MLPs on the Postures dataset. For
large α, the four predictors specialize over the five classes
such that each predictor strongly favors only one particu-
lar class (except for predictor 3 which favors two classes).
Predictor 0 specializes in detecting stop, predictor 2
specializes in fist, predictor 3 specializes in fingers
and predictor 1 is split between point and grab. Out-
side of each predictor’s specialty class, the performance
is low across the board. The predictor specialization not
only occurs over the classes but also within the features.
An interpretable example of this is for the binary gender
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Figure 1: Predictor specialization heatmaps for FashionMNIST (top row) and Postures (bottom row) with NN (left
column) and MLP (right column). For each dataset and algorithm we include heatmaps of α at low (0), medium
(2), and high (8) values (left to right). Each heatmap is a #(classes) × #(predictors) grid. The ij-th block in a grid
indicates the difference between the average class-conditional accuracy for the i-th class and the j-th predictor’s
class-conditional accuracy for the i-th class. Predictors are indexed by an arbitrary id number and classes are
labeled on the left. Red (blue) indicates an accuracy that is higher (lower) than average, and white is average.

feature in the Adult Income dataset (Fig. 2). At α=0
all predictors are close to average accuracy. As α in-
creases, we see that predictor 4 and eventually predictor
7 specialize in males versus females, respectively. This
illustrates how competition could lead to ML algorithms
that specialized to specific demographic groups.

Larger α creates a positive feedback loop that leads to
specialization. Random variation in the initial training
batches generates some heterogeneity in the predictors.
Users are likely to select the predictor that is best suited
for them with large α. This leads that predictor to
improve its model specifically for that sub-population.

Figure 2: Predictor specialization heatmap for Adult
with MLP with 8 competitors. Rows in the grid indicate
male vs. female individuals. Red (blue) indicates an
accuracy that is higher (lower) than average, and white
is average.

In turn, this results in an increased likelihood that
members of that sub-population select said predictor.
While a common business strategy is for firms to
intentionally specialize to particular sub-populations
from the onset (Balassa, 1989; Yang and Ng, 2015),
the interesting aspect of the phenomena here is that
specialization emerges naturally (and unintentionally)
due to the competition over data.

We next quantify how the competition affects the
predictor’s performance on the general population dis-
tribution, which is measured as its average accuracy over
D. Note that this D is different from the distribution of
data points from a user at any particular time — as we
shall see next, the predictor does better on the latter dis-
tribution. Fig. 3 measures the change in accuracy over
D compared to the α=0 baseline, which uses the same
number of training samples but removes competition.

There is a consistent trend that increasing the informa-
tion efficiency α at any number of predictors results in
lower accuracy on D. The drop in accuracy is largest
when there is an intermediate number of predictors. This
is because the average number of samples each predictor
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Figure 3: How specialization affects predictor performance: number of predictors (x-axes, log-scale) vs. change in accu-
racy over general populationD (y-axes, in percentage) forNNandMLPon 3datasets. Tomeasure the effect of competi-
tion, change in accuracy is with respect to a baseline simulation inwhichwinning predictors get an i.i.d. sample instead
of the one that selected it to remove selection bias. Confidence intervals are standard error of the mean for 5 replicates.

receives decreases when there are more predictors, since
the total number of rounds, or equivalently the total num-
ber of samples, is fixed. With fewer data points, there’s
less feedback to bias the predictor. The decrease in ac-
curacy for the overall distribution could be costly when
the company tries to broaden its user-base to the entire
D. This is an important consequence of specialization.

Prediction quality for users We shift our focus to
analyze the prediction quality experienced by the users.
We define the prediction quality for users as the average
accuracy of the selected predictor averaged over all the
rounds of competition: 1

T

∑T
t=11(ŷ

(wt)
t = yt). Fig. 4

shows how this quality varies as the number of predictors
(x-axes) and α (different colors) change for NN andMLP
applied to three datasets. In each panel, the total number
of datapoints (i.e. users) is fixed. Prediction quality
for users is consistently higher when users have more
information (larger α) when picking the predictor.

