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1 Appendix - Proofs of Results

1.1 Proof of Theorem 1

The proof of Theorem 1 uses the following lemma (from ?) that links the demographic parity of a test function
f and its balanced error rate BER(f),

BER(f, t) =
P (f(Z) = 1|S = 0) + P (f(Z) = 0|S = 1)

2
, (1)

where we make the dependence on the representation mapping t explicit in BER(f, t).

Lemma 1.1. ? A representation space (Z, µt) satisfies an ∆∗(t)− demographic parity certificate if and only if

BER∗(t) , min
f :Z→{0,1}

BER(f, t) ≥ 1−∆

2
. (2)

Therefore, a representation space (Z, µt) can be stamped with a ∆∗(t)− demographic parity certificate with
∆∗(t) ≡ 1− 2BER∗(t).

To prove the result in Theorem 1, we consider a deterministic transformation t.

Lemma 1.2. Suppose that t is a deterministic mapping from X to Z. Denote K the size of t(X ) with K ≤ ∞.
Then, for all distribution µx over the features X such that for all z ∈ t(X ), P (t(X) = z) > 0, Iχ2(X,Z) = K−1.

Proof. First, since t is a function, P (Z = z|X = x) is equal to one if and only if t(x) = z. Therefore,

Iχ2(X,Z) = Ex

(
1− 1

P (Z = t(x)

)2

P (Z = t(x))

= Ex

[
1

P (Z = t(x)

]
− 1

=
∑

z∈t(X )

[
P (X, t(X) = z)

P (Z = z)

]
− 1

= K − 1

(3)

Now for a given distribution µx over X and a given transformation t, there are two cases: Iχ2(X,Z) = ∞ and
Iχ2(X,Z) <∞. Let denote Iχ2(X,Z) by Iχ2 .
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1.1.1 Case Iχ2 <∞

By lemma ??, t(X ) is finite and t(X ) = {z1, z2, ..., zK}, with K ≤ ∞ and zk 6= zk′ for k 6= k
′
.

For each k ∈ {1, ...,K}, we choose one xk ∈ X such that t(xk) = zk. We parametrize a family of joint
distributions µ(b) over [0, 1]× {0, 1} as follows: X is uniformly distributed over {x1, ..., xK}; and, for b ∈ (0, 1),
the sensitive attribute is given by kth binary expansion of b, where X = xk. By Lemma ??, the χ2 squared
mutual information between X and t(X) is the same for any b and equal to K − 1. Moreover, since the sensitive
attribute is a function of t(X), ∆∗b(t) = 1, where the subscript indicates that demographic parity is computed
using the joint distribution µ(b) over (Z, S).

Let B denote a random variable uniformly distributed on [0, 1]. For any auditor fn,

sup
b∈[0,1]

EDn(b)BER(fn, t)
(a)

≥ EBEDn(B)BER(fn, t)

= EX,BP [fn((t(X),Dn(B)) 6=
S|t(X1), ..., t(Xn), S1, ...Sn, t(X)]

(b)

≥ 1

2
P (∩ni=1[t(X) 6= t(Xi)])

(c)
=

1

2

(
1− 1

K

)n
(d)
=

1

2

(
1− 1

Iχ2(X,Z)

)n
(4)

where (a) uses that the suppremum is larger than the average; (b) that for Z /∈ {Z1, ..., Zn}, the sensitive
attribute has a Bernouilli distribution with probability 1/2; (c) that X and then Z is uniformly distributed; and,
(d) that Iχ2(X,Z) ≤ K by Lemma ??. Since Iχ2(X,Z) is equal for all b, it follows from Lemma ?? that

sup
b∈(0,1)

∆∗ −∆(fn, t) ≥
(

1− 1

Iχ2(Z,X)

)n
. (5)

Note that µ does not depend on µx. Therefore, for all auditors fn,

sup
µ
EDn |∆∗ −∆(fn, t)| ≥

(
1− 1

Iχ2

)n
. (6)

1.1.2 Case Iχ2 =∞

By Lemma ??, if for a distribution µ over X × {0, 1}, Iχ2(Z,X) = ∞, then there exists an infinite countable
set {ak} of X such that t takes a different value at each ak. We choose X to take value in {ak}k≥1 such that
P (ak) = pk for k ≥ 0 where the sequence {pk}∞k=1 will be chosen later on. As in the previous case, we parametrize
a family of distributions over X × {0, 1} by b ∈ (0, 1) such that for X ∈ {a1, ...}, the sensitive attribute S is the
kth term of b′s binary expansion, where X = ak. Because S is a deterministic function of X, ∆∗(t) = 1.

