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Abstract

We consider a distributed empirical risk mini-
mization (ERM) optimization problem with
communication efficiency and privacy require-
ments, motivated by the federated learn-
ing (FL) framework. We propose a dis-
tributed communication-efficient and local
differentially private stochastic gradient de-
scent (CLDP-SGD) algorithm and analyze
its communication, privacy, and convergence
trade-offs. Since each iteration of the CLDP-
SGD aggregates the client-side local gradients,
we develop (optimal) communication-efficient
schemes for mean estimation for several `p
spaces under local differential privacy (LDP).
To overcome performance limitation of LDP,
CLDP-SGD takes advantage of the inherent
privacy amplification provided by client sub-
sampling and data subsampling at each se-
lected client (through SGD) as well as the
recently developed shuffled model of privacy.
For convex loss functions, we prove that the
proposed CLDP-SGD algorithm matches the
known lower bounds on the centralized private
ERM while using a finite number of bits per
iteration for each client, i.e., effectively get-
ting communication efficiency for “free”. We
also provide preliminary experimental results
supporting the theory.

1 Introduction

We consider a federated learning (FL) framework (e.g.,
Kairouz et al. [2019]), where data is generated across
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m distributed clients, and the server builds a machine
learning model by solving the empirical risk minimiza-
tion (ERM) problem:

arg min
θ∈C

(
F (θ) :=

1

m

m∑
i=1

Fi(θ)

)
, (1)

where Fi(θ) is a local loss function dependent on the
local dataset Di at client i, comprising r data points,
and C ⊂ Rd is a closed convex set, where d denotes
the model dimension; see Section 3 for details on the
setup. The goal is to solve this problem while satisfying
the FL requirements: (i) give privacy guarantees on
the data Di at client i, (ii) compress (as efficiently as
possible) the communication between clients and the
server, and (iii) work with a dynamic client population
in each round of communication between the server and
the clients – in FL only a small fraction of clients are
sampled at each communication round; see Figure 1.

A challenge is that local differential privacy (LDP),e.g.,
[Beimel et al., 2008, Warner, 1965], is known to give
poor learning performance [Duchi et al., 2013, Kairouz
et al., 2016, Kasiviswanathan et al., 2011]. Recently,
a new privacy framework, the shuffled model [Balle
et al., 2019a,b,c, 2020a, Cheu et al., 2019, Erlingsson
et al., 2019, Ghazi et al., 2019a,b, 2020], enables signifi-
cantly better privacy-utility performance by amplifying
privacy (scaling with the number of clients as 1√

m

with respect to LDP) through anonymization. Another
technique to amplify privacy is through randomized
subsampling [Beimel et al., 2010]. This naturally arises
in a stochastic gradient descent (SGD) framework for
optimizing (1), since clients do mini-batch sampling of
local data; moreover clients themselves are sampled in
each iteration motivated by the FL setup.

In this paper, we analyse privacy amplification for the
FL problem using both forms of amplification: shuffling
and subsampling (data and clients). Note that privacy
amplification by subsampling (both data and clients)
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happens automatically,1 while the secure shuffling is
performed explicitly adding an additional layer of pri-
vacy transferring local privacy guarantees to central
privacy guarantees.

Another important aspect is communication efficiency
instantiated through compression of the gradients com-
puted by each active client. There has been a signifi-
cant recent progress on this topic (see [Alistarh et al.,
2017, 2018, Basu et al., 2019, Karimireddy et al., 2019,
Singh et al., 2019, 2020, Stich et al., 2018] and refer-
ences therein). However, there has been less work in
combining privacy and compression in the optimiza-
tion/learning framework, with the notable exception
of [Agarwal et al., 2018], which we will elaborate on
shortly. One question that we address is whether one
pays a price to do compression in terms of the privacy-
performance trade-off.

In this paper, we solve the main problem of learning
a model with communication constraints, with reason-
able learning performance while giving strong privacy
guarantees. We believe that this is the first result that
analyses the optimization performance with schemes de-
vised using compressed gradient exchange, mini-batch
SGD while giving privacy guarantees for clients using
a shuffled framework. Here are our main contributions.

• We prove that one can get communication efficiency
“for free” by demonstrating schemes that use O(log d)
bits per gradient to obtain the same privacy-utility
operating point as full precision gradient exchange.2

• One ingredient of our main result is showing that
we can compose amplification by sampling (client data
through mini-batch SGD and clients themselves in fed-
erated sampling) along with amplification by shuffling.
Note that sampling of clients and data points together
give overall non-uniform sampling of data points, so
we cannot use the existing results on privacy amplifi-
cation by subsampling, necessitating a privacy proof
that composes sampling and shuffling techniques.

• At each round of the iterative optimization, one needs
to privately aggregate the gradients in a communication
efficient manner. For this, we develop new private
and compressed vector mean estimation techniques
in a minimax estimation framework, that are (order
optimal) under several `p geometries. We develop both
lower bounds and matching schemes for this problem.
These results may also be of independent interest.

1In this paper, we use an abstraction for the federated
learning model, where clients are sampled randomly. In
practice, there are many more complicated considerations
for sampling, including availability, energy usage, time-of-
day, etc., which we do not model.

2Our work focuses on symmetric, private-randomness
mechanisms. We do not assume the existence of public
randomness in this work as we use the shuffled model.

Related work: There has been a lot of work on pri-
vacy in the context of FL (see [Kairouz et al., 2019] and
references therein) and also on compression for private
mean estimation (see [Acharya and Sun, 2019, Balle
et al., 2019c, 2020a, Cheu et al., 2019] and references
therein). Our focus in this paper is on distributed learn-
ing with local differential privacy guarantees, which has
fewer results, especially in the shuffled privacy frame-
work. We give an extensive account of the related
work in Appendix A of the supplementary material,
and due to space constraints we will focus on the two
most related papers to our work [Agarwal et al., 2018,
Erlingsson et al., 2020], which we describe below.

