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Supplementary Material

A Related Work

Among the several main challenges in the recently developed FL framework (see Kairouz et al. [2019] and
references therein), we focus in this paper on the combination of privacy and communication efficiency, and
examining its impact on model learning. We briefly review some of the main developments in related papers on
these topics below.

A.1 Communication-Privacy Trade-offs

Distributed mean estimation and its use in training learning models has been studied extensively in the literature
(see [Alistarh et al., 2017, Gandikota et al., 2019, Mayekar and Tyagi, 2020, Suresh et al., 2017] and references
therein). In [Suresh et al., 2017], the authors have proposed a communication efficient scheme for estimating the
mean of set a of vectors distributed over multiple clients. Acharya et al. [2019] studied the discrete distribution
estimation under LDP. They proposed a randomized mechanism based on Hadamard coding which is optimal
for all privacy regime and requires O (log (d)) bits per client, where d denotes the support size of the discrete
distribution. In [Acharya and Sun, 2019], the authors consider both private and public coin mechanisms, and show
that the Hadamard mechanism is near optimal in terms of communication for both distribution and frequency
estimation. Recently, Chen et al. [2020] proposed a communication efficient scheme for mean estimation under local
differential privacy constraints. This work is is done concurrently and independently of our work. Furthermore,
it focuses on mean estimation for bounded `2-norm vectors, in contrast to our optimization approach, privacy
amplification through sampling and shuffling. Also, this work considers the existence of public randomness, while
we do not need public randomness.

LDP mechanisms suffer from the utility degradation that motivates other work to find alternative techniques to
improve the utility under LDP. One of new developments in privacy is the use of anonymization to amplify the
privacy by using secure shuffler. In [Balle et al., 2019c, 2020a, Cheu et al., 2019], the authors studied the mean
estimation problem under LDP with secure shuffler, where they show that the shuffling provides better utility
than the LDP framework without shuffling.

A.2 Private Optimization

Chaudhuri et al. [2011] studied centralized privacy-preserving machine learning algorithms for convex optimization
problem. The authors proposed a new idea of perturbing the objective function to preserve privacy of the training
dataset. Bassily et al. [2014] derived lower bounds on the empirical risk minimization under central differential
privacy constraints. Furthermore, they proposed a differential privacy SGD algorithm that matches the lower
bound for convex functions. In [Abadi et al., 2016], the authors have generalized the private SGD algorithm
proposed in [Bassily et al., 2014] for non-convex optimization framework. In addition, the authors have proposed
a new analysis technique, called moment accounting, to improve on the strong composition theorems to compute
the central differential privacy guarantee for iterative algorithms. However, the works mentioned, Abadi et al.
[2016], Bassily et al. [2014], Chaudhuri et al. [2011], assume that there exists a trusted server that collects the
clients’ data. This motivates other works to design a distributed SGD algorithms, where each client perturbs her
own data without needing a trusted server. For this, the natural privacy framework is local differential privacy or
LDP (e.g., see [Bhowmick et al., 2018, Duchi et al., 2013, Evfimievski et al., 2004, Warner, 1965]). However, it is
well understood that LDP does not give good performance guarantees as it requires significant local randomization
to give privacy guarantees [Duchi et al., 2013, Kairouz et al., 2016, Kasiviswanathan et al., 2011]. The two most
related papers to our work are [Agarwal et al., 2018, Erlingsson et al., 2020] which we describe below.

Erlingsson et al. [2020] proposed a distributed local-differential-privacy gradient descent algorithm, where
each client has one sample. In their proposed algorithm, each client perturbs the gradient of her sample
using an LDP mechanism. To improve upon the LDP performance guarantees, they use the newly proposed
anonymization/shuffling framework [Balle et al., 2019c]. Therefore in their work, gradients of all clients are passed
through a secure shuffler that eliminates the identities of the clients to amplify the central privacy guarantee.
However, their proposed algorithm is not communication efficient, where each client has to send the full-precision
gradient without compression. Our work is different from [Erlingsson et al., 2020], as we propose a communication
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efficient mechanism for each client that requires O(log d) bits per client, which can be significant for large d.
Furthermore, our algorithm consider multiple data samples at client, which is accessed through a mini-batch
random sampling at each iteration of the optimization. This requires a careful combination of compression and
privacy analysis in order to preserve the variance reduction of mini-batch as well as privacy.8 In addition we
obtain a gain in privacy by using the fact that (anonymized) clients are sampled (i.e., not all clients are selected
at each iteration) as motivated by the federated learning framework.

Agarwal et al. [2018] proposed a communication-efficient algorithm for learning models with central differential
privacy. Let n be the number of clients per round and d be the dimensionality of the parameter space. They
proposed cp-SGD, a communication efficient algorithm, where clients need to send O(log(1 + d

nε
2) + log log log nd

εδ )

bits of communication per coordinate, i.e., O
(
d
{

log(1 + d
nε

2) + log log log nd
εδ

})
bits per round to achieve the

same local differential privacy guarantees of ε0 as the Gaussian mechanism. Their algorithm is based on a Binomial
noise addition mechanism and secure aggregation. In contrast, we propose a generic framework to convert any
LDP algorithm to a central differential privacy guarantee and further use recent results on amplification by
shuffling, that also achieves better compression in terms of number of bits per client.

B Background tools

B.1 Differential Privacy

In this section, we formally define local differential privacy (LDP) and (central) differential privacy (DP). First
we recall the standard definition of LDP [Kasiviswanathan et al., 2011].

Definition 3 (Local Differential Privacy - LDP [Kasiviswanathan et al., 2011]). For ε0 ≥ 0 and b ∈ N+ :=
{1, 2, 3, . . .}, a randomized mechanism R : X → Y is said to be ε0-local differentially private (in short, ε0-LDP),
if for every pair of inputs x,x′ ∈ X , we have

Pr[R(x) = y] ≤ exp(ε) Pr[R(x′) = y], ∀y ∈ Y. (13)

In our problem formulation, since each client has a communication budget on what it can send in each SGD
iteration while keeping its data private, it would be convenient for us to define two parameter LDP with privacy
and communication budget.

Definition 4 (Local Differential Privacy with Communication Budget - CLDP). For ε0 ≥ 0 and b ∈ N+, a
randomized mechanism R : X → Y is said to be (ε0, b)-communication-limited-local differentially private (in
short, (ε0, b)-CLDP), if for every pair of inputs x,x′ ∈ X , we have

Pr[R(x) = y] ≤ exp(ε) Pr[R(x′) = y], ∀y ∈ Y. (14)

Furthermore, the output of R can be represented using b bits.

Here, ε0 captures the privacy level, lower the ε0, higher the privacy. When we are not concerned about the
communication budget, we succinctly denote the corresponding (ε0,∞)-CLDP, by its correspondence to the
classical LDP as ε0-LDP [Kasiviswanathan et al., 2011].

Let D = {x1, . . . ,xn} denote a dataset comprising n points from X . We say that two datasets D = {x1, . . . ,xn}
and D′ = {x′1, . . . ,x′n} are neighboring if they differ in one data point. In other words, D and D′ are neighboring
if there exists an index i ∈ [n] such that xi 6= x′i and xj = x′j for all j 6= i.

Definition 5 (Central Differential Privacy - DP [Dwork and Roth, 2014, Dwork et al., 2006]). For ε, δ ≥ 0,
a randomized mechanism M : Xn → Y is said to be (ε, δ)-differentially private (in short, (ε, δ)-DP), if for all
neighboring datasets D,D′ ∈ Xn and every subset E ⊆ Y, we have

Pr [M (D) ∈ E ] ≤ exp(ε) Pr [M (D′) ∈ E ] + δ. (15)

Remark 4. For any ε0-LDP mechanism R : X → Y, it is easy to verify that the randomized mechanism
M : Xn → Y defined by M (x1, . . . ,xn) := (R (x1) , . . . ,R (xn)) is (ε0, 0)-DP.

8The naive method of quantizing the aggregated mini-batch gradient will fail to preserve the required variance reduction.
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Remark 5. Note that in this paper we make a clear distinction between the notation used for central differ-
ential privacy, denoted by (ε, δ)-DP (see Definition 5), local differential privacy ε0-LDP (see definition 3) and
communication limited local differential privacy, denoted by (ε0, b)-CLDP (see Definition 4).

The main objective of this paper is to make SGD differentially private and communication-efficient, suitable for
federated learning. For that we compress and privatize gradients in each SGD iteration. Since the parameter
vectors in any iteration depend on the previous iterations, so do the gradients, which makes this procedure a
sequence of many adaptive DP mechanisms. We can calculate the final privacy guarantees achieved at the end of
this procedure by using composition theorems.

B.2 Strong Composition [Dwork et al., 2010]

Let M1 (I1,D) , . . . ,MT (IT ,D) be a sequence of T adaptive DP mechanisms, where Ii denotes the auxiliary
input to the ith mechanism, which may depend on the previous mechanisms’ outputs and the auxiliary inputs
{(Ij ,Mj(Ij ,D)) : j < i}. There are different composition theorems in literature to analyze the privacy guarantees
of the composed mechanism M(D) = (M1 (I1,D) , . . . ,MT (IT ,D)).

Dwork et al. [2010] provided a strong composition theorem (which is stronger than the basic composition theorem
in which the privacy parameters scale linearly with T ) where the privacy parameter of the composition mechanism
scales as

√
T with some loss in δ. Below, we provide a formal statement of that result from Dwork and Roth

[2014].

Lemma 6 (Strong Composition, [Dwork and Roth, 2014, Theorem 3.20]). Let M1, . . . ,MT be T adaptive
(ε, δ)-DP mechanisms, where ε, δ ≥ 0. Then, for any δ′ > 0, the composed mechanism M = (M1, . . . ,MT ) is
(ε, δ)-DP, where

ε =
√

2T log (1/δ′)ε+ Tε
(
eε − 1

)
, δ = Tδ + δ′.

In particular, when ε = O
(√

log(1/δ′)
T

)
, we have ε = O

(
ε
√
T log (1/δ′)

)
.

Note that training large-scale machine learning models (e.g., in deep learning) typically requires running SGD
for millions of iterations, as the dimension of the model parameter is quite large. We can make it differentially
private by adding noise to the gradients in each iteration, and appeal to the strong composition theorem to bound
the privacy loss of the entire process (which in turn dictates the amount of noise to be added in each iteration).

B.3 Privacy Amplification

In this section, we describe the techniques that can be used for privacy amplification. The first one amplifies
privacy by subsampling the data (to compute stochastic gradients) as well as the clients (as in FL), and the other
one amplifies privacy by shuffling.

B.3.1 Privacy Amplification by Subsampling

Suppose we have a dataset D′ = {U1, . . . , Ur1} ∈ Ur1 consisting of r1 elements from a universe U . A subsampling
procedure takes a dataset D′ ∈ Ur1 and subsamples a subset from it as formally defined below.

Definition 6 (Subsampling). The subsampling operation sampr1,r2 : Ur1 → Ur2 takes a dataset D′ ∈ Ur1 as
input and selects uniformly at random a subset D′′ of r2 ≤ r1 elements from D′. Note that each element of D′
appears in D′′ with probability q = r2

r1
.

The following result states that the above subsampling procedure amplifies the privacy guarantees of a DP
mechanism.

Lemma 7 (Amplification by Subsampling, [Kasiviswanathan et al., 2011]). Let M : Ur2 → V be an (ε, δ)-
DP mechanism. Then, the mechanism M′ : Ur1 → V defined by M′ = M ◦ sampr1,r2 is (ε′, δ′)-DP, where
ε′ = log(1 + q(eε − 1)) and δ′ = qδ with q = r2

r1
. In particular, when ε < 1, M′ is (O(qε), qδ)-DP.
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Note that in the case of subsampling the data for computing stochastic gradients, where client i selects a
mini-batch of size s from its local dataset Di that has r data points, we take D′ = Di, r1 = r, and r2 = s. In the
case of subsampling the clients, k clients are randomly selected from the m clients, we take D′ = {1, 2, . . . ,m},
r1 = m, and r2 = k. An important point is that such a sub-sampling is not uniform overall (i.e., this does not
imply that any subset of ks data points is chosen with equal probability) and we cannot directly apply the above
result. We need to revisit the proof of Lemma 7 to adapt it to our case, and we do it in Lemma 3, which is
proved in Appendix C. In fact, the proof of Lemma 3 is more general than just adapting the amplification by
subsampling to our setting, it also incorporates the amplification by shuffling, which is crucial for obtaining strong
privacy guarantees. We describe it next.

B.3.2 Privacy Amplification by Shuffling

Consider a set of m clients, where client i ∈ [m] has a data xi ∈ X . Let R : X → Y be an ε0-LDP mechanism. The
i-th client applies R on her data xi to get a private message yi = R(xi). There is a secure shuffler Hm : Ym → Ym
that receives the set of m messages (y1, . . . ,ym) and generates the same set of messages in a uniformly random
order.

The following lemma states that the shuffling amplifies the privacy of an LDP mechanism by a factor of 1√
m

.