Let B denote a random variable uniformly distributed on [0, 1]. For a sample point Xi, we denote ki such that
Xi = aki . For any auditor fn,

sup
b∈[0,1]

EDn(b)BER(fn, t)
(a)

≥ EBEDn(B)BER(fn, t)

= EX,BP [fn((t(X),Dn(B)) 6=
S|t(X1), ..., t(Xn), S1, ...Sn, t(X)]

(b)

≥ 1

2
P (∩ni=1[k 6= ki])

(c)
=

1

2

∞∑
k=1

pk(1− pk)n

(7)



It remains to show that for all ε > 0, we can choose {pk} such that the right hand side of inequality (??) is
at least 1/2(1 − ε). Let ε > 0. We choose pk as follows. First, pick K > 1

1−(1−ε)1/n .Then, let pk = 1/K for

1 ≤ k ≤ K and pk = 0 elsewhere. It follows that

sup
b∈[0,1]

EDn(b)BER(fn, t) ≥
1

2

(
1− 1

K

)n
≥ 1

2
(1− ε). (8)

Therefore, using Lemma ??, we can conclude that for all ε > 0, there exists a distribution over X × {0, 1} such
that for all auditors fn

∆∗(t)−∆(fn, t) ≥ 1− ε. (9)

Therefore,

sup
µ

∆∗(t)−∆(fn, t) ≥ 1 =

(
1− 1

Iχ2

)n
. (10)

1.1.3 Final Step

Therefore, by combining both cases Iχ2 <∞ and Iχ2 =∞, we have that for all distribution µx over the features
X ,

sup
µ

∆∗(t)−∆(fn, t) ≥ 1 =

(
1− 1

Iχ2

)n
, (11)

which implies the result in theorem 1.

1.2 Proof of Corollary 1

Suppose that inf
fn∈Fn

sup
µ
EDn |∆∗ −∆(fn, t)| ≤ εn for some εn > 0. Let fn ∈ Fn be the auditor that reaches the

minimum.

We have, for any distribution µ over X × {0, 1},(
1− 1

Iχ2(Z,X)

)n
≤ sup

µ

(
1− 1

Iχ2(Z,X)

)n
(a)

≤ sup
µ
EDn |∆∗ −∆(fn, t)|

≤ εn,

(12)

where (a) uses Theorem 1. The result follows directly from equation (??).

1.3 Examples of Representation Mappings without Finite Sample Guarantees

Injective mappings. Suppose that t is injective from [0, 1]D to Rd.

Consider X distributed over the countable and infinite set {1, 1/2, ...1/k, ....} with pk = κ/k2 and k−1 =∑∞
k=1 1/k2. By lemma ??, Iχ2(X,Z) = ∞ and thus, by Corollary 1, there exists a distribution such that

∆∗(t)−∆(fn, t) = 1 for all fn.

Large t(X ). Suppose that |{t(x)|x ∈ X}| ≥ n/(ln(n))α, for some α < 1.

By Lemma ??, Iχ2(X,Z) ≥ n/(ln(n))α − 1 and thus, by Corollary 1, if inf
fn∈Fn

sup
µ
EDn |∆∗(t) − ∆(fn, t)| = εn,

then

n

(ln(n))α
− 1 ≤ Iχ2(X,Z) ≤ 1

1− ε
1
n
n

(a)

≤ n

− ln(εn)
,

(13)

where (a) uses that e−x ≥ 1− x. Therefore, εn ≥ e−(ln(n))
α

= ω(n−s) for s > 0, since α < 1.
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1.4 Proof of Theorem 2

The proof Theorem 2 relies on a upper bound of ∆∗(t)−∆(fn, t) that uses the total variation distance TV (µst , µ
s
n)

between class conditional densities and their empirical counterpart:

TV (µst , µ
s
n) =

∫
|µst − µsn)|dz. (14)

Lemma 1.3. Consider a sample {(zi, si)}ni=1 from a representation distribution µt induced by a representation
rule t. Suppose that µ0

n and µ1
n are empirical density estimators of P (Z|S = 0) and P (Z|S = 1) respectively.