Interestingly, we find that the prediction quality for
users can be non-monotonic. For example, in Postures
data with competingNNs, the highest quality is achieved
with 16 competing predictors; having too few or too
many predictors decreases quality. The intuition for this
phenomenon is as follows. When there is just one pre-
dictor, a user has no choice and changing α has no effect.

With more predictors and relatively high information
efficiency, each user can select the predictor that is likely
to be accurate for it, and hence the prediction quality
improves. However, when there are too many predictors,
each predictor gets fewer training data (recall that the
total number of data points is fixed). Hence none of the
predictors is very accurate and the overall quality starts
to decline. In Sec. 4, we show this phenomena is a math-
ematical consequence of the learning competition under
some mild conditions. The prediction quality over a full
range of information efficiencies depicting the monotone
increasing and decreasing regimes (for near-infinite and
near-zero α) can be found in Appendix B.

3.2 Extension to Collaborative Filtering

Previous experiments capture the setting where each
user is a single data point that appears once. Here
we experimentally investigate a collaborative filtering
extension where each user contributes multiple data
points. Collaborative filtering competitions follow
the same structure as described in Sec. 2, with the
primary differences being a new SELECT operation
and allowing repeated samples from each user. As
before, we have a set of k competing recommenders.
We also have a set of m distinct users, {u(1),...,u(m)}
that are seeking recommendations over a set of r items
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Figure 4: Prediction quality for users: number of predictors (log-scale) vs. avg. prediction quality for users with
NN and MLP on 3 datasets. Prediction quality is averaged over all of the rounds in the simulation. Confidence
intervals are standard error of the mean for 5 replicates.

(for simplicity, we assume that these items are shared
across the recommenders). At each round, a uniformly
at random user ut∈{u(1),...,u(m)} selects one of k rec-
ommenders: wt=SELECT(ut). Then recommender
wt recommends an item for ut: A

(wt)
t (ut)∈ [r]. There

is a latent preference matrixM ∈ [0,1]r×m, whereMij

is the probability that user u(j) interacts with the i-th
item (pCTR). The “winning" recommender, wt observes
the interaction between a user and item as feedback.
Precisely, recommender wt observes (xt, ỹt) where
xt :=(i,j) is simply a pair of the item i and the user j,
and ỹt∼Bernoulli(Mij) describes if there is an inter-
action when item i is recommended to user j. As before:
D

(wt)
t =D

(wt)
t−1 ∪{(xt,ỹt)} and D

(i)
t =D

(i)
t−1 for i 6=wt.

Users want to maximize the preference scores of the
items that they get recommended to them, and recom-
menders want to maximize the number of queries for
items they receive from users. In our experiments, each
user keeps track of the quality of past recommendations
from each recommender and individually solves a
multi-arm bandit (Slivkins, 2019) problem with rec-
ommenders as arms when it is their turn to SELECT.
Each recommender similarly solves an an online matrix
factorization problem (Schafer et al., 2007) based on
the observed user-item interactions using alternating
least-squares (Hastie et al., 2015). We generateM as the
product of low-rank factors with i.i.d. Gaussian entries.

We run the simulations for 2×105 rounds. Appendix B
contains the formal description of the model and details
about the protocol and implementation.

Fig. 5 shows the collaborative filtering results. Fig. 5
(left) is analogous to Fig. 3; the y-axes quantifies how
well each recommender performs over the general
population distribution of users. This performance is
measured as the expected probability that a randomly
selected user decides to interact with the item suggested
by this recommender. As in the setting of competing
predictors, competition and specialization leads to a
decrease in the performance of recommenders for the
general user distribution. Fig. 5 (right) is analogous
to Fig. 4; the y-axes there is the prediction quality
experienced by the users. We find a similar phenomenon
as before: having too few or too many recommenders
can decrease the quality experienced by users. These
collaborative filtering experiments demonstrate that
the phenomena that competition leads to algorithmic
specialization and that there is a sweet spot for the
number of ML models can hold in diverse settings.