Lemma 8 (Amplification by Shuffling). Let R be an ε0-LDP mechanism. Then, the mechanismM(x1, . . . ,xm) :=
Hm ◦ (R(x1), . . . ,R(xm)) satisfies (ε, δ)-differential privacy, where

1. [Balle et al., 2019c, Corollary 5.3.1]. If ε0 ≤ log(m/ log(1/δ))
2 , then for any δ > 0, we have

ε = O
(

min{ε0, 1}eε0
√

log(1/δ)
m

)
.

2. [Erlingsson et al., 2019, Corollary 9]. If ε0 < 1
2 , then for any δ ∈ (0, 1

100 ) and m ≥ 1000, we have

ε = 12ε0

√
log(1/δ)

m .

In our proposed algorithm, only k ≤ m clients send messages and each client sends a mini-batch of s gradients.
So, in total, shuffler applies the shuffling operation on ks gradients. In our algorithm, though sampling and
shuffling are applied one after another (first k clients are sampled, then each client samples s data points, and
then shuffling of these ks data points is performed), we analyze the privacy amplification we get using both of
these techniques by analyzing them together; see Lemma 3 proved in Appendix C.

B.4 Compressed and Private Mean Estimation via Minimax Risk

Recall that in each SGD iteration, server sends the current parameter vector to all clients, upon receiving which
they compute stochastic gradients from their local datasets and send them to the server, who then computes
the average/mean of received gradients and updates the parameter vector. Note that these gradients (over the
entire execution of algorithm) may also leak information about the datasets. As mentioned in Section 1, we also
compress the gradients to mitigate the communication bottleneck.

In this section, we formulate the generic mimimax estimation framework for mean estimation of a given set of n
vectors that preserves privacy and is also communication-efficient. We then apply that method at the server in each
SGD iteration for aggregating the gradients. We derive upper and lower bounds for various `p geometries for p ≥ 1
including the `∞-norm. Let us setup the problem. For any p ≥ 1 and d ∈ N, let Bdp (a) = {x ∈ Rd : ‖x‖p ≤ a}

denote the p-norm ball with radius a centered at the origin in Rd,9 where ‖x‖p =
(∑d

j=1 |xj |p
)1/p

. Each client

i ∈ [n] has an input vector xi ∈ Bdp(a) and the server wants to estimate the mean x := 1
n

∑n
i=1 xi. We have two

constraints: (i) each client has a communication budget of b bits to transmit the information about its input
vector to the server, and (ii) each client wants to keep its input vector private from the server. We develop
private-quantization mechanisms to simultaneously address these constraints. Specifically, we design mechanisms
Mi : Bdp(a)→ {0, 1}d for i ∈ [n] that are quantized in the sense that they produce a b-bit output and are also
locally differentially private. In other words, Mi is (ε0, b)-LDP for some ε0 ≥ 0 (see Definition 4).

9Assuming that the ball is centered at origin is without loss of generaility; otherwise, we can translate the ball to origin
and work with that.
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The procedure goes as follows. client i ∈ [n] applies a private-quantization mechanism Mi on her input xi and
obtains a private output yi =Mi(xi) and sends it to the server. Upon receiving yn = [y1, . . . ,yn], server applies
a decoding function to estimate the mean vector x = 1

n

∑n
i=1 xi. Our objective is to design private-quantization

mechanisms Mi : Bdp(a)→ {0, 1}d for all i ∈ [n] and also a (stochastic) decoding function x̂ :
(
{0, 1}b

)n → Bdp
that minimizes the worst-case expected error sup{xi}∈Bdp E‖x − x̂(yn)‖2. In other words, we are interested in

characterizing the following quantity.

rp,dε,b,n(a) = inf
{Mi∈Q(ε,b)}

inf
x̂

sup
{xi}∈Bdp(a)

E ‖x− x̂(yn)‖22 , (16)

where Q(ε,b) is the set of all (ε, b)-LDP mechanisms, and the expectation is taken over the randomness of
{Mi : i ∈ [n]} and the estimator x̂. Note that in (16) we do not assume any probabilistic assumptions on the
vectors x1, . . . ,xn.

Now we extend the formulation in (16) to a probabilistic model. Let Pdp (a) denote the set of all probability

density functions on Bdp(a). For every distribution q ∈ Pdp (a), let µq denote its mean. Since the support of each

distribution q ∈ Pdp is Bdp(a) and `p is a norm, we have that µq ∈ Bdp(a). For a given unknown distribution

q ∈ Pdp (a), client i ∈ [n] observes xi, where x1, . . . ,xn are i.i.d. according to q, and the goal for the server is to
estimate µq, while satisfying the same two constraints as above, i.e., only b bits of communication is allowed from
any client to the server while preserving the privacy of clients’ inputs. Analogous to (16), we are interested in
characterizing the following quantity.

Rp,dε,b,n(a) = inf
{Mi∈Q(ε,b)}

inf
x̂

sup
q∈Pdp (a)

E
∥∥µq − x̂(yn)

∥∥2

2
, (17)

where the expectation is taken over the randomness of the output yn and the estimator x̂.

In this paper, we design private-quantization mechanisms {M1, . . . ,Mn} such that they are symmetric (i.e.,
Mi’s are same for all i ∈ [n]) and any client uses only private source of randomness that is not accessible by any
other party in the system.

C Proof of Lemma 3

This entire section is devoted to proving Lemma 3. For convenience, we restate the lemma below.

Lemma (Restating Lemma 3). Let s = 1 and q = k
mr . Suppose R is an ε0-LDP mechanism, where ε0 ≤

log(qn/ log(1/δ̃))
2 and δ̃ > 0 is arbitrary. Then, for any t ∈ [T ], the mechanism Mt is

(
ε, δ
)
-DP, where ε =

ln(1 + q(eε̃ − 1)), δ = qδ̃ with ε̃ = O

(
min{ε0, 1}eε0

√
log(1/δ̃)

qn

)
. In particular, if ε0 = O (1), we get ε =

O
(
ε0

√
q log(1/δ̃)

n

)
.

Recall that the input dataset at client i ∈ [m] is denoted by Di = {di1, di2, . . . , dir} ∈ Sr and D =
⋃m
i=1Di

denotes the entire dataset. Recall from (12) that the mechanism Mt on input dataset D can be defined as:

Mt(D) = Hks ◦ sampm,k (G1, . . . ,Gm) , (18)

where Gi = sampr,s (R(xti1), . . . ,R(xtir)) and xtij = ∇θtf(θt; dij),∀i ∈ [m], j ∈ [r]. We define a mechanism

Z
(
D(t)

)
= Hks (R (xt1) , . . . ,R (xtks)) which is a shuffling of ks outputs of local mechanism R, where D(t) denotes

an arbitrary set of ks data points and we index xti’s from i = 1 to ks just for convenience. From the amplification
by shuffling result [Balle et al., 2019c, Corollary 5.3.1] (also see Lemma 8), the mechanism Z is (ε̃, δ̃)-DP, where

δ̃ > 0 is arbitrary, and, if ε0 ≤
log(ks/ log(1/δ̃))

2 , then

ε̃ = O

min{ε0, 1}eε0

√√√√ log
(

1/δ̃
)

ks

 . (19)
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Furthermore, when ε0 = O (1), we get ε̃ = O
(
ε0

√
log(1/δ̃)

ks

)
.

Let T ⊆ {1, . . . ,m} denote the identities of the k clients chosen at iteration t, and for i ∈ T , let Ti ⊆ {1, . . . , r}
denote the identities of the s data points chosen at client i at iteration t.10 For any T ∈

(
[m]
k

)
and Ti ∈

(
[r]
s

)
, i ∈ T ,

define T = (T , Ti, i ∈ T ), DTi = {dij : j ∈ Ti} for i ∈ T , and DT = {DTi : i ∈ T }. Note that T and Ti, i ∈ T are
random sets, where randomness is due to the sampling of clients and of data points, respectively. The mechanism

Mt can be equivalently written as Mt = Z(DT ).

Observe that our sampling strategy is different from subsampling of choosing a uniformly random subset of ks
data points from the entire dataset D. Thus, we revisit the proof of privacy amplification by subsampling (see, for
example, Ullman [2017]) – which is for uniform sampling – to compute the privacy parameters of the mechanism
Mt, where sampling is non-uniform. Define a dataset D′ = (D′1)

⋃
(∪mi=2Di) ∈ Sn, where D′1 = {d′11, d12, . . . , d1r}

is different from the dataset D1 in the first data point d11. Note that D and D′ are neighboring datasets – where,
we assume, without loss of generality, that the differing elements are d11 and d′11.

In order to show that Mt is (ε, δ)-DP, we need show that for an arbitrary subset S of the range of Mt, we have

Pr [Mt (D) ∈ S] ≤ eε Pr [Mt (D′) ∈ S] + δ (20)

Pr [Mt (D′) ∈ S] ≤ eε Pr [Mt (D) ∈ S] + δ (21)

Note that both (20) and (21) are symmetric, so it suffices to prove only one of them. We prove (20) below.

Let q = ks
mr . We define conditional probabilities as follows:

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 ∈ T1

]
A′11 = Pr

[
Z(D

′T ) ∈ S|1 ∈ T and 1 ∈ T1

]
A10 = Pr

[
Z(DT ) ∈ S|1 ∈ T and 1 6∈ T1

]
= Pr

[
Z(D

′T ) ∈ S|1 ∈ T and 1 6∈ T1

]
A0 = Pr

[
Z(DT ) ∈ S|1 6∈ T

]
= Pr

[
Z(D

′T ) ∈ S|1 6∈ T
]

Let q1 = k
m and q2 = s

r , and hence q = q1q2. Thus, we have

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

Pr [Mt (D′) ∈ S] = qA′11 + q1 (1− q2)A10 + (1− q1)A0

Note that the mechanism Z is (ε̃, δ̃)-DP. Therefore, we have

A11 ≤ eε̃A′11 + δ̃ (22)

A11 ≤ eε̃A10 + δ̃ (23)

Here (22) is straightforward, but proving (23) requires a combinatorial argument, which we give at the end of
this proof.

We prove (20) separately for two cases, first when s = 1 and other when s > 1; k is arbitrary in both cases.

C.1 For s = 1 and arbitrary k ∈ [m]

Since the mechanism Z is (ε̃, δ̃)-DP, in addition to (22)-(23), since s = 1, we also have the following inequality:

A11 ≤ eε̃A0 + δ̃ (24)

Similar to (23), proving (24) requires a combinatorial argument, which we will give at the end of this proof. Note
that (24) only holds for s = 1 and may not hold for arbitrary s.

10Though T and Ti, i ∈ T may be different at different iteration t, for notational convenience, we suppress the dependence
on t here.
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Inequalities (22)-(24) together imply A11 ≤ eε̃ min{A′11, A10, A0}+ δ̃. Now we prove (20) for ε = ln(1 + q(eε̃ − 1)
and δ = qδ̃. Note that when s = 1, we have q1 = k

m , q2 = 1
r , and q = k

mr .

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

≤ q
(
eε̃ min{A′11, A10, A0}+ δ̃

)
+ q1 (1− q2)A10 + (1− q1)A0

= q
(
(eε̃ − 1) min{A′11, A10, A0}+ min{A′11, A10, A0}

)
+ q1 (1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q(eε̃ − 1) min{A′11, A10, A0}+ qA′11 + q1 (1− q2)A10 + (1− q1)A0 + qδ̃

(b)

≤ q(eε̃ − 1) (qA′11 + q1(1− q2)A10 + (1− q1)A0)) + (qA′11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q

(
eε̃ − 1

))
(qA′11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

= eln(1+q(eε̃−1)) Pr [Mt (D′) ∈ S] + qδ̃.

Here, (a) follows from min{A′11, A10, A0} ≤ A′11, and (b) follows from the fact that minimum is upper-bounded by
the convex combination. By substituting the value of ε̃ from (19) and using ks = qn, we get that for ε0 = O (1),

we have ε = O
(
ε0

√
q log(1/δ̃)

n

)
.

C.2 For s > 1 and arbitrary k ∈ [m]

Note that (22)-(23) together imply A11 ≤ eε̃ min{A′11, A10}+ δ̃. Now we prove (20) for ε = ln(1 + q2(eε̃ − 1)) and
δ = qδ̃.

Pr [Mt (D) ∈ S] = qA11 + q1(1− q2)A10 + (1− q1)A0

≤ q
(
eε̃ min{A′11, A10}+ δ̃

)
+ q1(1− q2)A10 + (1− q1)A0

= q
(
(eε̃ − 1) min{A′11, A10}+ min{A′11, A10}

)
+ q1(1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q
(
eε̃ − 1) min{A′11, A10}

)
+ qA′11 + q1(1− q2)A10 + (1− q1)A0 + qδ̃

(b)

≤ q
(
(eε̃ − 1)(q2A

′
11 + (1− q2)A10)

)
+ (qA′11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

= q2

(
(eε̃ − 1)(q1q2A

′
11 + q1(1− q2)A10)

)
+ (qA′11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

(c)

≤ q2

(
(eε̃ − 1)(qA′11 + q1(1− q2)A10) + (1− q1)A0

)
+ (qA′11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q2

(
(eε̃ − 1)

)
(qA′11 + q1(1− q2)A10) + (1− q1)A0

)
+ qδ̃

= eln(1+q2(eε̃−1)) Pr [Mt (D′) ∈ S] + qδ̃

Here, (a) follows from min{A′11, A10} ≤ A′11, (b) follows from the fact that minimum is upper-bounded by the
convex combination, and (c) holds because (1− q1)A0 ≥ 0. By substituting the value of ε̃ from (19) and using

ks = qn, we get that for ε0 = O (1), we have ε = O

(
ε0

√
q2 log(1/δ̃)

q1n

)
. Note that when q1 = 1 (i.e., we select all

the clients in each iteration), then this gives the desired privacy amplification of q = q2.