Denote fn the following auditing plug-in decision: for z ∈ Z, fn(z) = 1 if and only if µ1
n(z) > µ0

n(z). Therefore,
for all n

∆(fn, t) ≤ ∆∗(t) ≤ ∆(fn, t) + 2
∑
i=0,1

TV (µit, µ
i
n). (15)

Proof. Let f∗ denote the auditing rule that minimzes the balance error rate. Using ? (ch 2), we show that for
any auditing rule fn

2−
∫
ηfn(z)(z)µt(dz) = 2−

∑
i=0,1

∫
fn(z)=i

ηi(z)µt(dz)

= 2−
∑
i=0,1

∫
fn(z)=i

P (z|S = i)dz

= 2BER(fn),

(16)

where ηi(z) is the balanced posteriori probability ηi(z) = P (S = i|Z = z)/P (S = i). Moreover,

2BER(f∗) = 2− P (f∗(z) = 1|S = 1]

− P (f∗(z) = 0|S = 0)

= 2−
∫
z,µ1

t>µ
0
t

µ1
t (dz)−

∫
z,µ0

t>µ
1
t

µ0
t (dz)

= 2−
∫

max
i
ηi(z)µt(dz).

(17)

Let denote ηn,i the empirical estimate of ηi. Using equations (??) and (??), the proof of lemma ?? relies on the
fact that

BER(fn)−BER(f∗) =

∫
max
i
ηi(z)µt(dz)

−
∫
ηfn(z)(z)µt(dz)

=

∫
(max

i
ηi(z)−max

i
ηn,i(z))µt(dz)

+

∫
(ηn,fn(z)(z)− ηfn(z)(z))µt(dz)

(a)

≤
∑
i=0,1

∫
|ηi(z)− ηn,i(z)|µt(dz)

=
∑
i=0,1

∫
|µit(z)− µin(z)|dz,

(18)

The inequality (a) comes from the following observation. If the maxima are attained for the same i ∈ {0, 1},
then the right hand side integrand is equal to 0. Otherwise, suppose without loss of generality that max ηi(z) is
reached for i = 0, then the right hand side integrand is



η0(z)− ηn,1(z) + ηn,1(z)− η1(z) = η0(z)− ηn,0(z)

+ ηn,1(z)− η1(z)

+ ηn,0(z)− ηn,1(z)

≤ |η0(z)− ηn,0(z)|
+ |η1(z)− ηn,1(z)|,

(19)

where the inequality follows maxi ηn,i(z) = ηn,1(z). The same argument can be applied when max ηi(z) = η1(z).
The result in lemma ?? follows from (??).

The second part of the proof of theorem 2 is to show that the total variation distance between µsn and µst is
O(1/

√
ns) for some empirical estimate of µst :

Lemma 1.4. Consider a representation mapping t : X → Z and its induced distribution µt. Assume that
I2(Z,X) <∞. Then, for s = 0, 1, define µsn as

µsn(z) =
1

ns

n∑
i=1,si=s

P (z|X = xi) (20)

The total variation between µst and µsn can be bounded as follows:

ED∼Xn [TV (µst , µ
s
n)] ≤

√
I2(Z,X)

ns
.

The upper bound of the total variation distance uses a Monte Carlo integration argument. For a sample Dn =
{xi}ni=1, denote φ(z, xi) the probability P (Z = z|X = xi). Therefore, µt(z) = Ex∼X [φ(z, x)] and if µsn is defined
as in (??), µst (z) = EX,S=s[µ

s
n], where X = {xi}ni=1 ∼ Xn. Denote

Es(X) =

∫ ∣∣∣∣∣∣µt(z)− 1

ns

n∑
i=1,si=s

φ(z, xi)

∣∣∣∣∣∣ dz, (21)

with ns = |{i|si = s}|. We have

EX[Es(X)]
(a)

≤ EX

√∫ (µt(z)− µsn(z)

µt(z)

)2

µt(z)dz


(b)
=

1

ns
EX

√√√√∫ n∑
i=1,si=s

(
µt(z)− φ(z, xi)

µt(z)

)2

µt(z)dz


(c)

≤ 1

ns

√√√√√EX

∫ n∑
i=1,si=s

(
µt(z)− φ(z, xi)

µt(z)

)2

µt(z)dz


(d)
=

1

ns

√√√√ n∑
i=1,si=s

EX

[∫ (
µt(z)− φ(z, xi)

µt(z)

)2

µt(z)dz

]

(e)
=

√
I2(Z,X)

ns
,

(22)

where (a) applies Cauchy-Schwarz inequality; (b) uses the fact that the samples are independently drawn and that
Exi [φ(z, xi)] = µt(z); (c) that the squared-root is concave; (d) that expectation and integral can be interchange;
and, (e) the definition of the chi-squared mutual information between Z and X.