4 Theoretical analysis

We carry out theoretical analysis to further understand
and support our empirical findings. Here, we assume
a binary classification task for simplicity. Complete
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Figure 5: Collaborative filtering competition: Recommender pCTR over general population (left) and avg.
prediction quality for users (right) for varying number of recommenders (log-scale). Change in pCTR (left) is
with respect to an otherwise identical baseline simulation in which winning recommenders always get an i.i.d.
user sample instead of the user that selected it. Prediction quality (right) is averaged out over all the round in
the simulation. Confidence intervals are std. error of the mean from 5 replicates.

proofs for all claims are in Appendix C. The analysis in
this section can be interpreted as formalizing sufficient
conditions for the empirically observed effects of
competition to emerge.

4.1 Cost of competition for predictors

Our experiments show that competition causes each
predictor to specialize on a sub-population and perform
worse on the overall population distribution. We show
for simple parametric and non-parametric models that
competition results in a gap in the error rates attained by
the trained predictors. Let R(A;D)=E[1{A(X) 6=Y }],
where (X,Y )∼D, denote the error rate of a predictor A
on samples from the general population. The average er-
ror rate of the competing predictors (onD) after t rounds
of competition is Rkt =

∑
i∈[k]R(A

(i)
t ;D)/k, where A(i)

t

is predictor i after t rounds of competition as described
in Sec. 2 and k is the total number of competitors. The
following asymptotic result concerns itself with the
perfect information limit α=∞) and holds quite gener-
ally for most non-parametric models. Plainly speaking,
the theorem says that for certain distributions, the
average error rate of competing predictors is not within
a constant factor of the error rate of a single predictor.

Theorem 4.1. Suppose users have perfect infor-
mation (α = ∞) and each predictor is trained using
a non-parametric method that is asymptotically a
C-approximation (in the usual sense, see Ausiello et al.
(2012)) to the Bayes error rate. Then, for any seed set
size s= |D0|, there exists D such that for any k>1, and
, limt→∞

Rkt
R1
t
=∞.

The intuition forThm. 4.1 is as follows. In the case thatY
is deterministic givenX, theMLproblem is effectively an
interpolation. In this case, the Bayes error rate is 0 and
this error rate is asymptotically achieved by most non-
parametric methods (Tsybakov, 2008) given that they

are C-approximations to the Bayes rate. However, when
α=∞ in a competition, an unlucky seed set could result
in a predictor never achieving 0 error rate, which breaks
theC-approximation. Furthermore, this probability can
be bounded away from 0 for any finite seed set. Next we
show that a risk gap still exists for finite α.
Theorem4.2. Suppose k=2 and both predictors use the
nearest-neighbor algorithm. Let s= |D0| be the number
of i.i.d. seed samples that each predictor starts with and
assume s≥2. If α> log(2), then there exists D such that

lim
t→∞

R2
t

R1
t

≥1+
1

54
√
2s

(
8

9
√
s

)s/2(
1− 2

2+eα

)2

The risk ratio decreases quickly in s, indicating that
sufficient seed data may be an effective counter-measure
for the non-parametric case. Also, the risk ratio grows
larger for larger α, which also coincides with intuition.

We next investigate the parametric setting by analyzing
an ordinary linear least squares regression. For this
analysis, we use the mean squared error to measure
expected risk Rkt . We present two lower bounds. The
first holds for any positive information efficiency α>0
and depends on the number of seed samples. The
second holds for any finite number of seed samples, but
requires the users to have perfect information (α=∞).
Theorem 4.3. Suppose the data is generated from a
linear model Y =XW+ε with E(ε|X)=0. Assume each
predictor uses an ordinary least-squares linear estimator.
Let s≥1 be the number of i.i.d. seed samples each predic-
tor starts with and assume k≥2. We have the following:

(i) If α>0 then limt→∞supD
Rkt
R1
t
≥1+ 1

7056s3/2

(ii) If α=∞ then limt→∞supD
Rkt
R1
t
≥ 2k
k+1

Thm. 4.3 tells us that when α is large, there is a
significant (close to 2×) penalty incurred when there
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are many competing predictors. When α is small,
the penalty is also smaller but does not vanish if the
number of seed samples is not too large. Notice that for
regression, the worst-case ratio of expected risks van-
ishes at a low-degree polynomial rate in s. This decays
far slower than the exponentially vanishing bound for
non-parametric methods. This suggests that seed data
may be less helpful in mitigating the cost of competition
with parametric methods than with non-parametric.