Erlingsson et al. [2020] proposed a distributed local
differentially private gradient descent algorithm, where
all clients participate in each iteration. They use LDP
on gradients as well as the shuffled framework [Balle
et al., 2019c]. However, their proposed algorithm sends
the full-precision gradient without compression. Our
work is different from [Erlingsson et al., 2020] in mul-
tiple ways: (i) we propose a communication efficient
mechanism for each client that requires O(log d) bits
per client, which can be significant for large d; (ii) our
algorithm performs data sampling (using SGD at each
client) and client sampling i.e., not all clients are se-
lected at each iteration, as motivated by the FL setup.
This requires a careful combination of compression
and privacy analysis; see Remark 2, where we recover
the convergence result of [Erlingsson et al., 2020] as a
special case of our general results.

Agarwal et al. [2018] proposed a communication-
efficient algorithm for learning models with local
differential privacy. They proposed cp-SGD, a
communication efficient algorithm, where clients
need to send O(log(1 + d

nε
2
0) + log log log nd

ε0δ
)

bits of communication per coordinate, i.e.,

O
(
d
{

log(1 + d
nε

2
0) + log log log nd

ε0δ

})
bits per

gradient to achieve the same local differential privacy
guarantees of the Gaussian mechanism. In contrast,
we achieve better compression in terms of number of
bits per gradient, and our framework converts the LDP
algorithm to central differential privacy guarantees.

Paper organization. In Section 2, we establish
some background results. In Section 3, we set up the
problem including the formulation for private mean-
estimation and describe our algorithm. We state our
results in Section 4 and also give some interpretations.
In Section 5, we provide brief proof outlines for some of
the results. Section 6 provides preliminary evaluation
of the algorithm in terms of communication-privacy-
performance operating points on the MNIST dataset.
Many of the proof details as well as some additional
results are provided in the supplementary material.
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2 Preliminaries

In this section, we state some preliminary definitions
that we use throughout the paper; we give a more
detailed exposition of the background in Appendix B
of the supplementary material.

Since we are interested in communication constrained
privacy of the client, we define a two parameter LDP
with privacy and communication budget, generalizing
the standard LDP privacy definition (see Definition 3
in Appendix B.1 of supplementary material).

Definition 1 (Local Differential Privacy with Commu-
nication Budget - CLDP). For ε0 ≥ 0 and b ∈ N+, a
randomized mechanism R : X → Y is said to be (ε0, b)-
communication-limited-local differentially private (in
short, (ε0, b)-CLDP), if R(x) can be represented using
b bits and for every pair x,x′ ∈ X , we have

Pr[R(x) = y] ≤ exp(ε0) Pr[R(x′) = y], ∀y ∈ Y. (2)

Here, ε0 captures the privacy level, lower the ε0, higher
the privacy. When we are not concerned about the
communication budget, we succinctly denote the corre-
sponding (ε0,∞)-CLDP, by its correspondence to the
classical LDP as ε0-LDP [Kasiviswanathan et al., 2011].

We define D = {x1, . . . ,xn} and D′ = {x′1, . . . ,x′n} as
neighboring datasets if they differ in one data point.

Definition 2 (Central Differential Privacy - DP
[Dwork and Roth, 2014]). For ε, δ ≥ 0, a random-
ized mechanism M : Xn → Y is said to be (ε, δ)-
differentially private (in short, (ε, δ)-DP), if for all
neighboring datasets D,D′ ∈ Xn and every subset
E ⊆ Y, we have

Pr [M (D) ∈ E ] ≤ exp(ε) Pr [M (D′) ∈ E ] + δ. (3)

We will propose an iterative algorithm to solve the opti-
mization problem (1) under privacy and communication
constraints. Hence, we need the strong composition
theorem [Dwork et al., 2010] (we describe it in detail in
Appendix B.2 for completeness) to compute the final
privacy guarantees of the proposed algorithm. Further-
more, in order to overcome the poor performance of
LDP, we need to use privacy amplification provided by
subsampling (data and clients) as well as through the
shuffled model; both of these are described in detail in
Appendix B.3.

3 Problem Formulation and Solution
Overview

In this section, first we present the problem formulation
and describe our algorithm for solving the empirical risk

minimization (ERM) problem under the constraints of
privacy, communication, and dynamic client population.
Then we give an overview of our approach to analyze
this algorithm and briefly describe the challenges faced.
In the end, we describe one of the main ingredients
in our algorithm, which is a method of private mean
estimation using compressed updates.

Problem formulation: We have a set of m clients,
where each client has a local dataset Di = {di1, . . . , dir}
comprising r data points drawn from a universe S. Let
D =

⋃m
i=1Di denote the entire dataset and n = mr

denote the total number of data points in the system.
The clients are connected to an untrusted server in
order to solve the ERM problem described in (1). In
(1), Fi(θ,Di) = 1

r

∑r
j=1 f (θ, dij) is a local loss function

dependent on the local dataset Di at client i evaluated
at the model parameters θ ∈ C.

As described in Section 1, solving the ERM problem
(1) in the FL framework introduces several unique chal-
lenges, such as the locally residing data {Di} at all
clients need to kept private, the low-bandwidth links
between clients and the server necessitates compressed
communication exchange between them, and only a
small fraction of clients are sampled in each round of
communication. Our goal is to solve (1) while preserv-
ing privacy on the training dataset D and minimizing
the total number of bits for communication between
clients and the server, while dealing with a dynamic
client population in each iteration.