Putting lemma ?? and ?? together, we get the upper bound in theorem 2.
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1.5 χ2 versus Classic Mutual Information

Features are uniformly distributed over [0, 1] and t(x) = i for x ∈ [1/(i+ 1), 1/i)) and i > 0. For each i > 0, the
sensitive attribute is constant over [1/(i+ 1), 1/i)) and equal to 1 with probability 1/2.

Form Lemma ??, it is clear that Iχ2(X,Z) = ∞. On the other hand, we can show that the classic mutual
information between X and Z, ISh(X,Z) is bounded. Since t is deterministic,

ISh(X,Z) =

∞∑
i=1

ln(i(i+ 1))

i(i+ 1)

≤ ln(2)

2
+

∫ ∞
1

ln(x(x+ 1))

x2
dx

(a)
=

ln(2)

2
+ 1 +

∫ ∞
1

1

x(x+ 1)
dx

(b)

≤ ln(2)

2
+ 2 <∞,

(23)

where (a) and (b) use integration by part and (b) the fact that 1/x ≥ 1/(x+ 1).

1.6 Proof if Theorem 3

We only prove the upper bound on the χ2 mutual information since the remaining results in Theorem 3 follow
directly from Theorem 2.

Since the mapping (p, q)→ q(p/q − 1)2 is convex and since Z is an infinite mixtures of Gaussians, we have that
for x ∈ X

∫ (
µt∗σ(z|X = x)

µt∗σ(z)
− 1

)2

µt∗σ(z)dz

≤
∫ ∫ (

µt∗σ(z|X = x)

µt∗σ(z|X = x′)
− 1

)2

µt∗σ(z|X = x
′
)dzµ(dx

′
)

,
(a)
=

∫
χ2(z|X = x)||z|X = x

′
)µ(dx

′
),

(24)

where we use Fubini Theorem to invert the summation over z and x
′

and (a) uses the definition of the χ2

divergence between p(z|X = x) and p(z|X = x
′
. Since both p(z|X = x) and p(z|X = x

′
are Gaussians with

variance σ2 and mean t(x) and t(x
′
), respectively, the integrand in the right hand side of (??) can be computed

analytically as

χ2(z|X = x)||z|X = x
′
) =

1

2

[
exp

(
||t(x)− t(x′

)||2
σ2

)
− 1

]
.

(25)

Therefore,

Iχ2(X,Z) ≤ 1

2
Ex,x′

[
exp

(
||t(x)− t(x′

)||22
σ2

)]

≤ 1

2
exp

(
2||t||2∞
σ2

)
.

(26)



1.7 Proof of Theorem 4

By ?, we know that the balanced error rate of the optimal auditor f∗ is given by

BER(f∗) =
1

2

∫
min(η(z, 0), η(z, 1))µt∗σ(dz)

=
1

4

∫
(η(z, 0) + η(z, 1))µt∗σ(dz)

− 1

4

∫
|η(z, 0)− η(z, 1)|µt∗σ(dz)

(a)
=

1

2
− 1

4

∫
|η(z, 0)− η(z, 1)|µt∗σ(dz),

(27)

where (a) uses the definition of η(z, s) = P (Z = z|S = s)/P (z). Therefore, by Lemma ??,

LDP (µt,σ) =
1

2

∫
|µ0
t,σ(z)− µ1

t,σ(z)|dz (28)

and that

LDP (µn,σ) =
1

2

∫
|µ0
n,σ(z)− µ1

n,σ(z)|dz. (29)

Therefore, for any t and any features distribution µ over the features X ,

|LDP (µn,σ)− LDP (µt,σ)|
(a)

≤
∫
|(µ0

t,σ(z)− µ1
t,σ(z))

−(µ0
n,σ(z)− µ1

n,σ(z))|dz
(b)

≤
∫
|(µ0

t,σ(z)− µ0
n,σ(z))|dz

+

∫
|(µ1

t,σ(z)− µ1
n,σ(z))|dz

(c)

≤ exp

(
||t||2∞
σ2

)(√
1

n0
+

√
1

n1

)
,

(30)

where (a) and (b) are consequences of triangular inequalities; and (c) follows from the definition of total variation
distance, the upper bound in lemma ?? and theorem 3.