4.2 Prediction quality
for users with competing predictors

We analyze how the number of competing predictors af-
fects the overall prediction quality experienced by users.
We want to characterize the dependence of quality on the
number of predictors, k, and the information efficiency,α.
Recall our notion of empirically measurable prediction
quality for users: 1

T

∑T
t=11(ŷ

(wt)
t =yt). Here we will be

studying theoretically relevant quantities to this random
empirical value. We define the expected prediction quality
at time τ , denoted by Aτ as Aτ =E(1{ŷ(wτ )τ =yτ}). To
this end, we will phrase our results in terms of the accu-
racy,Akt , defined byAkt =1−Rkt rather than the riskRkt .

Assumptions To make the analysis tractable, we
make several natural modeling assumptions that we
outline here. We define the following: δ=A1

t−A2
t and

ε=Ak0− 1
2 .

1. We are primarily interested in regimes when
seed sets are small, which implies that the initial
predictors are weak models. Concretely, we assume:
ε<1/14

2. Also, we should have enough data to experience di-
minishingmarginal returns fromadditional samples.
This means that the individual accuracy for one pre-
dictor is not much better than the individual accu-
racy for two predictors eachwith approximately half
as many samples. Concretely, we assume: 0<δ< 1

6

3. While we allow the predictors to be correlated,
they cannot be extremely correlated. To see why
this is necessary, consider the case in which the
predictors are perfectly correlated. They always
give the same prediction and thus the users derive
no benefit from the competition.

4. Finally, we assume that the expected accuracy for
a predictor monotonically increases in the data set
size. Thus, having more data is better, on average,
but not necessarily always.

Our result shows that in the regimes described above,
there necessarily exists an interval of intermediate
information efficiencies, 0< c1 < c2 <∞ such that for

α∈(c1,c2), the optimal number of predictors is neither 1
or∞. This means that that there is a finite “sweet spot”
in the number of competing predictors that produce
the best user quality.
Theorem 4.4. Assume a learning competition at
round t under the conditions stated above. Let ρ be the
pairwise covariance between two predictors. If we have
ρ <Akt − (Akt )2−6δ then there exists 0< c1 < c2 <∞
such that if c1 < α < c2 then the expected prediction
quality for users at round t is maximized by some k∗
number of predictors such that 1<k∗<∞. In particular,
c1< log

A1
t−(A

1
t−δ)

2−ρ
A1
t−(A1

t−δ)2−ρ−2δ
and c2> log

(1−4ε)A1
t

1−A1
t

.

Tomake the result concrete, we instantiateA1
t←0.9, δ←

0.05, ε←0.05 and ρ←0. Thm. 4.4 tells us that prediction
quality for users at time t is non-monotonic if 0.65<α<
1.97. This range of α agrees reasonably well with our
empirical measurements. The intuition for the theorem
is as follows. Obviously, when α is large having many
weak predictors is better for users as the users themselves
can take the burden of selecting a correct predictor.
When α is not too large, having many weak predictors is
not necessarily better for users than having a few smart
ones (consider the extreme case of α→ 0). However,
if α is exactly zero, then having a single predictor is
generally better than having even two predictors since
the user is not more likely to SELECT the correct
predictor and the two predictors have split the data.
But, there is a sweet spot in α for which the user benefit
from being slightly more likely to select the correct
predictor outweighs the benefit that a single predictor
has in terms of volume of training data. This is due
to the near-universal phenomena in ML of diminishing
marginal returns in number of training samples.

5 Discussion

Related works In Mixture-of-experts and related
ensemble learning methods, multiple predictors work
together to train for a prediction task (Masoudnia and
Ebrahimpour, 2014; Dietterich, 2000; Zhou, 2012; Opitz
and Maclin, 1999). There, the algorithms work together
in the ensemble to optimize a common objective, and
data can be shared between the algorithms. This differs
from our setting where the predictors directly compete
over user queries and training data.

