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Abstract

This paper explores the statistical proper-
ties of fair representation learning, a pre-
processing method that preemptively re-
moves the correlations between features and
sensitive attributes by mapping features to
a fair representation space. The demo-
graphic parity of a representation can be
certified from a finite sample if and only
if the chi-squared mutual information be-
tween features and representations is finite
for all features distributions. Empirically, we
find that smoothing representations provides
generalization guarantees of fairness certifi-
cates, which improves upon existing fair rep-
resentation learning approaches. On four
datasets we simulate many downstream users
and show that our approach, AGWN, is
the only one that generates representations
whose fairness properties are robust to many
downstream users.

1 Introduction

Organizations dealing with data are increasingly ac-
countable for the collection, use and disposal of the
data, including the responsibility of discriminatory use
on the basis of sensitive attributes (e.g. racial or eth-
nic origin, sexual orientation or political beliefs). How-
ever, these organizations, henceafter data controllers,
cannot always anticipate and control how downstream
applications, henceafter data processors, will process
the data. This is problematic since a growing body of
evidence has raised concerns about the fairness of ma-
chine learning outcomes across a wide range of applica-
tions, including judicial decisions (ProPublica (2016)),
face recognition (Buolamwini and Gebru (2018)), de-
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Figure 1: Fair representation learning. Variables are:
features X; sensitive attribute S; representation Z.
Fair representation protocol includes an encoder ¢ that
maps X to its representation Z; a decoder g that re-
constructs X from Z; and, an auditor a that mea-
sures the statistical dependence between Z and S. The
contribution of this paper is to introduce an additive
Gaussian white noise (AGWN) channel € so that fair-
ness guarantees can be established for all data proces-
sors h using Z.

gree completion (Gardner et al. (2019)) or medical
treatment (Pfohl et al. (2019)).

One promising avenue is to limit the data access to its
fair representations (e.g Madras et al. (2018), Crea-
ger et al. (2019), Edwards and Storkey (2015), Pfohl
et al. (2019) or Zemel et al. (2013)). Fair representa-
tion learning seeks to map the original data distribu-
tion into a distribution that retains the information
contained in the original data, while being statisti-
cally independent of sensitive attributes (see Figure
1). However, current fair representation learning ap-
proaches provide fairness guarantees only against some
pre-specified data processors (Chouldechova and Roth
(2018)). This paper explores conditions on the encoder
to gemerate representation distributions with fairness
guarantees that hold for any data processor.

We show that for fairness guarantees derived from fi-
nite samples to generalize to all downstream data pro-
cessors, it is necessary that the x? mutual information
between feature and representation is finite. Moreover,
we prove that a finite x? mutual information between
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feature and representation is a sufficient condition on
representation mappings to guarantee a good approx-
imate rate (O(n~'/2)) of empirical certificates.

In practice, it is challenging to establish that the y?
mutual information is finite without knowing the dis-
tribution over X. However, we show that an addi-
tive Gaussian white noise (AGWN) channel placed
after any representation mapping (see Figure 1) will
bound the x? mutual information once the represen-
tations have passed through the channel. The chan-
nel smoothes the representation distribution by trans-
forming it into a mixture of Gaussian distributions
that can be estimated by Monte Carlo integration
(Goldfeld et al. (2019)). Therefore, a plug-in fair-
ness auditor that relies on estimating the class condi-
tional density functions over the representation space
achieves a convergence rate of O(n~1/2) and thus de-
livers meaningful empirical certificates of fairness.

We empirically find on various synthetic and fair learn-
ing benchmark datasets that an AGWN channel in fair
representation learning is sufficient for empirical cer-
tificates to upper bound the demographic disparity of
multiple downstream users that attempts to predict
sensitive attributes from samples of the representa-
tion distribution. An AGWN channel improves upon
existing approaches in adversarial fair representation
learning whose fairness guarantees do not extend be-
yond a set of specific downstream users. Moreover,
we find that obtaining good approximation rates for
empirical certificates does not come at the cost of sig-
nificantly degrading the accuracy-fairness trade-off of
downstream predictive tasks.