1.8 Monte Carlo Approximation

Lemma 1.5. Let m > 0 and n > 0. Consider a sample {(xi, si)} and a noise vector {noiseji} of n×m draws
from a d-dimensional Gaussian N (0, σId). Denote µn,σ the empirical density as in (??) and for i = 1, ..., n and
j = 1, ...,m zij = t(xi) + noiseij. If

L̂DP (µn,σ) =
1

nm

n∑
i=1

m∑
j=1

|ηn(zij , 1)− ηn(zij , 0)| (31)

then L̂DP (µn,σ) is an unbiased estimator of LDP (µn,σ) and

Enoise

[
(L̂DP (µn,σ)− LDP (µn,σ))2

]
≤ 8||t||2∞ + 4σ2

σ2

1

nm
. (32)

Proof. First, L̂DP (µn,σ) is an unbiased estimator of LDP (µn,σ) because

Enoise

[
L̂DP

]
=

1

nm

n∑
i=1

m∑
j=1

Enoise[|ηn(zij , 1)− ηn(zij , 0)|]

=
1

nm

n∑
i=1

m∑
j=1

LDP (µn,σ)

= LDP (µn,σ).

(33)
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Therefore, the mean squared error can be written as

Enoise

[
(L̂DP (µn,σ)− LDP (µn,σ))2

]
=

1

n2m

n∑
i=1

varnoise [k(xi + noise)] ,
(34)

where k(z) = |ηn(z, 1)− ηn(z, 0)|. Moreover, by Gaussian Poincare inequality,

varnoise [k(xi + noise)]
(a)

≤ σ2Enoise||∇k(xi + noise)||22
(b)
= 2σ2

∑
s

Enoise
[
||∇ log(µsn,σ(z, s))||22

] (35)

where (a) uses the fact that the noise is Gaussian with standard deviation σ; (b) that z = xi + noise and that
∇ηn(z, s) = ηn(z, s)∇ log(µsn,σ(z, s)) + (1− ηn(z, s)∇ log(µsn,σ(z, 1− s)). Moreover, for s = 0, 1

∇ log(µsn,σ(z, s))
(a)
=

n∑
i=1

∇ log(φ(z, xi))P (X = xi|z)

= − 1

2σ2

n∑
i=1

(z − t(xi))P (X = xi|z),
(36)

where (a) denotes the Gaussian density with mean t(x) and standard deviation σ as φ(z, x). Therefore,

||∇ log(µsn,σ(z, s))||2 ≤
||z||2 + ||t||∞

σ2
. (37)

Moreover, z ∼ µn,σ, which is a mixture of n Gaussians, each with a non-central second moment equal to
σ2 + ||t(xi)||2. Therefore,

Enoise||z||22 ≤ σ2 + ||t||2∞. (38)

By combining (??), (??) (??) and (??), we obtain that

varnoise [k(xi + noise)] ≤ 4
2||t||2∞ + σ2

σ2
, (39)

and thus that

Enoise

[
(L̂DP (µn,σ)− LDP (µn,σ))2

]
≤ 4

2||t||2∞ + σ2

σ2nm
. (40)

2 Appendix - Experimental Details

2.1 Dataset

Swiss Roll. For the Swiss Roll synthetic data, we use 20, 000 samples for training the autoencoder (t, g) and
10, 000 fresh samples to train the downstream processors and 10, 000 to evaluate their demogrpahic disparity.

DSprites. For the DSprites dataset, we follow the setting from ?. The DSprites dataset has six independent
factors of variation: color (black or white); shape (square, heart, ellipse), scales (6 values), orientation (40
angles in [0, 2π]); x- and y- positions (32 values each). We adapt the sampling to generate a source of potential
unfairness. We consider shape as the sensitive attribute. We assign to each possible combination of attributes

a weight proportional to
ishape

3 +
(
iX
32

)3
, where ishape ∈ {0, 1, 2} and iX = {0, 1, ..., 21}. we sample 600, 000

combinations of latent factors to train the encoder-decoder; 20, 000 to train the downstream processors; and,
20, 000 to evaluate the disparity of the downstream processors.



Adults. The Adults dataset 1 contains 49K individuals and includes information on 10 features related to
professional occupation, education attainment, race, capital gains, hours worked and marital status. The sensitive
attribute is the gender to which individuals self-identify to. The data is split into a 32K set to train the auto-
encoder; a 13K set to train the downstream processors; and, a 3K test set to evaluate the disparity of the
processors.