Our algorithm CLDP-SGD: In order to solve (1)
in the presence of the above challenges in the FL set-
ting, we propose CLDP-SGD, a differentially-private
SGD algorithm that works with compressed updates
and dynamic client population. The procedure is de-
scribed in Algorithm 1; also see Figure 1 for a pictorial
description of our algorithm. In each step of CLDP-
SGD, the secure shuffler chooses uniformly at random
a set Ut of k ≤ m clients out of m clients. Each
client i ∈ Ut computes the gradient ∇θtf (θt; dij) for
a random subset Sit of s ≤ r samples. The i’th client
clips the `p-norm of the gradient ∇θtf (θt; dij) for each
j ∈ Sit and applies the LDP-compression mechanism
Rp, where Rp : Bdp → {0, 1}b is an (ε0, b)-CLDP mech-
anism when inputs come from an `p-norm ball. In this
paper, we describe (ε0, b)-CLDP mechanisms Rp for
several values of p ∈ [1,∞]; see Section 5. After that,
each client i sends the set of s LDP-compressed gradi-
ents {Rp (gt (dij))}j∈Sit in a communication-efficient
manner to the secure shuffler. The shuffler randomly
shuffles (i.e., outputs a random permutation of) the
received ks gradients and sends them to the server.
Finally, the server takes the average of the received
gradients and updates the parameter vector.
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𝓡𝑝 g𝑡 𝑑31𝓡𝑝 g𝑡 𝑑12 𝓡𝑝 g𝑡 𝑑54

𝒟1 = 𝑑11, … , 𝑑1𝑟 𝒟5 = 𝑑51, … , 𝑑5𝑟𝒟3 = 𝑑21, … , 𝑑2𝑟

(generates a random permutation)

Figure 1: An example of 5 clients, where each client
has r data points. At the current iteration, 3 clients are
chosen at random. Each client chooses one data point
at random to send the compressed and private gradient
{Rp (gt (dij))} to the secure shuffler that permutes the
private gradients before sending them to the server.

Observe that our CLDP-SGD algorithm provides pri-
vacy guarantees against any adversary that can observe
the output of the secure shuffler including the untrusted
server. Furthermore, we assume that the trusted shuf-
fler samples the clients, and this sampled set is unknown
to the server; see line 4 in Algorithm 1. For future
work, one could enable client self-sampling and self-
anonymization. For example, the authors in Balle et al.
[2020b] proposed a new sampling scheme called random
check-in, in which each client independently chooses
which time slot to participate in the training process.

Overview of our approach for analyzing CLDP-
SGD: CLDP-SGD has the following components,
which need to be analyzed together: (i) sampling of
clients, necessitated by FL; (ii) sampling of data at each
client for mini-batch SGD; (iii) compressing the gradi-
ents at each client for communication efficiency; (iv)
privatizing the gradients at each client to prevent infor-
mation leakage – the (compressed) gradients received
by the server may leak information about the datasets;
and (v) shuffling. The two main technical ingredients
needed for the analysis are (a) Privacy analysis of
coupled sampling and shuffling (b) Commununication
efficient private mean estimatioon.

Privacy of coupled sampling and shuffling: As explained
in Section 1, client and data sampling as well as shuf-
fling contribute to privacy amplification. However,
there are several challenges in analyzing the overall
privacy amplification: Firstly, both types of sampling
together induce non-uniform sampling of data, so we
cannot use the existing privacy amplification from sub-

3Let `g denote the dual norm of `p norm, where 1
p

+ 1
g

= 1

and p, g ≥ 1. Thus, when the loss function f (θ, dij) is
convex and L-Lipschitz continuous with respect to `g-norm,
then the gradient ∇θf (θ; .) has a bounded `p norm [Shalev-
Shwartz et al., 2012, Lemma 2.6]. In this case, we do not
need the clipping step.

Algorithm 1 Acldp: CLDP-SGD

1: Inputs: Datasets D =
⋃
i∈[m]Di,

Di = {di1, . . . , dir}, loss function F (θ) =
1
mr

∑m
i=1

∑r
j=1 f (θ; dij), LDP privacy parameter

ε0, gradient norm bound C, and learning rate ηt.
2: Initialize: θ0 ∈ C
3: for t ∈ [T ] do
4: Sampling of clients: The secure shuffler

chooeses a random set Ut of k clients.
5: for clients i ∈ Ut do
6: Sampling of data: Client i chooses uni-

formly at random a set Sit of s samples.
7: for Samples j ∈ Sit do
8: gt (dij)← ∇θtf (θt; dij)

9: g̃t (dij)← gt (dij) /max
{

1,
‖gt(dij)‖p

C

}
3

10: qt (dij)← Rp (g̃t (dij))

11: Client i sends {qt (dij)}j∈Sit to the shuffler.

12: Shuffling: The shuffler randomly shuffles the
elements in {qt(dij) : i ∈ Ut, j ∈ Sit} and sends
them to the server.

13: Aggregate: gt ← 1
ks

∑
i∈Ut, j∈Sit qt(dij).

14: Gradient Descent θt+1 ←
∏
C (θt − ηtgt)

15: Output: The final model parameters θT .

sampling results (see Section B.3.1) directly to analyze
the privacy gain in CLDP-SGD just by subsampling;
and secondly, the privacy amplification by shuffling has
not been analyzed together with that by subsampling.
In this paper, we give one unifying proof that analyzes
the privacy amplification by both types of subsampling
(that induces non-uniform sampling of data points) as
well as shuffling; see Section F.1 for more details.

Communication-efficient private mean estimation: For
compressing and privatizing the gradients, we de-
sign communication-efficient local differentially private
mechanisms Rp for p ∈ [0,∞] to estimate the mean
of a set of bounded `p-norm gradients. These mech-
anisms Rp’s are in fact more generally applicable for
private mean estimation of a set of vectors, each having
a bounded `p-norm and coming from a different client
in a communication efficient manner. We study the
mean estimation problem in the minimax framework
and derive matching lower and upper bounds on the
minimax risk for several `p geometries. This privacy
mechanism is composed with the sampling and shuf-
fling to provide the overall privacy analysis. Next, we
formulate the compressed and private mean estimation
problem as of independent interest.