The proof of Lemma 3 is complete, except for that we have to prove (23) and (24). Before proving (23) and (24),
we state an important remark about the privacy amplification in both the cases.

Remark 6. Note that when s = 1 and ε0 = O(1), we have ε = ln(1 + q(eε̃ − 1)) = O(qε̃). So we get a privacy
amplification by a factor of q = ks

mr – the sampling probability of each data point from the entire dataset. Here,
we get a privacy amplification from both types of sampling, of clients as well of data points.

On the other hand, when s > 1 and ε0 = O(1), we have ε = ln(1 + q2(eε̃ − 1)) = O(q2ε̃), which, unlike the case of
s = 1, only gives the privacy amplification by a factor of q2 = s

r – the sampling probability of each data point
from a client. So, unlike the case of s = 1, here we only get a privacy amplification from sampling of data points,
not from sampling of clients. Note that when k = m and any s ∈ [r] (which implies q1 = 1 and q = q2), we have

ε = O
(
ε0

√
q2 log(1/δ̃)

n

)
, which gives the desired amplification when we select all the clients in each iteration.
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Proof of (23). First note that the number of subsets T1 ⊂ [r] such that |T1| = s, 1 ∈ T1 is equal to
(
r−1
s−1

)
and the number of subsets T1 ⊂ [r] such that |T1| = s, 1 /∈ T1 is equal to

(
r−1
s

)
. It is easy to verify that

(r − s)
(
r−1
s−1

)
= s
(
r−1
s

)
.

Consider the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1 has
(
r−1
s−1

)
vertices, one for

each configuration of T1 ⊂ [r] such that |T1| = s, 1 ∈ T1, the right vertex set V2 has
(
r−1
s

)
vertices, one for each

configuration of T1 ⊂ [r] such that |T1| = s, 1 /∈ T1, and the edge set E contains all the edges between neighboring
vertices, i.e., if (u,v) ∈ V1 × V2 is such that u and v differ in only one element, then (u,v) ∈ E. Observe that
each vertex of V1 has (r−s) neighbors in V2 – the neighbors of T1 ∈ V1 will be {(T1 \{1})∪{i} : i ∈ [m]\T1} ∈ V2.
Similarly, each vertex of V2 has s neighbors in V1 – the neighbors of T1 ∈ V2 will be {(T1 \{i})∪{1} : i ∈ T1} ∈ V1.

Now, fix any T ∈
(

[m]
k

)
s.t. 1 ∈ T , and for i ∈ T \ {1}, fix any Ti ∈

(
[r]
s

)
, and consider an arbitrary (u,v) ∈ E.

Since the mechanism Z is (ε̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|1 ∈ T , T1 = u, Ti, i ∈ T \ {1}

]
≤ eε̃ Pr

[
Z(DT ) ∈ S|1 ∈ T , T1 = v, Ti, i ∈ T \ {1}

]
+ δ̃. (25)

Now we are ready to prove (23).

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 ∈ T1

]
=

∑
T ∈([m]

k ):1∈T
T1∈([r]s ):1∈T1

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T |1 ∈ T and 1 ∈ T1] Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

(a)
=

∑
T ∈([m]

k ):1∈T
Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
∑

T1∈([r]s ):1∈T1

Pr[T1|1 ∈ T1] Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

=
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
1

(r − s)
(
r−1
s−1

) ∑
T1∈([r]s ):1∈T1

(r − s) Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

=
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
1

s
(
r−1
s

) ∑
T1∈([r]s ):1∈T1

(r − s) Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

(b)

≤
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
1

s
(
r−1
s

) ∑
T1∈([r]s ):1/∈T1

s
(
eε̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tm] + δ̃

)

=
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
∑

T1∈([r]s ):1/∈T1

Pr[T1|1 /∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tm] + δ̃

)

(c)
=

∑
T ∈([m]

k ):1∈T
T1∈([r]s ):1/∈T1

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T |1 ∈ T and 1 /∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tm] + δ̃

)

≤ eε̃ Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 /∈ T1

]
+ δ̃

= eε̃A10 + δ̃.

Here, (a) and (c) follow from the fact that clients sample the data points independent of each other, and
(b) follows from (25) together with the fact that there are (r − s)

(
r−1
s−1

)
= s

(
r−1
s

)
edges in the bipartite graph

G = (V1 ∪ V2, E), where degree of vertices in V1 is (r − s) and degree of vertices in V2 is s.

Proof of (24). First note that the number of subsets T ∈ [m] such that |T | = k, 1 ∈ T is equal to
(
m−1
k−1

)
and the number of subsets T ⊂ [m] such that |T | = k, 1 /∈ T is equal to

(
m−1
k

)
. It is easy to verify that

(m− k)
(
m−1
k−1

)
= k

(
m−1
k

)
.
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Consider the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1 has
(
m−1
k−1

)
rk−1 vertices, one

for each configuration of (T , Ti : i ∈ T ) such that T ⊂ [m], |T | = k, 1 ∈ T and T1 = 1, the right vertex set V2 has(
m−1
k

)
rk vertices, one for each configuration of (T , Ti : i ∈ T ) such that T ⊂ [m], |T | = k, 1 /∈ T , and the edge

set E contains all the edges between neighboring vertices, i.e., if (u,v) ∈ V1 × V2 is such that u and v differ in
only one element, then (u,v) ∈ E. Observe that each vertex of V1 has r(m− k) neighbors in V2. Similarly, each
vertex of V2 has k neighbors in V1.

Consider an arbitrary edge (u,v) ∈ E. By construction, there exists T ∈
(

[m]
k

)
with 1 ∈ T and Ti ∈ [r], i ∈ T such

that u = (T , Ti : i ∈ T ) and T ′ ∈
(

[m]
k

)
with 1 /∈ T ′ and T ′i ∈ [r], i ∈ T ′ such that v = (T ′, T ′i : i ∈ T ′). Note

that, since (u,v) ∈ E, (Ti : i ∈ T ) and (T ′i : i ∈ T ′) have k − 1 elements common. Now, since the mechanism Z
is (ε̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|T , Ti, i ∈ T

]
≤ eε̃ Pr

[
Z(DT ′) ∈ S|T ′, T ′i , i ∈ T ′

]
+ δ̃. (26)

Now we are ready to prove (24).

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and T1 = 1

]
=

∑
T ∈([m]

k ):1∈T
Ti∈[r] for i∈T :T1=1

Pr[T , Ti, i ∈ T |1 ∈ T and T1 = 1] Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

=
1(

m−1
k−1

)
rk−1

∑
T ∈([m]

k ):1∈T
Ti∈[r] for i∈T :T1=1

Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

=
1

(m− k)
(
m−1
k−1

)
rk

∑
T ∈([m]

k ):1∈T
Ti∈[r] for i∈T :T1=1

r(m− k) Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

(a)
=

1

k
(
m−1
k

)
rk

∑
T ∈([m]

k ):1∈T
Ti∈[r] for i∈T :T1=1

r(m− k) Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

(b)

≤ 1

k
(
m−1
k

)
rk

∑
T ∈([m]

k ):1/∈T
Ti∈[r] for i∈T

k
(
eε Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

=
1(

m−1
k

)
rk

∑
T ∈([m]

k ):1/∈T
Ti∈[r] for i∈T

(
eε Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

=
∑

T ∈([m]
k ):1/∈T

Ti∈[r] for i∈T

Pr[T , Ti, i ∈ T |1 /∈ T ]
(
eε Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

= eε̃ Pr
[
Z(DT ) ∈ S|1 /∈ T

]
+ δ̃

= eε̃A0 + δ̃

Here, (a) uses (m − k)
(
m−1
k−1

)
= k

(
m−1
k

)
, and (b) follows from (26) together with the fact that there are

r(m− k)
(
m−1
k−1

)
rk−1 = k

(
m−1
k

)
rk edges in the bipartite graph G = (V1 ∪ V2, E), where degree of vertices in V1 is

r(m− k) and degree of vertices in V2 is k.

This completes the proof of Lemma 3.
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D Compressed and Private Mean Estimation

In this section, we provide additional results on compressed and private mean estimation and also prove the
results stated in Section 4.2.

D.1 Main Results

Theorem (Restating Theorem 2). For any d, n ≥ 1, a, ε0 > 0, and p ∈ [1,∞], the minimax risk in (4) satisfies

rp,dε,∞,n(a) ≥

Ω
(
a2 min

{
1, d

nε20

})
if 1 ≤ p ≤ 2,

Ω
(
a2d1− 2

p min
{

1, d
nmin{ε0,ε20}

})
if p ≥ 2.

Theorem 5. For any d, n ≥ 1, a, ε0 > 0, and p ∈ [1,∞], we have the minimax risk in (17) satisfies

Rp,dε,∞,n(a) ≥

Ω
(
a2 min

{
1, d

nε20

})
if 1 ≤ p ≤ 2,

Ω
(
a2d1− 2

p min
{

1, d
nmin{ε0,ε20}

})
if p ≥ 2.

Theorem (Restating Theorem 3). For any private-randomness, symmetric mechanism R with communication
budget b < log (d) bits per client, and any decoding function g : {0, 1}b → Rd, when x̂ = 1

n

∑n
i=1 g (R (xi)), we

have11

rp,dε,b,n(a) > a2 max
{

1, d1− 2
p

}
.

For convenience, we will write Theorem 4 in three separate theorems.

Theorem 6 (`1-norm). For any d, n ≥ 1, a, ε0 > 0, we have

r1,d
ε0,b,n

(a) ≤ a2d

n

(
eε0 + 1

eε0 − 1

)2

and R1,d
ε0,b,n

(a) ≤ 4a2d

n

(
eε0 + 1

eε0 − 1

)2

,

for b = log(d) + 1.

Theorem 7 (`2-norm). For any d, n ≥ 1, a, ε0 > 0, we have

r2,d
ε0,b,n

(a) ≤ 6a2d

n

(
eε0 + 1

eε0 − 1

)2

and R2,d
ε0,b,n

(a) ≤ 14a2d

n

(
eε0 + 1

eε0 − 1

)2

,

for b = d log(e) + 1.

Theorem 8 (`∞-norm). For any d, n ≥ 1, a, ε0 > 0, we have

r∞,dε0,b,n
(a) ≤ a2d2

n

(
eε0 + 1

eε0 − 1

)2

and R∞,dε0,b,n
(a) ≤ 4a2d2

n

(
eε0 + 1

eε0 − 1

)2

,

for b = log(d) + 1.

Note that when ε0 = O(1), then the upper and lower bounds on minimax risks match for p ∈ [1, 2]. Furthermore,
when ε0 ≤ 1, then they match for all p ∈ [1,∞].

Now we give a general achievability result for any `p-norm ball Bdp(a) for any p ∈ [1,∞). For this, we use standard
inequalities between different norms, and probabilistically use the mechanisms for `1-norm or `2-norm with
expanded radius of the corresponding ball. We assume that every work can pick any mechanisms with the same
probability p̄ ∈ [0, 1]. This gives the following result, which we prove in Section D.8.

Corollary 1 (General `p-norm, p ∈ [1,∞)). Suppose clients pick the mechanism for `1-norm with probability
p̄ ∈ [0, 1]. Then, for any d, n ≥ 1, a, ε0 > 0, we have:

rp,dε0,b,n(a) ≤ p̄ d2− 2
p · r1,d

ε0,b,n
(a) + (1− p̄) max

{
d1− 2

p , 1
}
· r2,d
ε0,b,n

(a), (27)

11Note that Theorem 3 works only when the estimator x̂ applies the decoding function g on individual responses and
then takes the average. We leave its extension for arbitrary decoders as a future work.
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Rp,dε0,b,n(a) ≤ p̄ d2− 2
p ·R1,d

ε0,b,n
(a) + (1− p̄) max

{
d1− 2

p , 1
}
·R2,d

ε0,b,n
(a). (28)

for b = p̄ log(d) + (1− p̄)d log(e) + 1. Note that this communication is in expectation, which is taken over the
sampling of selecting `1 or `2 mechanisms.

We can recover Theorem 6 by setting p = 1 and p̄ = 1 and Theorem 7 by setting p = 2 and p̄ = 0.

In this section, we study the private mean-estimation problem in the minimax framework given in Section B.4.
Note that in this section we focus on giving (ε0, b)-CLDP) privacy-communication guarantees for the mean-
estimation problem and give the performance of schemes in terms of the associated minimax risk. This framework
is applied at each round of the optimization problem, and is then converted to the eventual central DP privacy
guarantees using the shuffling framework in Section 5.3, yielding the main result Theorem 1 stated in Section 4.