Recent literature in multi-agent reinforcement learning
(MARL) has largely focused on emergent behaviour in
collaborative dynamics between multiple agents (Zhang
et al., 2017; Nguyen et al., 2020; Wai et al., 2018; Zhang
et al., 2019; Bansal et al., 2017; Baker et al., 2019; Fo-
erster et al., 2017). In the fully-competitive setting,
MARLs are typically modeled as zero-sum Markov
games, and span a variety of applications such as explo-
ration (Baker et al., 2019; Niroui et al., 2019), control
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(Hrabia et al., 2018), and others (Li et al., 2019; Kutschin-
ski et al., 2003). Existing RL approaches in multi-agent
competition have studied competitions between two
agents (Littman, 1994;Mansour et al., 2017; Aridor et al.,
2019) with a focus on the expected equilibrium outcome
and agent strategies. In particular, Dong et al. (2019)
proposes that the Nash equilibrium for two firms in simi-
larly motivated data acquisition learning game tends to-
ward monopoly at the expense of consumer welfare. We
differ from this line of work by explicitly modeling both
the predictors and user decisions, incorporating user and
sampling biases into our model, and by allowing for any
number of predictors and users. This flexibility is critical
as we find that the quality of prediction experienced by
users heavily depends on the number of competing pre-
dictors. Another substantial difference between our anal-
ysis and that proposed in Dong et al. (2019) is that ours
takes into the account the particular structure of a given
supervised learning algorithm. On the other hand, the
analysis in Dong et al. (2019) generically assumes learn-
ing algorithms can be replaced by black-boxes that sim-
ply behave according to canonical minimax error rates.

Another body of work focuses on examining and address-
ing single-agent direct feedback loops present in sample
selection, namely sampling bias (Nie et al., 2018; Shin
et al., 2019; Zadrozny, 2004; Liu andZiebart, 2014;Dudík
et al., 2009; Huang et al., 2007, 2006; Cortes et al., 2008;
Vella, 1998), but the problem remains under-explored
in the case of multi-agent competition. Other forms of
a feedback loop in ML systems that have been explored
include social media filter bubbles (Sculley et al., 2015),
risk assessment (Green and Chen, 2019), and algorith-
mic policing (Ensign et al., 2017). Dueling algorithms
have been explored in Immorlica et al. (2011), though
they did not consider any statistical learning settings.

Extensions, limitations and future works This
paper proposes a model of competing predictors that
enables both empirical and theoretical investigations.
We characterize several interesting phenomena, namely
how competition leads predictors to specialize and
how too little or too much competition can both hurt
the quality of prediction experienced by users. The
phenomena that we capture, both empirically and
theoretically, have not been studied in depth before and
are interesting to the general ML community.

Because this is a relatively new direction of research in
ML, wemake several simplifications that allow themodel
to capture the essence of competitionwithout overly com-
plicating the insights. Most of our experiments and the-
ory focus on the setting where each user corresponds to a
single data point and only appears once. This is reason-
able in applications with large populations of users and
relatively infrequent repeated interaction. We conduct

collaborative filtering experiments in which users and
recommenders repeatedly interact over time, and find
the phenomena remain. Additional investigation of re-
peated interactions is a fertile direction for future study.

A simplification we have made is that predictors do not
directly interact with other predictors except through
their competition over data. In practice, companies
behind ML predictors may merge, intentionally
differentiate (which could lead to further specialization),
or spend money to acquire data. A more general model
that captures the full game dynamics would define strat-
egy spaces and payoffs for each predictor and user, and
characterize incentive compatible strategies.Finally, we
have assumed that the predictor that is selected receives
the true label. In practice, there could be additional
noise and time lag in the outcome that the predictor
observes. This could also be interesting to model.

As prediction algorithms become increasingly wide-
spread, how they interact with each other and the
consequences of such competition are very important
topics to explore.
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