Compressed and private mean estimation via
minimax risk: Now we formulate the generic min-
imax estimation framework for mean estimation of a
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given set of n vectors that preserves privacy and is also
communication-efficient. We then apply that method
at the server in each SGD iteration for aggregating
the gradients. We derive upper and lower bounds for
various `p geometries for p ≥ 1 including the `∞-norm.

The setup is as follows. For any p ≥ 1 and d ∈ N,
let Bdp (a) = {x ∈ Rd : ‖x‖p ≤ a} denote the p-norm

ball with radius a centered at the origin in Rd, where

‖x‖p =
(∑d

j=1 |xj |p
)1/p

. Each client i ∈ [n] has an in-

put vector xi ∈ Bdp(a) and the server wants to estimate

the mean x := 1
n

∑n
i=1 xi. We have two constraints:

(i) each client has a communication budget of b bits to
transmit the information about its input vector to the
server, and (ii) each client wants to keep its input vec-
tor private from the server. Our objective is to design
private-quantization mechanisms Ri : Bdp(a)→ {0, 1}b
for all i ∈ [n] and also a (stochastic) decoding function
x̂ :

(
{0, 1}b

)n → Bdp that minimizes the worst-case
expected error sup{xi}∈Bdp E‖x− x̂(yn)‖2 and charac-

terize the following.

rp,dε0,b,n(a) = inf
{Ri∈Q(ε0,b)

}
inf
x̂

sup
{xi}∈Bdp(a)

E ‖x− x̂(yn)‖22 ,

(4)
where Q(ε0,b) is the set of all (ε0, b)-CLDP mechanisms,
and the expectation is taken over the randomness of
{Ri : i ∈ [n]} and the estimator x̂. Note that in this
setup we do not consider any probabilistic assumptions
on the vectors x1, . . . ,xn. We also provide additional
results when the inputs are sampled from a distribution
in Appendix B.4 in the supplementary material.

4 Main Results

In this section, we first state our results on convergence,
privacy, and communication bits of the proposed CLDP-
SGD algorithm. We also discuss their implications.
Then, we present the results on compressed and private
mean estimation in Section 4.2.

4.1 Optimization

In the next theorem, we state the privacy guarantees,
the communication cost per client, and the privacy-
convergence trade-offs for the CLDP-SGD Algorithm.
Let n = mr denote the total number of data points in
the dataset D. Observe that the probability that an
arbitrary data point dij ∈ D is chosen at time t ∈ [T ]
is given by q = ks

mr .

Theorem 1. Let the set C be convex with diameter
D,4 and the function f (θ; .) : C → R be convex and L-
Lipschitz continuous with respect to the `g-norm, which

4Diameter of a bounded set C ⊆ Rd is defined as
supx,y∈C ‖x− y‖.

is the dual of the `p-norm.5 For s = 1 and q = k
mr , if

we run Algorithm Acldp, then we have

1. Privacy: For ε0 = O (1), Acldp is (ε, δ)-DP, where
δ > 0 is arbitrary, and

ε = O

(
ε0

√
qT log (2qT/δ) log (2/δ)

n

)
. (5)

2. Communication: Our algorithm Acldp requires
k
m × b bits of communication in expectation6 per
client per iteration, where expectation is taken with
respect to the sampling of clients. Here, b = log (d)+
1 if p ∈ {1,∞} and b = d (log (e) + 1) otherwise.

3. Convergence: If we run Acldp with learn-
ing rate schedule ηt = D

G
√
t
, where G2 =

L2 max{d1− 2
p , 1}

(
1 + cd

qn

(
eε0+1
eε0−1

)2
)

, then

E [F (θT )]− F (θ∗) ≤

O

(
LD log(T ) max{d

1
2−

1
p , 1}√

T

√
cd

qn

(
eε0 + 1

eε0 − 1

))
.

(6)

where c = 4 if p ∈ {1,∞} and c = 14 otherwise.

We prove Theorem 1 in Section 5.3. Note that the
privacy bound (49) holds when ε0 = O (1); the gen-

eral result for ε0 = O
(

log
(

qn
log(T/δ)

))
is presented in

Section 5.3.1.

Remark 1. Using a slightly different sampling proce-
dure, the result in Theorem 1 holds for arbitrary s. We
can achieve the same central privacy bound ε as stated
in Theorem 1 with q = ks

mr (instead of q = k
mr ) using

the following sampling: all clients send s compressed
and private gradients corresponding to a uniformly ran-
dom subset of s data points from their dataset; shuffler
selects a uniformly random subset of ks gradients from
them and then sends the shuffled output to the server.
We analyze the privacy guarantees of our algorithm
with this new sampling procedure in Appendix F.4.
Note that, in this new sampling procedure, each data
point has a probability q = ks

mr of being picked, and we

pick ks
m data points (in expectation) from each clients.

Note that even for this sampling (which does not yield
uniform sampling of ks points from mr points), the
privacy amplification of this sampling mechanism does
not directly follow from existing results. We provide a

5For any data point d ∈ S, the function f : C → R is
L-Lipschitz continuous w.r.t. `g-norm if for every θ1, θ2 ∈ C,
we have |f(θ1; d)− f(θ2; d)| ≤ L‖θ1 − θ2‖g.

6A client communicates in an iteration only when that
client is selected (sampled) in that iteration.
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proof of this in the supplementary material, along with
a discussion on other sampling procedures.

Remark 2 (Recovering the Result [Erlingsson et al.,
2020, ESA]). In Erlingsson et al. [2020], each client has
only one data point and all clients participate in each
iteration, and gradients have bounded `2-norm. If we
put p = 2, T = n/ log2(n), and q = 1 in (6) and q = 1
in (49), we recover the convergence and the privacy
bound in [Erlingsson et al., 2020, Theorem VI.1].