Heritage. The Health Heritage dataset 2 contains 220K individuals with 66 features related to age, clinical
diagnoses and procedure, lab results, drug prescriptions and claims payment aggregated over 3 years. The
sensitive attribute is the gender to which individuals self-identify to. After removing individuals with missing
records, we split the data into a 142K set to train the auto-encoder; a 17K set to train the downstream processors;
and, a 17K test set to evaluate the disparity of the processors.

2.2 Encoder-Decoder

For the DSprites dataset, the autoencoder architecture – taken directly from ? – includes 4 convolutional layers
and 4 deconvolutional layers and uses ReLU activations. For the Swiss Roll dataset and the two real world
datasets, the encoder and decoder are made of fully connected layers with ReLU activations. Table ?? shows
more architectural details for each dataset. Hyperparameter values are in Table ??.

Dataset Encoder Decoder Activation

Swiss Roll Linear(3, 64), Linear(64, 64), Linear(64, 64) Linear(3, 64), Linear(64, 3) ReLU/Tanh
DSprites Conv(1, 32, 4, 2), Linear(28, 128), ReLU/Tanh

Conv(32, 32, 4, 2), Linear(128, 1024)
Conv(32, 64, 4, 2), ConvT2d(64, 64, 4, 2),
Conv(64, 64, 4, 2), ConvT2d(64, 32, 4, 2)
Linear(1024, 128) ConvT2d(32, 32, 4, 2)

ConvT2d(32, 61, 4, 2)
Adults Linear(10, 64), Linear(64, 10) Linear(10, 64), Linear(64, 10) ReLU/Tanh
Heritage Linear(66, 128), Linear(128, 24) Linear(24, 128), Linear(128, 66) ReLU/Tanh

Table 1: Architecture details. Conv2d(i, o, k, s) represents a 2D-convolutional layer with input channels i,
output channels o, kernel size k and stride s. ConvT2d(i, o, k, s) represents a 2D-deconvolutional layer with
input channels i, output channels o, kernel size k and stride s. Linear(i, o) represents a fully connected layer
with input dimension i and output dimension o. The tanh activation is only applied to the last layer of the
encoder.

Dataset Number of iterations Learning rate σ λmax
AGWN AdvCE AdvL1

Swiss Roll 4K 10−3 0.05 10 4 4
DSprites 270K 10−4 0.05 0.025 0.035 0.035
Adults 55K 10−3 0.02 2.6 2.8 2.8
Heritage 55K 0.5× 10−4 0.05 2.6 2.6 2.6

Table 2: Hyperparameter values for training encoder-decoder networks.

2.3 Comparative Methods

AdvCE. AdvCE is a fair representation learning method from ?. The auditor is modeled as an adversarial
neural network a that predicts sensitive attributes from samples of the representation distribution and minimizes

1https://archive.ics.uci.edu/ml/datasets/adult
2https://foreverdata.org/1015/index.html



Running heading title breaks the line

the following cross-entropy loss:

LCE(a) = − 1

n

n∑
i=1

si log(a(xi) + (1− si) log(1− a(xi)). (41)

Moreover, the autoencoder is trained to minimize a loss Lrec − λLCE(a).

AdvL1 AdvL1 (?) replaces the cross-entropy loss by a group L1 loss: instead of (??), the adversary minimizes

LL1 =
1

n0

∑
i,si=0

a(xi)−
1

n1

∑
i,si=1

a(xi), (42)

and the autoencoder minimizes Lrec − λLL1(a).

For both AdvCE and AdvL1, the adversarial auditor is modeled as a neural network with 3 hidden layers of 64
neurons each for Adults and Swiss Roll; 3 hidden layers of 128 neurons each for Heritage; and, 3 hidden layers
of 256 neurons each for DSprites.

2.4 Downstream Processors

The downstream test functions that probe the demographic parity of the representation distribution are fully
connected neural networks with 2 to 4 hidden layers with 32 to 128 neurons each. Each test function is trained
for 400 epochs with a learning rate of 0.001. After the autoencoder is trained, its weights are frozen, and fresh
representations are generated by 10, 000 forward passes of the encoder on the test data. The generated fresh
representations form the inputs of the test functions.

2.5 Figure 2 to 5

To generate Figure 2 to 4, we train an auto-encoder for a given value of the coefficient λ on the fairness component
of the loss function and repeat the simulations 50 times. We vary the value of λ from 0 to λmax, where λmax is
reported for each dataset in Table ??.