We prove the lower bound results (Theorems 5, 2) in the first two subsections and the achievable results
(Theorems 6, 7, 8, and Corollary 1) in the last four subsections, respectively.

We prove lower bounds for private mechanisms with no communication constraints, and for clarity, we denote
such mechanisms by (ε,∞)-CLDP mechanisms. Our achievable schemes use finite amount of randomness.

For lower bounds, for simplicity, we assume that the inputs come from an `p-norm ball of unit radius – the bounds
will be scaled by the factor of a2 if inputs come from an `p-norm ball of radius a. For convenience, we denote

Bdp(1),Pdp (1), rp,dε,b,n(1), and Rp,dε,b,n(1) by Bdp ,Pdp , r
p,d
ε,b,n, and Rp,dε,b,n, respectively.

D.2 Lower Bound on Rp,dε,∞,n: Proof of Theorem 5

Theorem 5 states separate lower bounds on Rp,dε,∞,n depending on whether p ≥ 2 or p ≤ 2 (at p = 2, both bounds
coincide), and we prove them below in Section D.2.1 and Section D.2.2, respectively.

D.2.1 Lower bound for p ∈ [2,∞]

The main idea of the lower bound is to transform the problem to the private mean estimation when the inputs
are sampled from Bernoulli distributions. Recall that Pdp denote the set of all distributions on the p-norm ball

Bdp . Let PBern
p,d denote the set of Bernoulli distributions on

{
0, 1

d1/p

}d
, i.e., any element of PBern

p,d is a product of d

independent Bernoulli distributions, one for each coordinate. We first prove a lower bound on Rp,dε,∞,n when the

input distribution belongs to PBern
p,d .

Lemma 9. For any p ∈ [2,∞], we have

inf
{Mi}∈Q(ε,∞)

inf
x̂

sup
q∈PBern

p,d

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε, ε2}

})
. (29)

Proof. The proof is straightforward from the proof of [Duchi and Rogers, 2019, Corollary 3]. In their setting,

PBern
p,d is supported on {0, 1}d, and they proved a lower bound of Ω

(
min

{
1, d

nmin{ε,ε2}

})
. In our setting, since

PBern
p,d is supported on

{
0, 1

d1/p

}d
, we can simply scale the elements in the support of PBern

p,d by a factor of 1/d1/p,

which will also scale the mean µq by the same factor. Note that the best estimator x̂ will be equal to the scaled

version of the best estimator from [Duchi and Rogers, 2019, Corollary 3] with the same value 1/d1/p. This proves
Lemma 9. �

In order to use Lemma 9, first observe that for every x ∈ PBern
p,d , we have ‖x‖p ≤ 1, which implies that x ∈ Pdp .

Thus we have PBern
p,d ⊂ Pdp . Now our bound on Rp,dε,∞,n trivially follows from the following inequalities:

Rp,dε,∞,n = inf
{Mi}∈Q(ε,∞)

inf
x̂

sup
q∈Pdp

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ inf
{Mi}∈Q(ε,∞)

inf
x̂

sup
q∈PBern

p,d

E
∥∥µq − x̂ (yn)

∥∥2

2

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε, ε2}

})
, (30)
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where the last inequality follows from (29).

D.2.2 Lower bound for p ∈ [1, 2]

Fix an arbitrary p ∈ [1, 2]. Note that ‖x‖p ≤ ‖x‖1, which implies that Bd1 ⊂ Bdp , and therefore, we have Pd1 ⊂ Pdp .

These imply that the lower bound derived for Pd1 also holds for Pdp , i.e., Rp,dε,∞,n ≥ R1,d
ε,∞,n holds for any p ∈ [1, 2].

So, in the following, we only lower-bound R1,d
ε,∞,n.

The main idea of the lower bound is to transform the problem to the private discrete distribution estimation
when the inputs are sampled from a discrete distribution taken from a simplex in d dimensions. Recall that Pd1
denotes all probability density functions q over the 1-norm ball Bd1 . Note that q may be a continuous distribution

supported over all of Bd1 . Let P̂d1 denote a set of all discrete distributions q supported over the d standard
basis vectors e1, . . . , ed, i.e., the distribution has support on {e1, . . . , ed}. Since {e1, . . . , ed} ⊂ Bd1 , we have

P̂d1 ⊂ Pd1 . Moreover, since any q ∈ P̂d1 is a discrete distribution, by abusing notation, we describe q through

a d−dimensional vector q of its probability mass function. Note that, for any q ∈ P̂d1 , the average over this
distribution is µq = Eq[U], where Eq[·] denotes the expectation over the distribution q for a discrete random

variable U ∼ q, where we denote qi = Pr[U = ei]. Therefore we have µq =
∑d
i=1 qiei = (q1, . . . , qd)

T = q, for

every q ∈ P̂d1 . Let ∆d denote the probability simplex in d dimensions. Since the discrete distribution q ∈ P̂d1
is representable as q ∈ ∆d, we have an isomorphism between ∆d and P̂d1 , i.e., we can equivalently think of

P̂d1 = ∆d. Fix arbitrary (ε,∞)-CLDP mechanisms {Mi : i ∈ [n]} and an estimator x̂. Using the above notations
and observations, we have:

sup
q∈Pd1

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ sup

q∈P̂d1

E
∥∥µq − x̂ (yn)

∥∥2

2
= sup

q∈P̂d1

E ‖q − x̂ (yn)‖22 . (31)

Using P̂d1 = ∆d, and taking the infimum in (31) over all (ε,∞)-CLDP mechanisms {Mi : i ∈ [n]} and estimators
x̂, we get

inf
{Mi∈Q(ε,∞)}

inf
x̂

sup
q∈Pd1

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ inf
{Mi∈Q(ε,∞)}

inf
x̂

sup
q∈∆d

E ‖q − x̂ (yn)‖22 . (32)

Girgis et al. [Girgis et al., 2020, Theorem 1] lower-bounded the RHS of (32) in the context of characterizing a
privacy-utility-randomness tradeoff in LDP. When specializing to our setting, where we are not concerned about
the amount of randomness used, their lower bound result gives inf{Mi∈Q(ε,∞)} inf x̂ supq∈∆d

E ‖q − x̂ (yn)‖22 ≥
Ω
(
min

{
1, d

nε2

})
. Substituting this in (32) gives

R1,d
ε,∞,n = inf

{Mi∈Q(ε,∞)}
inf
x̂

sup
q∈Pd1

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ Ω

(
min

{
1,

d

nε2

})
. (33)

D.3 Lower Bound on rp,dε,∞,n: Proof of Theorem 2

Similar to Section D.2, we prove the lower bound on rp,dε,∞,n separately depending on whether p ≥ 2 or p ≤ 2 (at
p = 2, both bounds coincide) below in Section D.3.1 and Section D.3.2, respectively. In both the proofs, the main
idea is to transform the worst-case lower bound to the average case lower bound and then use relation between
different norms.

D.3.1 Lower bound for p ∈ [2,∞]

Fix arbitrary (ε,∞)-CLDP mechanisms {Mi : i ∈ [n]} and an estimator x̂. It follows from (30) that there exists

a distribution q ∈ Pdp , such that if we sample x
(q)
i ∼ q, i.i.d. for all i ∈ [n] and letting yi =Mi(x

(q)
i ), we would

have E
∥∥µq − x̂ (yn)

∥∥2

2
≥ Ω

(
d1− 2

p min
{

1, d
nmin{ε,ε2}

})
. We have

sup
{xi}∈Bdp

E

∥∥∥∥∥ 1

n

n∑
i=1

xi − x̂ (yn)

∥∥∥∥∥
2

2

(a)

≥ E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − x̂ (yn)

∥∥∥∥∥
2

2
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(b)

≥ 1

2
E
∥∥µq − x̂ (yn)

∥∥2

2
− E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

(34)

(c)

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε, ε2}

})
− d1− 2

p

n

(d)

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε, ε2}

})
(35)

In the LHS of (a), the expectation is taken over the randomness of the mechanisms {Mi} and the estimator x̂;
whereas, in the RHS of (a), in addition, the expectation is also taken over sampling xi’s from the distribution
q. Moreover (a) holds since the LHS is supremum {xi} ∈ Bdp and the RHS of (a) takes expectation w.r.t. a

distribution over Bdp and hence lower-bounds the LHS. The inequality (b) follows from the Jensen’s inequality

2‖u‖22 + 2‖v‖22 ≥ ‖u + v‖22 by setting u = 1
n

∑n
i=1 x

(q)
i − x̂(yn) and v = µq − 1

n

∑n
i=1 x

(q)
i . In (c) we used

E
∥∥∥ 1
n

∑n
i=1 x

(q)
i − µq

∥∥∥2

2
≤ d

1− 2
p

n , which we show below. In (d), we assume min{ε, ε2} ≤ O(d).

Note that for any vector u ∈ Rd, we have ‖u‖2 ≤ d
1
2−

1
p ‖u‖p, for any p ≥ 2. Since each x

(q)
i ∈ Bdp , which implies

‖x(q)
i ‖p ≤ 1, we have that ‖x(q)

i ‖2 ≤ d
1
2−

1
p . Hence, E‖x(q)

i ‖22 ≤ d1− 2
p holds for all i ∈ [n]. Now, since xi’s are

i.i.d. with E[x
(q)
i ] = µq, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

=
1

n2

n∑
i=1

E
∥∥∥x(q)

i − µq

∥∥∥2

2

(a)

≤ 1

n2

n∑
i=1

E
∥∥∥x(q)

i

∥∥∥2

2
≤ 1

n2

n∑
i=1

d1− 2
p =

d1− 2
p

n
, (36)

where (a) uses E‖x− E[x]‖22 ≤ E‖x‖22, which holds for any random vector x.

Taking supremum in (35) over all (ε,∞)-CLDP mechanisms {Mi : i ∈ [n]} and estimators x̂, we get

rp,dε,∞,n = inf
{Mi∈Q(ε,∞)}

inf
x̂

sup
{xi}∈Bdp

E

∥∥∥∥∥ 1

n

n∑
i=1

xi − x̂ (yn)

∥∥∥∥∥
2

2

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε, ε2}

})
. (37)

D.3.2 Lower bound for p ∈ [1, 2]

Similar to the argument given in Section D.2.2, since rp,dε,∞,n ≥ r1,d
ε,∞,n holds for any p ∈ [1, 2], it suffices to

lower-bound r1,d
ε,∞,n.

Fix arbitrary (ε,∞)-CLDP mechanisms {Mi : i ∈ [n]} and an estimator x̂. It follows from (33) that there exists

a distribution q ∈ Pdp , such that if we sample x
(q)
i ∼ q, i.i.d. for all i ∈ [n] and letting yi =Mi(x

(q)
i ), we would

have E
∥∥µq − x̂ (yn)

∥∥2

2
≥ Ω

(
min

{
1, d

nε2

})
. Now, by the same reasoning using which we obtained (34), we have

sup
{xi}∈Bdp

E

∥∥∥∥∥ 1

n

n∑
i=1

xi − x̂ (yn)

∥∥∥∥∥
2

2

≥ 1

2
E
∥∥µq − x̂ (yn)

∥∥2

2
− E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

(a)

≥ Ω

(
min

{
1,

d

nε2

})
− 1

n

(b)

≥ Ω

(
min

{
1,

d

nε2

})
(38)

In (a) we used

E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

≤ 1

n
, (39)

which can be obtained by first noting that for any u ∈ Rd, we have ‖u‖2 ≤ ‖u‖p for p ∈ [1, 2], and then using

this in the set of inequalities which give (36). In (b), we assume ε ≤ O(
√
d).

Taking supremum in (35) over all (ε,∞)-CLDP mechanisms {Mi : i ∈ [n]} and estimators x̂, we get r1,d
ε,∞,n ≥

Ω
(
min

{
1, d

nε2

})
.
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D.4 Lower Bound on rp,dε,b,n: Proof of Theorem 3

Let M = 2b < d be the total number of possible outputs of the mechanism R. Let {o1, o2, . . . , oM} be the set
of M possible outputs of R. For every i ∈ [M ], let qi = g(oi). We can write the M possible outputs of R as
columns of a d×M matrix Q = [q1, . . . , qM ]. Since M < d, the rank of the matrix Q is at most M . Let x ∈ Rd
be a vector in the null space of the matrix Q, i.e., xT qj = 0 for all j ∈ [M ]. Then, we set the sample of each
client by xi = x = x

‖x‖p for all i ∈ [n], and hence, xi ∈ Bdp . Observe that the estimator x̂ = 1
n

∑n
i=1 g (R (xi)) is

in the column space of the matrix Q. Thus, we get

rp,dε,b,n ≥ E
∥∥∥∥x− 1

n

n∑
i=1

g (R (xi))

∥∥∥∥2

2

(a)
= ‖x‖22 + E

∥∥∥∥ 1

n

n∑
i=1

g (R (xi))

∥∥∥∥2

2

≥ max
{

1, d1− 2
p

}
where step (a) follows from the fact that x is in the null space of Q, while the estimator x̂ is in the column space
of Q. This completes the proof of Theorem 3.