We want to emphasize that the above privacy-accuracy
trade-off in Erlingsson et al. [2020] is achieved by full-
precision gradient exchange, whereas, we can achieve
the same trade-off with compressed gradients. More-
over, our results are in more general setting, where
clients’ local datasets have multiple data-points (no
bound on that) and our privacy amplification is effec-
tively due to two types of sampling, one of data, and
the other of clients.

Remark 3 (Optimality of CLDP-SGD for `2-norm
case). Suppose ε = O(1). Substituting ε0 =

ε
√

n
qT log(2qT/δ) log(2/δ) , T = n/q, and p = 2 in (6),

gives the optimal excess risk of central differential pri-
vacy, as shown in Bassily et al. [2014]. Note that the
results in Bassily et al. [2014] are for centralized SGD
with full precision gradients, whereas, our results are
for federated learning (which is a distributed setup)
with compressed gradient exchange.

4.2 Compressed & Private Mean Estimation

In this subsection, we state our lower and upper bounds
on the minimax risk rp,dε0,b,n(a) for all p ∈ [1,∞]. For
the lower bounds, we state our results when there is no
communication constraints, and for clarity, we denote
the corresponding minimax risk by rp,dε0,∞,n(a). Further-
more, we prove that any symmetric private mechanism
requires at least b ≥ log (d) bits of communication.

Theorem 2. For any d, n ≥ 1, a, ε0 > 0, and p ∈
[1,∞], the minimax risk in (4) satisfies

rp,dε0,∞,n(a) ≥Ω
(
a2 min

{
1, d

nε20

})
if 1 ≤ p ≤ 2,

Ω
(
a2d1− 2

p min
{

1, d
nmin{ε0,ε20}

})
if p ≥ 2.

Theorem 3. For any private-randomness, symmetric
mechanism R with communication budget b < log (d)
bits per client, and any decoding function g : {0, 1}b →
Rd, when x̂ = 1

n

∑n
i=1 g (R (xi)), we have7

rp,dε,b,n(a) > a2 max
{

1, d1− 2
p

}
. (7)

7Note that Theorem 3 works only when the estimator x̂
applies the decoding function g on individual responses and
then takes the average. We leave its extension for arbitrary
decoders as a future work.

Theorem 3 shows that it is required at least log (d) bits
per client to design a non-trivial private mechanism R.
Though our lower bound results are for arbitrary esti-
mators x̂(yn), we can show that the optimal estimator
x̂(yn) is a deterministic function of yn; see Lemma 15
in Appendix E.

Theorem 4. For any d, n ≥ 1, a, ε0 > 0, we have

`1 : r1,d
ε0,b,n

(a) ≤ a2d

n

(
eε0 + 1

eε0 − 1

)2

, for b = log(d) + 1,

`2 : r2,d
ε0,b,n

(a) ≤ 6a2d

n

(
eε0 + 1

eε0 − 1

)2

, for b = d log(e) + 1,

`∞ : r∞,dε0,b,n
(a) ≤ a2d2

n

(
eε0 + 1

eε0 − 1

)2

, for b = log(d) + 1.

Note that when ε0 = O(1), then the upper and lower
bounds on minimax risks match for all p ∈ [1,∞].
We can give general achievability results for any `p-
norm ball Bdp(a) for any p ∈ [1,∞). For this, we
use standard inequalities between different norms, and
probabilistically use the mechanisms for `1-norm or `2-
norm with expanded radius of the corresponding ball.
The main results for this are stated in Appendix D.1.

All the above results are for rp,dε0,b,n(a), which is defined
for worst cast inputs. Essentially the same results hold
when the inputs are sampled from a distribution, and
we provide those results in Appendix D.1.

5 Proofs

In this section, first we prove the compressed and pri-
vate mean estimation results and then prove Theorem 1.
Due to the lack of space, we only prove mean estima-
tion results for `∞-norm case and provide the proofs
for other norms in Appendix D.

5.1 Proof of Theorem 2: For `∞-Norm

The lower bound result presented in this section in
fact hold for any `p-norm for p ∈ [2,∞]. The main
idea of the lower bound is to transform the problem
to the private mean estimation when the inputs are
sampled from Bernoulli distributions. Let PBern

p,d denote

the set of Bernoulli distributions on {0, 1/d1/p}d, i.e.,
any element of PBern

p,d is a product of d independent
Bernoulli distributions, one for each coordinate. For
any q ∈ PBern

p,d , let µq denote the mean of q.

Lemma 1. For any p ∈ [2,∞], we have

inf
{Mi}∈Q(ε0,∞)

inf
x̂

sup
q∈PBern

p,d

E
∥∥µq − x̂ (yn)

∥∥2

2

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε20}

})
. (8)
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The proof is straightforward adaptation of the proof of
[Duchi and Rogers, 2019, Corollary 3] to our setting;
see Appendix 5.1 for more details.

Let Pdp denote the set of all distributions on the `p-norm

ball, implying that PBern
p,d ⊂ Pdp . This together with

(8), implies that for every set of private mechanisms
{Mi} ∈ Q(ε0,∞) and estimator x̂, we have

sup
q∈Pdp

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ sup

q∈PBern
p,d

E
∥∥µq − x̂ (yn)

∥∥2

2

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε20}

})
, (9)

We can now obtain a lower bound on rp,dε0,∞,n by
transforming the worst-case lower bound to the av-
erage case lower bound as follows. Fix arbitrary pri-
vate mechanisms {M1, . . . ,Mn} and an estimator x̂.
It follows from (9) that there exists a distribution

q ∈ Pdp , such that if we sample x
(q)
i ∼ q, i.i.d. for

all i ∈ [n] and letting yi = Mi(x
(q)
i ), we would have

E
∥∥µq − x̂ (yn)

∥∥2

2
≥ Ω

(
d1− 2

p min
{

1, d
nmin{ε0,ε20}

})
.

We have

sup
{xi}∈Bdp

E

∥∥∥∥∥ 1

n

n∑
i=1

xi − x̂ (yn)

∥∥∥∥∥
2

2

(a)

≥ E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − x̂ (yn)

∥∥∥∥∥
2

2

(b)

≥ 1

2
E
∥∥µq − x̂ (yn)

∥∥2

2
− E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

(c)

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε20}

})
− d1− 2

p

n

(d)

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε20}

})
(10)

Step (a) holds since the LHS is supremum {xi} ∈ Bdp
and the RHS of (a) takes expectation w.r.t. {x(q)

i } in
Bdp and hence lower-bounds the LHS. The inequality (b)
follows from the Jensen’s inequality. Step (c) follows

from E
∥∥∥ 1
n

∑n
i=1 x

(q)
i − µq

∥∥∥2

2
≤ d

1− 2
p

n , which we show

below. Step (d) assumes min{ε0, ε20} ≤ O(d).

Note that for any vector u ∈ Rd, we have ‖u‖2 ≤
d1/2−1/p‖u‖p, for any p ≥ 2. Since each x

(q)
i ∈ Bdp,

which implies ‖x(q)
i ‖p ≤ 1, we have that ‖x(q)

i ‖2 ≤
d

1
2−

1
p . Hence, E‖x(q)

i ‖22 ≤ d1− 2
p holds for all i ∈ [n].

Now, since xi’s are i.i.d. with E[x
(q)
i ] = µq, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

x
(q)
i − µq

∥∥∥∥∥
2

2

=
1

n2

n∑
i=1

E
∥∥∥x(q)

i − µq

∥∥∥2

2

(a)

≤ 1

n2

n∑
i=1

E
∥∥∥x(q)

i

∥∥∥2

2
≤ 1

n2

n∑
i=1

d1− 2
p =

d1− 2
p

n
,

where (a) uses E‖x− E[x]‖22 ≤ E‖x‖22, which holds for
any random vector x.

Taking infimum in (10) over all ε-LDP mechanisms
{Mi : i ∈ [n]} and estimators x̂, we get

rp,dε0,∞,n =

inf
{Mi∈Q(ε0,∞)}

inf
x̂

sup
{xi}∈Bdp

E

∥∥∥∥∥ 1

n

n∑
i=1

xi − x̂ (yn)

∥∥∥∥∥
2

2

≥ Ω

(
d1− 2

p min

{
1,

d

nmin{ε0, ε20}

})
.

5.2 Proof of Theorem 4: For `∞-Norm

In this section, we propose an (ε0, b)-CLDP mechanism
for `∞-norm ball that requires b = O (log (d))-bits per
client using private randomness and 1-bit of communi-
cation per client using public randomness.

Each client i has an input xi ∈ Bd∞ (a). It selects j ∼
Unif[d] and quantize xi,j according to (11) and obtains
zi ∈

{
±ad

(
eε0+1
eε0−1

)
ej
}

, which can be represented using
only 1 bit, where ej is the j’th standard basis vector
in Rd. Client i sends zi to the server. Server receives
n messages {z1, . . . ,zn} from the clients and outputs
their average 1

n

∑n
i=1 zi. We present the client-side

mechanism in Algorithm 2 and state its properties
below, which we show in Appendix D.7.

Algorithm 2 `∞-MEAN-EST (R∞: the client-side
algorithm)

1: Input: x ∈ Bd∞ (a) and local privacy level ε0 > 0.
2: Sample j ∼ Unif[d] and quantize xj as follows:

z =

 +ad
(
eε0+1
eε0−1

)
ej w.p. 1

2 +
xj
2a

eε0−1
eε0+1

−ad
(
eε0+1
eε0−1

)
ej w.p. 1

2 −
xj
2a

eε0−1
eε0+1

(11)

where ej is the j’th standard basis vector in Rd
3: Return z.

Lemma 2. The mechanism R∞ presented in Algo-
rithm 2 satisfies the following properties, where ε0 > 0:
(i) R∞ is (ε0, log (d) + 1)-CLDP and requires only 1-
bit of communication using public randomness. (ii)
R∞ is unbiased and has bounded variance, i.e., for
every x ∈ Bd∞ (a), we have E [R∞ (x)] = x and

E‖R∞ (x)− x‖22 ≤ a2d2
(
eε0+1
eε0−1

)2

.

Since the server averages the n received messages, we

can easily verify that r∞,dε0,b,n
(a) ≤ a2d2

n

(
eε0+1
eε0−1

)2

.
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5.3 Proof of Theorem 1

We show our results on privacy, communication, and
convergence separately in the next three subsections.

5.3.1 Privacy

In Algorithm 1, each client applies the compressed LDP
mechanism Rp (hereafter denoted by R, for simplicity)
with privacy parameter ε0 on each gradient, which
ensures that the mechanism Acldp guarantees local
differential privacy ε0 for each sample dij per iteration.
Thus, it remains to analyze the central DP of the
mechanism Acldp.

Fix an iteration number t ∈ [T ]. LetMt (θt,D) denote
the private mechanism at time t that takes the dataset
D and an auxiliary input θt (which is the parameter
vector at the t’th iteration) and generates the parameter
θt+1 as an output. Thus, the mechanism Mt on an
input dataset D =

⋃m
i=1Di ∈ Sn can be defined as:

Mt(θt;D) = Hks ◦ sampm,k (G1, . . . ,Gm) , (12)

where Gi = sampr,s (R(xti1), . . . ,R(xtir)) and xtij =
∇θtf(θt; dij),∀i ∈ [m], j ∈ [r]. Here, Hks denotes the
shuffling operation on ks elements and sampa,b denotes
the sampling operation for choosing a random subset
of b elements from a set of a elements.

Now we state the privacy guarantee of the mechanism
Mt for each t ∈ [T ].