D.5 Achievability for `1-norm Ball: Proof of Theorem 6

In this section, we propose an ε0-LDP mechanism that requires O (log(d))-bits of communication per client
using private randomness and 1-bit of communication per client using public randomness. In other words we
can guarantee (ε0,O (log(d)))-CLDP with private randomness and (ε0, 1)-CLDP using public randomness. The
proposed mechanism is based on the Hadamard matrix and is inspired from the Hadamard mechanism proposed
by Acharya et al. [2019]. We assume that d is a power of 2. Let Hd denote the Hadamard matrix of order d,
which can be constructed by the following recursive mechanism:

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
H1 =

[
1
]

Client i has an input xi ∈ Bd1 (a). It computes yi = 1√
d
Hdxi. Note that each coordinate of yi lies in the

interval [−a/√d, a/√d]. Client i selects j ∼ Unif [d] and quantize yi,j privately according to (40) and obtains
zi ∈

{
± aHd(j)

(
eε0+1
eε0−1

)}
, which can be represented using only 1-bit. Here, Hd(j) denotes the j-th column of the

Hadamard matrix Hd. Server receives the n messages {z1, . . . ,zn} from the clients and outputs their average
1
n

∑n
i=1 zi. We present this mechanism in Algorithm 3 – we only present the client-side part of the algorithm, as

server only averages the messages received from the clients.

Algorithm 3 `1-MEAN-EST (R1: the client-side algorithm)

1: Input: Vector x ∈ Bd1 (a), and local privacy level ε0 > 0.
2: Construct y = 1√

d
Hdx

3: Sample j ∼ Unif[d] and quantize yj as follows:

z =

 +aHd (j)
(
eε0+1
eε0−1

)
w.p. 1

2 +
√
dyj
2a

eε0−1
eε0+1

−aHd (j)
(
eε0+1
eε0−1

)
w.p. 1

2 −
√
dyj
2a

eε0−1
eε0+1

(40)

4: Return z.

Lemma 10. The mechanism R1 presented in Algorithm 3 satisfies the following properties, where ε0 > 0:

1. R1 is (ε0, log (d) + 1)-CLDP and requires only 1-bit of communication using public randomness.

2. R1 is unbiased and has bounded variance, i.e., for every x ∈ Bd1 (a), we have

E [R1 (x)] = x and E‖R1 (x)− x‖22 ≤ a2d

(
eε0 + 1

eε0 − 1

)2

.

Proof. We show these properties one-by-one below.
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1. Observe that the output of the mechanism R1 can be represented using the index j ∈ [d] and one bit of the

sign of {±aHd (j)
(
eε0+1
eε0−1

)
}. Hence, it requires only log (d) + 1 bits for communication. Furthermore, the

randomness j ∼ Unif [d] is independent of the input x. Thus, if the client has access to a public randomness
j, then the client needs only to send one bit to represent its sign. Now, we show that the mechanism R1 is
ε0-LDP. Let Z =

{
± aHd(j)

(
eε0+1
eε0−1

)
: j = 1, 2, . . . , d

}
denote all possible 2d outputs of the mechanism R1.

We get

sup
x,x′∈Bd1 (a)

sup
z∈Z

Pr[R1(x) = z]

Pr[R1(x′) = z]
≤ sup

x,x′∈Bd1 (a)

1
d

∑d
j=1

(
1
2 +

√
d|yj |
2a

eε0−1
eε0+1

)
1
d

∑d
j=1

(
1
2 −

√
d|y′j |
2a

eε0−1
eε0+1

)

= sup
x,x′∈Bd1 (a)

1
d

∑d
j=1

(
a(eε0 + 1) +

√
d|yj |(eε0 − 1)

)
1
d

∑d
j=1

(
a(eε0 + 1)−

√
d|y′j |(eε0 − 1)

)
(a)

≤ 2aeε0

2a
= eε0 ,

where (a) uses the fact that for every j ∈ [d], we have |yj | ≤ a/
√
d and |y′j | ≤ a/

√
d.

2. Fix an arbitrary x ∈ Bd1 (a).

Unbiasedness: E [R1 (x)] =
1

d

d∑
j=1

aHd (j)

(
eε0 + 1

eε0 − 1

)(√
dyj
a

eε0 − 1

eε0 + 1

)

=
1

d

d∑
j=1

Hd (j)
√
dyj

(b)
=

1

d

d∑
j=1

Hd (j) HT
d (j)x

(c)
= x

where (b) uses y = 1√
d
Hdx and (c) uses

∑d
j=1 Hd(j)H

T
d (j) = HdH

T
d = dId.

Bounded variance: E‖R1 (x)− x‖22 ≤ E‖R1(x)‖2 = E[R1(x)TR1(x)]

=
1

d

d∑
j=1

a2Hd(j)
THd(j)

(
eε0 + 1

eε0 − 1

)2

= a2d

(
eε0 + 1

eε0 − 1

)2

(Since Hd(j)
THd(j) = d,∀j ∈ [d])

This completes the proof of Lemma 10. �

Now we are ready to prove Theorem 6. Let R1(x) denote the output of Algorithm 3 on input x. As mentioned
above, the server employs a simple estimator that simply averages the n received messages, i.e., the server
outputs x̂(zn) = 1

n

∑n
i=1 zi = 1

n

∑n
i=1R1(xi). In the following, first we show the bound on r1,d

ε0,b,n
(a) and then

on R1,d
ε0,b,n

(a) for b = log(d) + 1.

For r1,d
ε0,b,n

(a) : sup
{xi}∈Bd1 (a)

E ‖x− x̂(zn)‖22 = sup
{xi}∈Bd1 (a)

E

∥∥∥∥∥ 1

n

n∑
i=1

(xi −R1(xi))

∥∥∥∥∥
2

2

(a)
= sup
{xi}∈Bd1 (a)

1

n2

n∑
i=1

E ‖xi −R1(xi)‖22
(b)

≤ a2d

n

(
eε0 + 1

eε0 − 1

)2

, (41)

where (a) uses the fact that all clients use independent private randomness (which makes the random variables
xi −R1(xi) independent for different i’s and also that R1 is unbiased. (b) uses that R1 has bounded variance.
Taking infimum in (41) over all (ε0, b)-CLDP mechanisms (where b = log(d) + 1) and estimators x̂, we have that

r1,d
ε0,b,n

(a) ≤ a2d
n

(
eε0+1
eε0−1

)2

, which is O
(
a2d
nε20

)
when ε0 = O(1).
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For R1,d
ε0,b,n

(a) : sup
q∈Pd1 (a)

E
∥∥µq − x̂(zn)

∥∥2

2

(c)

≤ sup
q∈Pd1 (a)

[
2E
∥∥µq − x

∥∥2

2
+ 2E ‖x− x̂(zn)‖22

]
(d)

≤ 2a2

n
+

2a2d

n

(
eε0 + 1

eε0 − 1

)2

(42)

In the LHS of (c), for any q ∈ Pd1 (a), first we generate n i.i.d. samples x1, . . . ,xn and then compute zi = R1(xi)

for all i ∈ [n]. We use the Jensen’s inequality in (c). We used E
∥∥µq − x

∥∥2

2
≤ a2

n (see (39)) in (d). Taking
infimum in (42) over all (ε0, b)-CLDP mechanisms (where b = log(d) + 1) and estimators x̂, we have that

R1,d
ε0,b,n

(a) ≤ 2a2

n + 2a2d
n

(
eε0+1
eε0−1

)2

, which is O
(
a2d
nε20

)
when ε0 = O(1).

This completes the proof of Theorem 6.

D.6 Achievability for `2-norm Ball: Proof of Theorem 7

In this section, we propose an ε0-LDP mechanism that requires O (d)-bits of communication per client using
private randomness. Our proposed mechanism is a combination of the private-mechanism Priv from[Duchi et al.,
2018, Section 4.2.3] and the non-private quantization mechanism Quan from [Mayekar and Tyagi, 2020, Section
4.2]. For completeness, we describe both these mechanisms in Algorithm 5 and Algorithm 6, respectively, and
our proposed mechanism in Algorithm 4. Each client i first privatize its input xi ∈ Bd2 (a) using Priv and then
quantize the privatized result using Quan and sends the final result zi = Quan(Priv(xi)) to the server, which
outputs the average of all the received n messages. Since the server is only taking an average of the received
messages, we only present the client side of our mechanism in Algorithm 4.

Algorithm 4 `2-MEAN-EST (R2: the client-side algorithm)

1: Input: Vector x ∈ Bd2 (a), and local privacy level ε0 > 0.
2: Apply the randomized mechanism y = Priv (x).
3: Return z = Quan (y).

Algorithm 5 Priv (a private mechanism from Duchi et al. [2018])

1: Input: Vector x ∈ Bd2 (a), and local privacy level ε0 > 0.

2: Compute x̃ =

{
+a x
‖x‖2 w.p. 1

2 + ‖x‖2
2a

−a x
‖x‖2 w.p. 1

2 −
‖x‖2
2a

3: Sample U ∼ Bernoulli
(

eε0

eε0+1

)
4: M , a

√
π

2

Γ( d−1
2 +1)

Γ( d2 +1)
eε0+1
eε0−1

5: z =

{
Unif

(
y : yT x̃ > 0, ‖y‖2 = M

)
if U = 1

Unif
(
y : yT x̃ ≤ 0, ‖y‖2 = M

)
if U = 0

6: Return z.

Lemma 11 ([Duchi et al., 2018, Appendix I.2]). The mechanism Priv presented in Algorithm 5 is unbiased and
outputs a bounded length vector, i.e., for every x ∈ Bd2 (a), we have

E[Priv(x)] = x and ‖Priv(x)‖22 = M2 ≤ a2d

(
3
√
π

4

eε0 + 1

eε0 − 1

)2

.

Lemma 12 ([Mayekar and Tyagi, 2020, Theorem 4.2]). The mechanism Quan presented in Algorithm 6 is
unbiased and has bounded variance, i.e., for every x ∈ Bd2(a), we have

E[Quan(x)] = x and E‖Quan(x)− x‖22 ≤ 2‖x‖2 ≤ 2a2.

Furthermore, it requires d (log(e) + 1)-bits to represent its output.
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Algorithm 6 Quan (a quantization mechanism from Mayekar and Tyagi [2020])

1: Input: Vector x ∈ Bd2 (a), where a is the radius of the ball.

2: Compute x̃ =

{
x
‖x‖1 w.p. 1+‖x‖1

2a
√
d

− x
‖x‖1 w.p. 1−‖x‖1

2a
√
d

3: Generate a discrete distribution µ = (|x̃1|, . . . , |x̃d|) where Pr[µ = i] = |x̃i|.
4: Construct a d-dimensional vector y by sampling yj ∼ µ for j ∈ [d]

5: Return z = 1
d

∑d
j=1

(
a
√
d · sgn(x̃yj ) · eyj

)
.

Note that the radius a in Lemma 12 is equal to the length of any output of Priv, which is M (see line 4 of
Algorithm 5).

Lemma 13. The mechanism R2 presented in Algorithm 4 satisfies the following properties, where ε0 > 0:

1. R2 is (ε0, d(log(e) + 1))-CLDP.

2. R2 is unbiased and has bounded variance, i.e., for every x ∈ Bd2 (a), we have

E [R2 (x)] = x and E‖R2 (x)− x‖22 ≤ 6a2d

(
eε0 + 1

eε0 − 1

)2

.

Proof. We prove these properties one-by-one below.

1. It was shown in [Duchi et al., 2018, Section 4.2.3] that Priv is an ε0-LDP mechanism. Now, since R2 =
Quan ◦ Priv is a post-processing of a differentially-private mechanism Priv and post-processing preserves
differential privacy, we have thatR2 is also ε0-LDP. The claim thatR2 uses d(log(e)+1) bits of communication
follows because R2 outputs the result of Quan, which produces an output which can be represented using
d(log(e) + 1) bits; see [Mayekar and Tyagi, 2020].

2. Unbiasedness of R2 follows because R2 = Quan ◦ Priv and both Priv and Quan are unbiased. To prove that
variance is bounded, fix an x ∈ Bd2 (a).

E‖R2(x)− x‖22 = E‖Quan (Priv(x))− x‖22
= E‖Quan (Priv(x))− Priv(x) + Priv(x)− x‖22
(a)
= E‖Quan (Priv(x))− Priv(x)‖22 + E‖Priv(x)− x‖22
(b)

≤ 2‖Priv(x)‖2 + E‖Priv(x)‖2

(c)

≤ 3‖Priv(x)‖2
(d)

≤ 6d

(
eε0 + 1

eε0 − 1

)2

.

In (a) we used the fact that Quan and Priv are unbiased, which implies that the cross multiplication
term is zero. In (b) we used Lemma 12 to write E‖Quan (Priv(x)) − Priv(x)‖22 ≤ 2‖Priv(x)‖2 and used
the unbiasedness of Priv together with the fact that variance is bounded by the second moment to write
E‖Priv(x) − x‖22 ≤ E‖Priv(x)‖22. In (c) we used that the length of Priv on any input remains fixed, i.e.,
E‖Priv(x)‖2 = ‖Priv(x)‖2 = M2 (where M is from the line 4 of Algorithm 5) holds for any x ∈ Bd2(a). In (d)
we used the bound on ‖Priv(x)‖22 from Lemma 11.