Lemma 3. Let s = 1 and q = k
mr . Suppose R is an ε0-

LDP mechanism, where ε0 ≤
log(qn/ log(1/δ̃))

2 and δ̃ > 0
is arbitrary. Then, for any t ∈ [T ], the mechanism
Mt is

(
ε, δ
)
-DP, where ε = ln(1 + q(eε̃ − 1)), δ = qδ̃

with ε̃ = O

(
min{ε0, 1}eε0

√
log(1/δ̃)

qn

)
. In particular,

if ε0 = O (1), we get ε = O
(
ε0

√
q log(1/δ̃)

n

)
.

We prove Lemma 3 in Appendix C. In the statement
of Lemma 3, we are amplifying the privacy by using
the subsampling as well as shuffling ideas. For subsam-
pling, note that we do not pick a uniformly random
subset of size ks from n = mr points. So, we cannot
directly apply the amplification by subsampling result
of Kasiviswanathan et al. [2011] (stated in Lemma 7
in Appendix B.3.1). However, as it turns out that the
only property we will need for privacy amplification
by subsampling is that each data point is picked with
probability q = ks

mr , which holds true in our setting.

Consider two neighboring datasets D =
⋃m
i=1Di, D′ =

D′1
⋃

(
⋃m
i=2Di) that are different only in the first data

point at the first client d11. The main idea of the
proof is to split the probability distribution of the

output of the mechanism Mt into a summation of
four conditional probabilities depending on the event
whether the first client is picked or not and the first
client pick the first data point or not. We use bipartite
graphs to get the relation between these events, where
each vertex corresponds to one of the possible outputs
of the sampling procedure, and each edge connects two
neighboring vertices. See Appendix C for more details.

Note that the Algorithm Acldp is a sequence of T
adaptive mechanisms M1, . . . ,MT , where each Mt

for t ∈ [T ] satisfies the privacy guarantee stated in
Lemma 3. Now, we invoke the strong composition
theorem from [Dwork and Roth, 2014, Theorem 3.20]
(stated in Lemma 6 in Appendix B.2) to obtain the
privacy guarantee of the algorithm Acldp as stated in
Theorem 1. We provide the details in Appendix F.

5.3.2 Communication

The (ε0, b)-CLDP mechanism Rp : X → Y used in Al-
gorithm 1 has output alphabet Y = {1, 2, . . . , B = 2b}.
So, the näıve scheme for any client to send the s com-
pressed and private gradients requires sb bits per it-
eration. We can reduce this communication cost by
using the histogram trick from [Mayekar and Tyagi,
2020] which was applied in the context of non-private
quantization. The idea is as follows. Since all clients
apply the same randomized mechanism Rp to the s
gradients, the output of these s identical mechanisms
can be represented accurately using the histogram of
the s outputs, which takes value from the set AsB =

{(n1, . . . , nB) :
∑B
j=1 nj = s and nj ≥ 0,∀j ∈ [B]}.

Since |AsB | =
(
s+B−1

s

)
≤
(
e(s+B−1)

s

)s
, it requires

at most s
(
log (e) + log

(
s+B−1

s

))
bits to send the s

compressed gradients. Since a client is chosen with
probability k

m at any time t ∈ [T ], the expected num-
ber of bits per client in Algorithm Acldp is given by
k
m × T × s

(
log (e) + log

(
s+B−1

s

))
bits, where expecta-

tion is taken over the sampling of clients.

5.3.3 Convergence

At iteration t ∈ [T ] of Algorithm 1, server aver-
ages the received ks compressed and privatized gradi-
ents and obtains gt = 1

ks

∑
i∈Ut

∑
j∈Sit qt(dij) (line

13 of Algorithm 1) and then updates the parame-
ter vector as θt+1 ←

∏
C (θt − ηtgt). Here, qt(dij) =

Rp (∇θtf(θt; dij)). Since the randomized mechanism
Rp is unbiased, the average gradient gt is also unbiased,
i.e., we have E [gt] = ∇θtF (θt), where expectation is
taken w.r.t. the sampling of clients and the data points
as well as the randomness of the mechanism Rp. Now
we show that gt has a bounded second moment.

Lemma 4. For any d ∈ S, if the function f (θ; .) :
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Figure 2: Privacy-Utility trade-offs on the MNIST
dataset with `∞-norm clipping.

C → R is convex and L-Lipschitz continuous w.r.t. the
`g-norm, which is the dual of `p-norm, then we have

E‖gt‖22 ≤ L2 max{d1− 2
p , 1}

(
1 +

cd

qn

(
eε0 + 1

eε0 − 1

)2
)
,

where c = 4 if p ∈ {1,∞} and c = 14 otherwise.

Lemma 4 is proved in Appendix F.3.

Now, using the bound on G2 from Lemma 4 in the
following standard SGD convergence results for con-
vex functions proves the third part of Theorem 1; see
Appendix F.3 for more details.

Lemma 5 (SGD Convergence [Shamir and Zhang,
2013]). Let F (θ) be a convex function, and the set C
has diameter D. Consider a stochastic gradient descent
algorithm θt+1 ←

∏
C (θt − ηtgt), where gt satisfies

E [gt] = ∇θtF (θt) and E‖gt‖22 ≤ G2. By setting ηt =
D
G
√
t
, we get E [F (θT )]− F (θ∗) ≤ 2DG

(
2+log(T )√

T

)
.