This completes the proof of Lemma 13. �

Now we are ready to prove Theorem 7. In order to bound r2,d
ε0,b,n

(a) for b = d(log(e)+1), we follow exactly the same

steps that we used to bound r1,d
ε0,b,n

(a) and arrived at (41). This would give r2,d
ε0,b,n

(a) ≤ 6a2d
n

(
eε0+1
eε0−1

)2

, which is

O
(
a2d
nε20

)
when ε0 = O(1). To bound R2,d

ε0,b,n
(a), first note that when x1, . . . ,xn ∈ Bd2 (a), then we have from (39)
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that E
∥∥µq − x

∥∥2

2
≤ a2

n . Here q ∈ Pd2 (a) and x1, . . . ,xn are sampled from q i.i.d. Now, following exactly the same

steps that we used to bound R1,d
ε0,b,n

(a) and arrived at (42). This would give R2,d
ε0,b,n

(a) ≤ 2a2

n + 12a2d
n

(
eε0+1
eε0−1

)2

for b = d(log(e) + 1). Note that R2,d
ε0,b,n

(a) = O
(
a2d
nε20

)
when ε0 = O(1).

This completes the proof of Theorem 7.

D.7 Achievability for `∞-norm Ball: Proof of Theorem 8

In this section, we propose an ε0-LDP mechanism that requires O (log (d))-bits per client using private randomness
and 1-bit of communication per client using public randomness. Each client i has an input xi ∈ Bd∞ (a). It selects
j ∼ Unif[d] and quantize xi,j according to (43) and obtains zi ∈

{
± ad

(
eε0+1
eε0−1

)
ej
}

, which can be represented

using only 1 bit, where ej is the j’th standard basis vector in Rd. Client i sends zi to the server. Server receives
the n messages {z1, . . . ,zn} from the clients and outputs their average 1

n

∑n
i=1 zi. We present this mechanism in

Algorithm 7 – we only present the client-side part of the algorithm, as server only averages the messages received
from the clients.

Algorithm 7 `∞-MEAN-EST (R∞: the client-side algorithm)

1: Input: Vector x ∈ Bd∞ (a), and local privacy level ε0 > 0.
2: Sample j ∼ Unif[d] and quantize xj as follows:

z =

 +ad
(
eε0+1
eε0−1

)
ej w.p. 1

2 +
xj
2a

eε0−1
eε0+1

−ad
(
eε0+1
eε0−1

)
ej w.p. 1

2 −
xj
2a

eε0−1
eε0+1

(43)

where ej is the j’th standard basis vector in Rd
3: Return z.

Lemma 14. The mechanism R∞ presented in Algorithm 7 satisfies the following properties, where ε0 > 0:

1. R∞ is (ε0, log (d) + 1)-CLDP and requires only 1-bit of communication using public randomness.

2. R∞ is unbiased and has bounded variance, i.e., for every x ∈ Bd∞ (a), we have

E [R∞ (x)] = x and E‖R∞ (x)− x‖22 ≤ a2d2

(
eε0 + 1

eε0 − 1

)2

.

Proof. We prove these properties one-by-one below.

1. Observe that the output of the mechanism R∞ can be represented using the index j ∈ [d] and one bit for
the sign of

{
± ad

(
eε0+1
eε0−1

)
ej
}

. Hence, it requires only log (d) + 1 bits for communication. Furthermore, the
randomness j ∼ Unif [d] is independent of the input x. Thus, if the client has access to a public randomness
j, then the client needs only to send one bit for its sign. Now, we show that the mechanism R∞ is ε0-LDP.
Let Z =

{
± ad

(
eε0+1
eε0−1

)
ej : j = 1, 2, . . . , d

}
denote all possible 2d outputs of the mechanism R∞. We get

sup
x,x′∈Bd∞(a)

sup
z∈Z

Pr [R∞ (x) = z]

Pr [R∞ (x) = z]
≤ sup

x,x′∈Bd∞(a)

1
d

∑d
i=1

(
1
2 +

|xj |
2a

eε0−1
eε0+1

)
1
d

∑d
i=1

(
1
2 −

|x′j |
2a

eε0−1
eε0+1

) (44)

= sup
x,x′∈Bd∞

1
d

∑d
i=1 (a(eε0 + 1) + |xj |(eε0 − 1))

1
d

∑d
i=1

(
a(eε0 + 1)− |x′j |(eε0 − 1)

) (45)

(a)

≤ 2aeε0

2a
= eε0 , (46)

where in (a) we used the fact that for every j ∈ [d], we have |xj | ≤ a and |x′j | ≤ a.
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2. Fix an arbitrary x ∈ Bd∞.

Unbiasedness: E [R∞ (x)] =
1

d

d∑
j=1

ejad

(
eε0 + 1

eε0 − 1

)(
xj
a

eε0 − 1

eε0 + 1

)

=

d∑
j=1

ejxj

= x

Bounded variance: E‖R∞(x)− x‖22 ≤ E‖R∞(x)‖2 = E[R∞(x)TR∞(x)]

=
1

d

d∑
j=1

a2d2

(
eε0 + 1

eε0 − 1

)2

= a2d2

(
eε0 + 1

eε0 − 1

)2

This completes the proof of Lemma 14. �

Now we are ready to prove Theorem 8. In order to bound r∞,dε0,b,n
(a) for b = log (d) + 1, we follow exactly the

same steps that we used to bound r1,d
ε0,b,n

(a) and arrived at (41). This would give r∞,dε0,b,n
(a) ≤ a2d2

n

(
eε0+1
eε0−1

)2

,

which is O
(
a2d2

nε20

)
when ε0 = O(1). To bound R∞,dε0,b,n

(a), first note that when x1, . . . ,xn ∈ Bd∞ (a), then we have

from (36) (by substituting p =∞) that E
∥∥µq − x

∥∥2

2
≤ a2d

n . Here q ∈ Pd∞ (a) and x1, . . . ,xn are sampled from q

i.i.d. Now, following exactly the same steps that we used to bound R1,d
ε0,b,n

(a) and arrived at (42). This would

give R∞,dε0,b,n
(a) ≤ 2a2d

n + 2a2d2

n

(
eε0+1
eε0−1

)2,d

for b = log (d) + 1. Note that R∞,dε0,b,n
(a) = O

(
a2d2

nε20

)
when ε0 = O(1).

This completes the proof of Theorem 8.

D.8 Achievability for `p-norm Ball for p ∈ [1,∞): Proof of Corollary 1

In this section, first we propose two ε0-LDP mechanisms for `p-norm ball Bdp(a) for p ∈ [1,∞) based on the
inequalities between different norms, and our final mechanism will be chosen probabilistically from these two.

The first mechanism, which we denote by R(1)
p , is based on the private mechanism R1 (presented in Algorithm 3)

that requires O (log (d)) bits per client. The second mechanism, which we denote by R(2)
p is based on the private

mechanism R2 (presented in Algorithm 4) that requires O (d) bits per client. Observe that for any 1 ≤ p ≤ q ≤ ∞,

using the relation between different norms (‖u‖q ≤ ‖u‖p ≤ d
1
p−

1
q ‖u‖q), we have

Bdq (a) ⊆ Bdp (a) ⊆ Bdq
(
ad

1
p−

1
q

)
. (47)

1. Description of the private mechanism R(1)
p : Each client has a vector xi ∈ Bdp (a) ⊆ Bd1

(
ad1− 1

p

)
. Thus, each

client runs the private mechanism R1 (xi) presented in Algorithm 3 with radius ad1− 1
p . Thus, the mechanism

R(1)
p for p ∈ [1,∞) satisfies the following properties, where ε0 > 0:

• R(1)
p is (ε0, log (d) + 1)-CLDP and requires only 1-bit of communication using public randomness.

• R(1)
p is unbiased and has bounded variance, i.e., for every x ∈ Bdp (a), we have

E
[
R(1)
p (x)

]
= x and E‖R(1)

p (x)− x‖22 ≤ a2d3− 2
p

(
eε0 + 1

eε0 − 1

)2

.

2. Description of the private mechanism R(2)
p : Each client has a vector xi ∈ Bdp (a) ⊆ Bd2

(
amax{d

1
2−

1
p , 1}

)
.

Thus, each client runs the private mechanism R2 (xi) presented in Algorithm 4 with radius amax{d
1
2−

1
p , 1}.

Thus, the mechanism R(2)
p for p ∈ [1,∞) satisfies the following properties, where ε0 > 0:
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• R(2)
p is (ε0, d (log (e) + 1))-CLDP.

• R(2)
p is unbiased and has bounded variance, i.e., for every x ∈ Bdp (a), we have

E
[
R(2)
p (x)

]
= x and E‖R(2)

p (x)− x‖22 ≤ 6a2 max{d2− 2
p , d}

(
eε0 + 1

eε0 − 1

)2

.

Note that R(1)
p requires low communication and has high variance, whereas, R(2)

p requires high communication

and has low variance: R(2)
p requires exponentially more communication than R(1)

p , whereas, R(1)
p has a factor of d

more variance than R(2)
p .

To define our final mechanism Rp for any norm p ∈ [1,∞), we choose R(1)
p with probability p̄ and R(2)

p with
probability (1− p̄), where p̄ is any number in [0, 1]. Note that Rp is ε0-LDP and requires p̄ log(d)+(1− p̄)d log(e)+1

expected communication, where expectation is taken over the sampling of choosing R(1)
p or R(2)

p . We have the

following bounds on rp,dε0,b,n(a) and Rp,dε0,b,n(a):

rp,dε0,b,n(a) ≤ p̄ d2− 2
p r1,d
ε0,b,n

(a) + (1− p̄) max{d1− 2
p , 1}r2,d

ε0,b,n
(a)

For Rp,dε0,b,n(a) ≤ p̄ d2− 2
pR1,d

ε0,b,n
(a) + (1− p̄) max{d1− 2

p , 1}R2,d
ε0,b,n

(a)

This completes the proof of Corollary 1.

E Minimax Risk Estimation

Lemma 15. For the minimax problems (16) and (17), the optimal estimator x̂ (yn) is a deterministic function.
In other words, the randomized decoder does not help in reducing the minimax risk.

Proof. Towards a contradiction, suppose that the optimal estimator x̂ is a randomized decoder defined as follows.
For given clients’ responses yn, let the probabilistic estimator generate an estimate x̂ (yn) whose mean and trace

of the covariance matrix are given by µx̂(yn) = E [x̂(yn)] and σ2
x̂(yn) = E

[∥∥x̂ (yn)− µx̂(yn)

∥∥2

2

∣∣Y n], respectively,

where expectation is taken with respect to the randomization of the decoder, conditioned of Y n.

E
[
‖x− x̂ (yn)‖22

∣∣yn] = E
[∥∥∥x− µx̂(yn) + µx̂(yn) − x̂ (yn)

∥∥∥2

2

∣∣yn]
= E

[∥∥∥x− µx̂(yn)

∥∥∥2

2

∣∣yn]+ E
[∥∥∥µx̂(yn) − x̂ (yn)

∥∥∥2

2

∣∣yn]
+ 2E

〈
x− µx̂(yn),µx̂(yn) − x̂ (yn)

∣∣yn〉
(a)
= E

[∥∥∥x− µx̂(yn)

∥∥∥2

2

∣∣yn]+ σ2
x̂(yn)

> E
[∥∥∥x− µx̂(yn)

∥∥∥2

2

∣∣yn]
In (a), we used that µx̂(yn) = E [x̂(yn)] to eliminate the last term. Similarly, we can prove that

E
[
‖µq − x̂ (yn) ‖22

∣∣yn] > E
[
‖µq − µyn‖22

∣∣yn]. Hence, the deterministic estimator x̂ (yn) = µx̂(yn) has a lower
minimax risk than the probabilistic estimator. �

F Optimization: Privacy, Communication, and Convergence Analyses

In this section, we establish the privacy, communication, and convergence guarantees of Algorithm 1 and prove
Theorem 1. We show these three results on privacy, communication, and convergence separately in the next three
subsections.
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F.1 Proof of Theorem 1: Privacy

We have already proven Lemma 3 in Appendix C. Now we use that to prove our final privacy parameter of our
entire algorithm Acldp.

Note that the Algorithm Acldp is a sequence of T adaptive mechanisms M1, . . . ,MT , where each Mt for t ∈ [T ]
satisfies the privacy guarantee stated in Lemma 3. Now, we invoke the strong composition stated in Lemma 6 to
obtain the privacy guarantee of the algorithm Acldp. We can conclude that for any δ′ > 0, Acldp is (ε, δ)-DP for

ε =
√

2T log (1/δ′)ε+ Tε
(
eε − 1

)
, δ = qT δ̃ + δ′,

where ε is from Lemma 3. We have from Lemma 6 that if ε = O
(√

log(1/δ′)
T

)
, then ε = O

(
ε
√
T log (1/δ′)

)
.

If ε0 = O(1), then we can satisfy this condition on ε by choosing ε0 = O
(√

n log(1/δ′)

qT log(1/δ̃)

)
. By substituting the

bound on ε = O
(
ε0

√
q log(1/δ̃)

n

)
from Lemma 3, we have ε = O

(
ε0

√
qT log(1/δ̃) log(1/δ′)

n

)
. By setting δ̃ = δ

2qT

and δ′ = δ
2 , we get ε0 = O

(√
n log(2/δ)

qT log(2qT/δ)

)
and ε = O

(
ε0

√
qT log(2qT/δ) log(2/δ)

n

)
. This completes the proof of

the privacy part of Theorem 1.

F.2 Proof of Theorem 1: Communication

The (ε0, b)-CLDP mechanism Rp : X → Y used in Algorithm 1 has output alphabet Y = {1, 2, . . . , B = 2b}. So,
the output of Rp on any input can be represented by b bits. Therefore, the näıve scheme for any client to send
the s compressed and private gradients requires sb bits per iteration. We can reduce this communication cost
by using the histogram trick from Mayekar and Tyagi [2020] which was applied in the context of non-private
quantization. The idea is as follows. Since any client applies the same randomized mechanism Rp to the s
gradients, the output of these s identical mechanisms can be represented accurately using the histogram of the
s outputs, which takes value from the set AsB = {(n1, . . . , nB) :

∑B
j=1 nj = s and nj ≥ 0,∀j ∈ [B]}. Since the

cardinality of this set is
(
s+B−1

s

)
≤
(
e(s+B−1)

s

)s
, it requires at most s

(
log (e) + log

(
s+B−1

s

))
bits to send the

s compressed gradients. Since the probability that the client is chosen at any time t ∈ [T ] is given by k
m , the

expected number of bits per client in Algorithm Acldp is given by k
m × T × s

(
log (e) + log

(
s+B−1

s

))
bits, where

expectation is taken over the sampling of k out of m clients in all T iterations.

This completes the proof of the second part of Theorem 1.

F.3 Proof of Theorem 1 : Convergence

First we prove Lemma 4 and then using that we prove the convergence.

Proof of Lemma 4. Under the conditions of the lemma, we have from [Shalev-Shwartz et al., 2012, Lemma 2.6]
that ‖∇θf (θ; d) ‖p ≤ L for all d ∈ S, which implies that ‖∇θF (θ)‖p ≤ L. Thus, we have

E‖gt‖22 = ‖E [gt] ‖22 + E‖gt − E [gt] ‖22
(a)

≤ max{d1− 2
p , 1}L2 + E‖gt − E [gt] ‖22

(b)

≤ max{d1− 2
p , 1}L2 +

cL2 max{d2− 2
p , d}

ks

(
eε0 + 1

eε0 − 1

)2

,

where c is a global constant, and c = 4 if p ∈ {1,∞} and c = 14 otherwise. Step (a) follows from the fact that

‖∇θtF (θt) ‖p ≤ L together with the norm inequality ‖u‖q ≤ ‖u‖p ≤ d
1
p−

1
q ‖u‖q for 1 ≤ p ≤ q ≤ ∞. The claim

follows by substituting q = ks
n . �

Using the bound on G2 from Lemma 4, we have that the output θT of Algorithm 1 satisfies

E [F (θT )]− F (θ∗) ≤ O

(
LD log(T ) max{d

1
2−

1
p , 1}√

T

(
1 +

√
cd

qn

(
eε0 + 1

eε0 − 1

)))
, (48)
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Algorithm 8 Acldp: CLDP-SGD with New Sampling

1: Inputs: Datasets D =
⋃
i∈[m]Di, Di = {di1, . . . , dir}, loss function F (θ) = 1

mr

∑m
i=1

∑r
j=1 f (θ; dij), LDP

privacy parameter ε0, gradient norm bound C, and learning rate ηt.
2: Initialize: θ0 ∈ C
3: for t ∈ [T ] do
4: for each client i ∈ [m] do
5: Sampling 1: Client i chooses uniformly at random a set Sit of s samples.
6: for Samples j ∈ Sit do
7: gt (dij)← ∇θtf (θt; dij)

8: g̃t (dij)← gt (dij) /max
{

1,
‖gt(dij)‖p

C

}
9: qt (dij)← Rp (g̃t (dij))

10: Client i sends {qt (dij)}j∈Sit to the shuffler.

11: Sampling 2: The shuffler selects a uniformly random subset of ks elements from {qt (dij)}j∈Sit . Let
U ⊆ {(i, j) : i ∈ [m], j ∈ Sit} denote the indices of these selected ks elements.

12: Shuffling: The shuffler randomly shuffles the elements in {qt(dij) : (i, j) ∈ U} and sends them to the
server.

13: Aggregate: gt ← 1
ks

∑
(i,j)∈U qt(dij).

14: Gradient Descent θt+1 ←
∏
C (θt − ηtgt)

15: Output: The final model parameters θT .

where we used the inequality

√
1 + cd

qn

(
eε0+1
eε0−1

)2

≤
(

1 +
√

cd
qn

(
eε0+1
eε0−1

))
.

Note that if
√

cd
qn

(
eε0+1
eε0−1

)
≤ O(1), then we recover the convergence rate of vanilla SGD without privacy. So, the

interesting case is when
√

cd
qn

(
eε0+1
eε0−1

)
≥ Ω(1), which gives

E [F (θT )]− F (θ∗) ≤ O

(
LD log(T ) max{d

1
2−

1
p , 1}√

T

√
cd

qn

(
eε0 + 1

eε0 − 1

))
.

This completes the proof of the third part of Theorem 1.

F.4 Privacy Guarantee for a New Sampling Procedure

As mentioned in Remark 1, we can show a general privacy amplification by subsampling for q = ks
mr (instead of

just by the factor of q = k
mr as in Theorem 1) by using a different sampling procedure, where all clients send

s compressed and private gradients corresponding to a uniformly random subset of s data points from their
datasets; shuffler selects a uniformly random subset of ks gradients from them and then sends the shuffled output
to the server. Note that, in this procedure, each data point has a probability q = ks

mr of being picked, and we pick
ks
m data points (in expectation) from each clients. Note that even for this sampling (which does not yield uniform
sampling of ks points from mr points), the privacy amplification of this sampling mechanism does not directly
follow from existing results.

For convenience, we describe the modified algorithm with this new sampling procedure in Algorithm 8. The final
privacy guarantee of this algorithm is given below.

Theorem 9. Let q = ks
mr . Under the above sampling procedure, Algorithm Acldp satisfies the following privacy

guarantee: For ε0 = O (1), Acldp is (ε, δ)-DP, where δ > 0 is arbitrary, and

ε = O

(
ε0

√
qT log (2qT/δ) log (2/δ)

n

)
. (49)

Proof. Fix an iteration number t ∈ [T ] in Algorithm 8. Let Mt (θt,D) denote the private mechanism at time
t that takes the dataset D and an auxiliary input θt (which is the parameter vector at the t’th iteration) and
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generates the parameter θt+1 as an output. Thus, the mechanism Mt on an input dataset D =
⋃m
i=1Di ∈ Sn

can be defined as:

Mt(θt;D) = Hks ◦ sampms,ks ({G1, . . . ,Gm}) , (50)

where Gi = sampr,s (R(xti1), . . . ,R(xtir)) and xtij = ∇θtf(θt; dij),∀i ∈ [m], j ∈ [r]. Here, Hks denotes the shuffling
operation on ks elements and sampa,b denotes the sampling operation for choosing a random subset of b elements
from a set of a elements.

Now we state the privacy guarantee of the mechanism Mt for each t ∈ [T ].

Lemma 16. Let q = ks
mr . Suppose R is an ε0-LDP mechanism, where ε0 ≤

log(qn/ log(1/δ̃))
2 and δ̃ > 0 is

arbitrary. Then, for any t ∈ [T ], the mechanism Mt is
(
ε, δ
)
-DP, where ε = ln(1 + q(eε̃ − 1)), δ = qδ̃ with

ε̃ = O

(
min{ε0, 1}eε0

√
log(1/δ̃)

qn

)
. In particular, if ε0 = O (1), we get ε = O

(
ε0

√
q log(1/δ̃)

n

)
.

We prove Lemma 16 next in Appendix F.5.

Analogous to how we proved the privacy guarantee of Theorem 1 from Lemma 3 using strong composition (see
Appendix F.1 for details), we can also prove Theorem 9 using Lemma 16, and we omit the details here. �

F.5 Proof of Lemma 16

This can be proved along the lines of the proof of Lemma 3. For completeness, we give a detailed proof below.

We define a mechanism Z
(
D(t)

)
= Hks (R (xt1) , . . . ,R (xtks)) which is a shuffling of ks outputs of local mechanism

R, where D(t) denotes an arbitrary set of ks data points and we index xti’s from i = 1 to ks just for convenience.
From the amplification by shuffling result [Balle et al., 2019c, Corollary 5.3.1] (also see Lemma 8), the mechanism

Z is (ε̃, δ̃)-DP, where δ̃ > 0 is arbitrary, and, if ε0 ≤
log(ks/ log(1/δ̃))

2 , then

ε̃ = O

min{ε0, 1}eε0

√√√√ log
(

1/δ̃
)

ks

 . (51)

Furthermore, when ε0 = O (1), we get ε̃ = O
(
ε0

√
log(1/δ̃)

ks

)
.

For i ∈ [m], let Ti ⊆ {1, . . . , r} denote the identities of the s data points chosen at client i at iteration t and
define DTi = {dij : j ∈ Ti}. Let DT[m] = {DTi : i ∈ [m]}, which has ms elements. The shuffler selects ks elements

from DT[m] uniformly at random,12 and we denote the resulting set by DT , which has ks elements. Note that DT
is a random set, where randomness is due to the sampling of data points in both stages. The mechanism Mt can

be equivalently written as Mt = Z(DT ).

Observe that our sampling strategy is different from subsampling of a uniformly random subset of ks data points
from the entire dataset D. Thus, we revisit the proof of privacy amplification by subsampling (see, for example,
Ullman [2017]) – which is for uniform sampling – to compute the privacy parameters of the mechanism Mt,
where sampling is non-uniform. Define a dataset D′ = (D′1)

⋃
(∪mi=2Di) ∈ Sn, where D′1 = {d′11, d12, . . . , d1r} is

different from the dataset D1 in the first data point d11. Note that D and D′ are neighboring datasets – where,
we assume, without loss of generality, that the differing elements are d11 and d′11.

In order to show that Mt is (ε, δ)-DP, we need show that for an arbitrary subset S of the range of Mt, we have

Pr [Mt (D) ∈ S] ≤ eε Pr [Mt (D′) ∈ S] + δ (52)

Pr [Mt (D′) ∈ S] ≤ eε Pr [Mt (D) ∈ S] + δ (53)

12Though the shuffler selects ks gradients from the received ms gradients, but effectively, we can assume that it selects
ks data points that correspond to these gradients.
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Note that both (20) and (21) are symmetric, so it suffices to prove only one of them. We prove (20) below.

We define conditional probabilities as follows:

A11 = Pr
[
Z(DT ) ∈ S | d11 ∈ DT1 and d11 ∈ DT

]
A′11 = Pr

[
Z(D

′T ) ∈ S | d11 ∈ DT1 and d11 ∈ DT
]

A10 = Pr
[
Z(DT ) ∈ S | d11 ∈ DT1 and d11 /∈ DT

]
= Pr

[
Z(D

′T ) ∈ S | d11 ∈ DT1 and d11 /∈ DT
]

A0 = Pr
[
Z(DT ) ∈ S | d11 /∈ DT1

]
= Pr

[
Z(D

′T ) ∈ S | d11 /∈ DT1
]

Let q1 = s
r , q2 = ks

ms = k
m , and q = q1q2 = ks

mr . Thus, we have

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

Pr [Mt (D′) ∈ S] = qA′11 + q1 (1− q2)A10 + (1− q1)A0

We show the following inequalities:

A11 ≤ eε̃A′11 + δ̃, (54)

A11 ≤ eε̃A10 + δ̃, (55)

A11 ≤ eε̃A0 + δ̃. (56)

Here, (54) is straightforward and follows because the mechanism Z is (ε̃, δ̃)-DP. However, proving (55) and (56)
is not straightforward and requires a combinatorial argument, which we give after we show our final result below.

Inequalities (54)-(56) together imply A11 ≤ eε̃ min{A′11, A10, A0}+ δ̃. Now we prove (52) for ε = ln(1 + q(eε̃ − 1)
and δ = qδ̃.

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

≤ q
(
eε̃ min{A′11, A10, A0}+ δ̃

)
+ q1 (1− q2)A10 + (1− q1)A0

= q
(
(eε̃ − 1) min{A′11, A10, A0}+ min{A′11, A10, A0}

)
+ q1 (1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q(eε̃ − 1) min{A′11, A10, A0}+ qA′11 + q1 (1− q2)A10 + (1− q1)A0 + qδ̃

(b)

≤ q(eε̃ − 1) (qA′11 + q1(1− q2)A10 + (1− q1)A0)) + (qA′11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q

(
eε̃ − 1

))
(qA′11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

= eln(1+q(eε̃−1)) Pr [Mt (D′) ∈ S] + qδ̃.