6 Numerical Results

In this section, we present our numerical results to eval-
uate the proposed CLDP-SGD algorithm for training
machine learning models with privacy and communi-
cation constraints. We consider the standard MNIST
handwritten digit dataset that has 60, 000 training im-
ages and 10, 000 test images. We train a simple neural
network that was also used in [Erlingsson et al., 2020,
Papernot et al., 2020] and described in Table 1. This
model has a total number of d = 13, 170 parameters
and achieves an accuracy of 99% for non-private, un-
compressed vanilla SGD. In our results, we assume
that we have 60, 000 clients, where each client has one
sample, i.e., m = n = 60, 000 and r = 1. We present
our results for `∞-norm clipping. At each step of the
CLDP-SGD, we choose at random 10, 000 clients. Each
client clips the `∞-norm of the gradient ∇θtf (θt; di)
with clipping parameter C = 1/100. After that, the

Layer Parameters

Convolution 16 filters of 8× 8, Stride 2
Max-Pooling 2× 2
Convolution 32 filters of 4× 4, Stride 2
Max-Pooling 2× 2

Fully connected 32 unites
Softmax 10 unites

Table 1: Model Architecture for MNIST

client applies the LDP-compression mechanism R∞
(presented in Algorithm 2) to the clipped gradient. We
run our algorithm for 80 epochs, where we set the
learning rate at 0.3 for the first 70 epochs and decrease
it to 0.18 in the remaining epochs. We set the local
privacy parameters ε0 = 2 and δ = 10−5, while the
centralized privacy parameter ε is computed numeri-
cally from Theorem 1 as follows. We first compute the
privacy amplification by shuffling numerically using the
expression in [Balle et al., 2019c, Theorem 5.3]. Then,
we compute the privacy amplification via subsampling
presented in Lemma 3; and finally we use the strong
composition stated in Lemma 6 in Appendix B.2 to
obtain the central privacy parameter ε.

Figure 2 demonstrates the mean and the standard de-
viation of privacy-accuracy plot averaged over 10 runs.
It shows that we can achieve an accuracy 76.7% (±2)
for total privacy ε = 5 and an accuracy 87.9% (±1) for
total privacy ε = 10. Furthermore, observe that our
proposed CLDP-SGD algorithm preserves a local pri-
vacy of ε0 = 2 per sample per epoch. In addition, the
private mechanism R∞ requires only dlog (d)e+ 1 bits
per gradient, while the full precision gradient requires
32 × d bits per gradient. Thus, the proposed private
mechanism saves in communication bits a factor of
28096× in comparison with the full precision gradient.

In [Papernot et al., 2020], the authors achieve a test
accuracy of 98% on MNIST with central privacy pa-
rameters ε = 3 and δ = 10−5 using a DP centralized
algorithm by adding Gaussian noise to the aggregated
gradients in each iteration. However, Papernot et al.
[2020] do not offer any local differential privacy guar-
antees, which can be thought of as ε0 =∞. Although,
Theorem 1 and Remark 3 show that our proposed algo-
rithm matches theoretically the results of the central-
ized SGD with full precision gradients, the numerical
results show that there is a gap between the accuracy of
our algorithm and the test accuracy of the centralized
algorithm in Papernot et al. [2020]. We believe that the
privacy parameters of our algorithm can be improved
by analyzing the Renyi differential privacy of the shuf-
fled model, which is an important open question of the
ongoing investigation.



Shuffled Model of Differential Privacy in Federated Learning

Acknowledgements

This was supported by the NSF grant #1740047 and by
the UC-NL grant LFR-18-548554. This work was also
supported in part through the Google Faculty Research
Award.

References

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In Proceedings of ACM
CCS, pages 308–318, 2016.

J. Acharya and Z. Sun. Communication complexity
in locally private distribution estimation and heavy
hitters. In Proceedings of the 36th International
Conference on Machine Learning, volume 97. PMLR,
2019.

J. Acharya, Z. Sun, and H. Zhang. Hadamard response:
Estimating distributions privately, efficiently, and
with little communication. In The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 1120–1129, 2019.

N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and
B. McMahan. cpsgd: Communication-efficient and
differentially-private distributed sgd. In Advances
in Neural Information Processing Systems, pages
7564–7575, 2018.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vo-
jnovic. Qsgd: Communication-efficient sgd via gra-
dient quantization and encoding. In Advances in
Neural Information Processing Systems, pages 1709–
1720, 2017.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov,
S. Khirirat, and C. Renggli. The convergence of
sparsified gradient methods. In Advances in Neural
Information Processing Systems, pages 5973–5983,
2018.

B. Balle, J. Bell, A. Gascon, and K. Nissim. Dif-
ferentially private summation with multi-message
shuffling. arXiv preprint arXiv:1906.09116, 2019a.

B. Balle, J. Bell, A. Gascón, and K. Nissim. Im-
proved summation from shuffling. arXiv preprint
arXiv:1909.11225, 2019b.

B. Balle, J. Bell, A. Gascón, and K. Nissim. The
privacy blanket of the shuffle model. In Annual
International Cryptology Conference, pages 638–667.
Springer, 2019c.

B. Balle, J. Bell, A. Gascón, and K. Nissim. Private
summation in the multi-message shuffle model. In
CCS ’20: 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event,

USA, November 9-13, 2020, pages 657–676. ACM,
2020a. doi: 10.1145/3372297.3417242.

B. Balle, P. Kairouz, B. McMahan, O. D. Thakkar,
and A. Thakurta. Privacy amplification via random
check-ins. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020b.

R. Bassily, A. Smith, and A. Thakurta. Private empiri-
cal risk minimization: Efficient algorithms and tight
error bounds. In 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, pages 464–473.
IEEE, 2014.

D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-
local-sgd: Distributed sgd with quantization, spar-
sification and local computations. In Advances in
Neural Information Processing Systems, pages 14695–
14706, 2019.

A. Beimel, K. Nissim, and E. Omri. Distributed pri-
vate data analysis: Simultaneously solving how and
what. In Annual International Cryptology Confer-
ence, pages 451–468. Springer, 2008.

A. Beimel, S. P. Kasiviswanathan, and K. Nissim.
Bounds on the sample complexity for private learning
and private data release. In Theory of Cryptography
Conference, pages 437–454. Springer, 2010.

A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and
R. Rogers. Protection against reconstruction and
its applications in private federated learning. arXiv
preprint arXiv:1812.00984, 2018.

K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Dif-
ferentially private empirical risk minimization. Jour-
nal of Machine Learning Research, 12(3), 2011.

W. Chen, P. Kairouz, and A. Özgür. Breaking the
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