Here, (a) follows from min{A′11, A10, A0} ≤ A′11, and (b) follows from the fact that minimum is upper-bounded by
the convex combination. By substituting the value of ε̃ from (19) and using ks = qn, we get that for ε0 = O (1),

we have ε = O
(
ε0

√
q log(1/δ̃)

n

)
.

Proofs of (55) and (56)

As we see below, the proof of (55) is similar to the proof of (23), as the bipartite graphs in both the proofs have
similar structure. However, the proof of (56) is different from these proofs (and also from the proof of (24)), as
we prove it using a two stage bipartite graph, where the bipartite graph in the second stage has similar structure
as the one in the proof of (23), but the bipartite graph in the first stage is irregular (i.e., different vertices in one
side of the vertex set have different degrees), which requires a careful degree analysis.

Proof of (55). Fix any T1, . . . , Tm ∈
(

[r]
s

)
such that 1 ∈ T1, i.e., d11 ∈ DT1 . For these fixed subsets, consider

the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1 has
(
ms−1
ks−1

)
vertices, one for each

configuration of DT ⊆ {DT1 , . . . ,DTm} such that |DT | = ks and d11 ∈ DT , the right vertex set V2 has
(
ms−1
ks

)
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vertices, one for each configuration of DT ⊆ {DT1 , . . . ,DTm} such that |DT | = ks and d11 /∈ DT , and the edge
set E contains all the edges between neighboring vertices, i.e., if (u,v) ∈ V1 × V2 is such that u and v differ in
only one element, then (u,v) ∈ E. Observe that each vertex of V1 has (ms− ks) neighbors in V2 – the neighbors

of any DT ∈ V1 will be {(DT \ {d11}) ∪ {d} : d ∈ DT \ {d11}} ∈ V2. Similarly, each vertex of V2 has ks neighbors

in V1 – the neighbors of any DT ∈ V2 will be {(DT \ {d}) ∪ {d11} : d ∈ DT } ∈ V1.

Consider an arbitrary (u,v) ∈ E. Since the mechanism Z is (ε̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|T1, . . . , Tm,DT = u

]
≤ eε̃ Pr

[
Z(DT ) ∈ S|T1, . . . , Tm,DT = v

]
+ δ̃. (57)

Now we are ready to prove (55).

A11 = Pr
[
Z(DT ) ∈ S | d11 ∈ DT1 and d11 ∈ DT

]
=

∑
T1∈([r]s ):1∈T1

Ti∈([r]s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 ∈ T1] Pr[Z(DT ) ∈ S|T1, . . . , Tm, d11 ∈ DT ]

=
∑

T1∈([r]s ):1∈T1
Ti∈([r]s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 ∈ T1]
∑

DT ⊆{DT1 ,...,DTm}:
|DT |=ks,d11∈DT

1(
ms−1
ks−1

) Pr[Z(DT ) ∈ S|T1, . . . , Tm,DT ]

=
∑

T1∈([r]s ):1∈T1
Ti∈([r]s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 ∈ T1]
1

(ms− ks)
(
ms−1
ks−1

) ∑
DT ⊆{DT1 ,...,DTm}:
|DT |=ks,d11∈DT

(ms− ks) Pr[Z(DT ) ∈ S|T1, . . . , Tm,DT ]

(a)
=

∑
T1∈([r]s ):1∈T1

Ti∈([r]s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 ∈ T1]
1

ks
(
ms−1
ks

) ∑
DT ⊆{DT1 ,...,DTm}:
|DT |=ks,d11∈DT

(ms− ks) Pr[Z(DT ) ∈ S|T1, . . . , Tm,DT ]

(b)

≤
∑

T1∈([r]s ):1∈T1
Ti∈([r]s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 ∈ T1]
1

ks
(
ms−1
ks

) ∑
DT ⊆{DT1 ,...,DTm}:
|DT |=ks,d11 /∈DT

ks
(
eε̃ Pr[Z(DT ) ∈ S|T1, . . . , Tm,DT ] + δ̃

)

=
∑

T1∈([r]s ):1∈T1
Ti∈([r]s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 ∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T1, . . . , Tm, d11 /∈ DT ] + δ̃

)

= eε̃ Pr
[
Z(DT ) ∈ S | d11 ∈ DT1 and d11 /∈ DT

]
+ δ̃

= eε̃A10 + δ̃.

Here, (a) uses the identity (ms− ks)
(
ms−1
ks−1

)
= ks

(
ms−1
ks

)
and (b) follows from (57) together with the fact that

there are (ms− ks)
(
ms−1
ks−1

)
= ks

(
ms−1
ks

)
edges in the bipartite graph G = (V1 ∪ V2, E), where degree of vertices in

V1 is (ms− ks) and degree of vertices in V2 is ks.

Proof of (56). Fix any T1, . . . , Tm ∈
(

[r]
s

)
such that 1 ∈ T1, i.e., d11 ∈ DT1 . Let T ′1 ∈

(
[r]
s

)
be such that 1 /∈ T ′1

and DT1 & DT ′1 are neighbors. First we show that

Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm, d11 ∈ DT

]
≤ eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm

]
+ δ̃ (58)

Note that, in (58), T ′1 , T1, . . . , Tm ∈
(

[r]
s

)
are fixed subsets such that 1 ∈ T1, 1 /∈ T ′1 , and DT1 & DT ′1 are neighbors.

Since DT1 and DT ′1 are neighbors, we have |DT1 ∩ DT ′1 | = s− 1. Let d1i∗ be such that {d1i∗} = DT ′1 \ DT1 . Note
that {d11} = DT1 \ DT ′1 .

In order to show (58), construct the following bipartite graph G1 = (V11 ∪ V12, E1), where the left vertex set V11

has
(
ms−1
ks−1

)
vertices, one for each configuration of DT ⊆ {DT1 , . . . ,DTm} such that |DT | = ks and d11 ∈ DT , the

right vertex set V12 has
(
ms
ks

)
vertices, one for each configuration of DT ⊆ {DT ′1 ,DT2 . . . ,DTm} such that |DT | = ks

(note that d11 /∈ DT because d11 /∈ DT
′
1 ), and the edge set E1 contains all the edges between neighboring vertices,

i.e., if (u,v) ∈ V11 × V12 is such that u and v differ in only one element, then (u,v) ∈ E1.
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Observe that each vertex of V11 has (ms − ks + 1) neighbors in V12 – the neighbors of any DT ∈ V11 are

{(DT \{d11})∪{d} : d ∈ {DT ′1 ,DT2 , . . . ,DTm}\DT } ∈ V12. Note that {DT ′1 ,DT2 , . . . ,DTm}\DT has (ms−ks+1)
elements.

In contrast, vertices in V12 have irregular degrees. To see this, we partition V12 in two parts V12 = V ′12 ] V ′′12 (here
] denotes disjoint union), where

V ′12 = {DT ∈ V12 : d1i∗ ∈ DT }

V ′′12 = {DT ∈ V12 : d1i∗ /∈ DT }.

Note that |V ′12| = |V11| =
(
ms−1
ks−1

)
and |V ′′12| =

(
ms
ks

)
− |V ′12| =

(
ms
ks − 1

) (
ms−1
ks−1

)
. The vertices in V12 have the

following degrees:

• Each vertex of V ′12 has exactly one neighbor in V11 (by replacing d1i∗ by d11) and vice-versa. This implies
(using (ε̃, δ̃)-DP of the mechanism Z):∑
DT ∈V11

Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]
≤

∑
DT ∈V ′12

(
eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm,DT

]
+ δ̃
)

(59)

• Each vertex of V ′′12 has ks neighbors in V11 – the neighbors of any DT ∈ V ′′12 are {(DT \ {d}) ∪ {d11} : d ∈
DT } ∈ V11. It can also be verified that each vertex of V11 has (ms− ks) neighbors in V ′′12. This implies∑
DT ∈V11

(ms− ks) Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]
≤

∑
DT ∈V ′′12

ks
(
eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm,DT

]
+ δ̃
)

(60)

Note that (ms− ks+ 1)|V11| = |V ′12|+ ks|V ′′12|.

Now we can prove (58).

Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm, d11 ∈ DT

]
=

∑
DT ∈V11

Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]
=

∑
DT ∈V11

1(
ms−1
ks−1

) Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]
=

ms
ks(
ms
ks

) ∑
DT ∈V11

Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]

=
1(
ms
ks

)
 ∑
DT ∈V11

Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]
+

1

ks

∑
DT ∈V11

(ms− ks) Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm,DT

]
(a)

≤ 1(
ms
ks

)
 ∑
DT ∈V ′12

(
eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm,DT

]
+ δ̃
)

+
1

ks

∑
DT ∈V ′′12

ks
(
eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm,DT

]
+ δ̃
)

=
1(
ms
ks

) ∑
DT ∈V12

(
eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm,DT

]
+ δ̃
)

= eε̃

 1(
ms
ks

) ∑
DT ∈V12

Pr
[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm,DT

]+
1(
ms
ks

) ∑
DT ∈V12

δ̃

= eε̃ Pr
[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm

]
+ δ̃,

where (a) follows from (59) and (60).
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Now consider another bipartite graph G2 = (V21 ∪ V22, E2), where the left vertex set V21 has
(
r−1
s−1

)
vertices,

one for each configuration of T1 ⊂ [r] such that |T1| = s, 1 ∈ T1, the right vertex set V22 has
(
r−1
s

)
vertices,

one for each configuration of T1 ⊂ [r] such that |T1| = s, 1 /∈ T1, and the edge set E2 contains all the edges
between neighboring vertices, i.e., if (u,v) ∈ V21 × V22 is such that u and v differ in only one element, then
(u,v) ∈ E2. Observe that each vertex of V21 has (r − s) neighbors in V22 – the neighbors of T1 ∈ V21 will be
{(T1 \ {1}) ∪ {i} : i ∈ [m] \ T1} ∈ V22. Similarly, each vertex of V22 has s neighbors in V21 – the neighbors of
T1 ∈ V22 will be {(T1 \ {i}) ∪ {1} : i ∈ T1} ∈ V1.

Fix any T2, . . . , Tm ∈
(

[r]
s

)
. For these fixed subsets T2, . . . , Tm ∈

(
[r]
s

)
and any (T1, T ′1 ) ∈ E2 (note that 1 ∈ T1 and

1 /∈ T ′1 ), we have from (58) that Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm, d11 ∈ DT

]
≤ eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm

]
+ δ̃.

Taking summation over all vertices and (taking into account their degrees), we have∑
T1∈([r]

s ):1∈T1

(r−s) Pr
[
Z(DT ) ∈ S|T1, T2, . . . , Tm, d11 ∈ DT

]
≤

∑
T1∈([r]

s ):1/∈T1

s
(
eε̃ Pr

[
Z(DT ) ∈ S|T ′1 , T2, . . . , Tm

]
+ δ̃
)

(61)
Now we are ready to prove (56).

A11 = Pr
[
Z(DT ) ∈ S | d11 ∈ DT1 and d11 ∈ DT

]
=

∑
Ti∈([r]

s ) for i∈[m]\{1}

Pr[T2, . . . , Tm]
∑

T1∈([r]
s ):1∈T1

Pr[T1|1 ∈ T1] Pr[Z(DT ) ∈ S|T1, . . . , Tm, d11 ∈ DT ]

=
∑

Ti∈([r]
s ) for i∈[m]\{1}

Pr[T2, . . . , Tm]
1

(r − s)
(
r−1
s−1

) ∑
T1∈([r]

s ):1∈T1

(r − s) Pr[Z(DT ) ∈ S|T1, . . . , Tm, d11 ∈ DT ]

(b)
=

∑
Ti∈([r]

s ) for i∈[m]\{1}

Pr[T2, . . . , Tm]
1

s
(
r−1
s

) ∑
T1∈([r]

s ):1∈T1

(r − s) Pr[Z(DT ) ∈ S|T1, . . . , Tm, d11 ∈ DT ]

(c)

≤
∑

Ti∈([r]
s ) for i∈[m]\{1}

Pr[T2, . . . , Tm]
1

s
(
r−1
s

) ∑
T1∈([r]

s ):1/∈T1

s
(
eε̃ Pr[Z(DT ) ∈ S|T1, . . . , Tm] + δ̃

)
=

∑
Ti∈([r]

s ) for i∈[m]\{1}

Pr[T2, . . . , Tm]
∑

T1∈([r]
s ):1/∈T1

Pr[T1|1 /∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T1, . . . , Tm] + δ̃

)
=

∑
T1∈([r]

s ):1/∈T1
Ti∈([r]

s ) for i∈[m]\{1}

Pr[T1, . . . , Tm|1 /∈ T1]
(
eε̃ Pr[Z(DT ) ∈ S|T1, . . . , Tm] + δ̃

)

= eε̃ Pr[Z(DT ) ∈ S|1 /∈ T1] + δ̃

(d)
= eε̃ Pr[Z(DT ) ∈ S|d11 /∈ DT1 ] + δ̃

= eε̃A0 + δ̃

Here, (b) uses (r − s)
(
r−1
s−1

)
= s
(
r−1
s

)
, (c) follows from (61), and (d) uses the equivalence of 1 /∈ T1 and d11 /∈ DT1 .

This completes the proof of Lemma 16.