Related work. A growing literature explores the po-
tential adverse implications that machine learning al-
gorithms might have on protected demographic groups
(e.g individuals self-identified as Female or African-
American) (Chouldechova and Roth (2018) for a re-
view). Many contributions seek to define fairness crite-
ria either at the group or individual level (Dwork et al.
(2012)) and then, impose a fairness penalty into their
classification algorithm (e.g. Agarwal et al. (2018),
Kim et al. (2018), Kearns et al. (2018)) or audit for
a specific criteria (e.g Feldman et al. (2015), Gitiaux
and Rangwala (2019)). In this paper, we side-step
the important discussion on what fairness criteria to
choose from (Kleinberg et al. (2016)), but investigate
whether a data can be transformed so that any future
use will meet a pre-specified criteria. Our results fo-
cus on demographic parity (Dwork et al. (2012)), but
can be readily extended to many other group level cri-
teria, including equalized odds and equal opportunity
(Hardt et al. (2016)).

Existing pre-processing methods to mitigate unfair

data use include sampling and reweighting (e.g.
Calders and Zliobaité (2013), Gordaliza et al. (2019)),
optimization procedures to learn a data transforma-
tion that both preserve utility and limit discrimination
(e.g. Calmon et al. (2017)), and representation learn-
ing (e.g. Zemel et al. (2013)). Representation learning
seeks to encode the data while removing correlations
between features and sensitive attributes. A data en-
coder generates a representation of the data and fools
a neural network that attempts to predict sensitive
attributes from samples of the representation distri-
bution (e.g. Edwards and Storkey (2015), Madras
et al. (2018), Zhang et al. (2018) or Xu et al. (2018)).
An alternative approach is to disentangle sensitive at-
tributes from features by passing the data through an
information bottleneck (Louizos et al. (2015) or Crea-
ger et al. (2019)).

Our contribution to fair adversarial learning is to ex-
plore conditions so that the learned representation of-
fers fairness guarantees against downstream processors
that do not necessarily belong to the same class as
the adversary used during the training of the encoder.
Madras et al. (2018) and Oneto et al. (2019) explore
empirically whether representations that achieve de-
mographic parity for a specific downstream task gen-
eralize to new tasks in terms of accuracy and fair-
ness. We extend their work by showing theoretically
and empirically that introducing an AGWN channel in
fair representation learning offers generalization guar-
antees to all future tasks. Moreover, introducing an
AGWN channel avoids the need for an adversarial au-
ditor, since it allows approximating the empirical fair-
ness certificate with a differentiable loss that can be
computed by Monte Carlo sampling.

Similar to our approach, the differential privacy lit-
erature relies on noise injection to guarantee that
two neighboring datasets are indistinguishable (Dwork
et al. (2014)). However, in the context of differential
privacy, indistinguishability is only obtained by adding
Gaussian/Laplacian noise. In our fairness context, for
a finite sample, statistical hiding comes from learning
representations subject to a demographic parity con-
straint; the injection of Gaussian noise is only a means
to generalize the statistical hiding property to the in-
finite sample regime.

2 Certifying Fair Representations

2.1 Background

Consider a data controller who wants to release sam-
ples from a distribution u over X x & with features in
X C [0,1]P and sensitive attributes in S. Although
our setup can be extended to richer spaces of sensitive
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attributes, we focus here on binary sensitive attributes
and assume that S = {0, 1}.

A transformation ¢ that maps the features space X into
a representations space Z C R induces a distribution
pe over Z x {0,1}: u(A) = p({z € X|t(z) € A}) for
any A C Z.

The data controller’s objective is to obtain a repre-
sentation mapping ¢ that minimizes the statistical de-
pendence between representation Z and sensitive at-
tribute S. Therefore, for any test f : Z — {0,1}
that decides whether the class conditional distribu-
tions Y = P(Z|S = 0) and pu} = P(Z|S = 1) are
identical, the data controller would like to minimize
the discrepancy

A(f,1) 2 By [f ()] = By [f ()], (1)

where we make the dependence of A on representa-
tion mapping ¢ explicit. In the context of fair machine
learning, the test function f is either an auditor used
by the data controller to estimate the statistical de-
pendence between Z and S (function a in Figure 1);
or, a classifier used by a data processor (function A in
Figure 1) and A(f,t) then measures the demographic
parity of f (see Hardt et al. (2016)):

Definition 2.1. Demographic parity Consider a
representation distribution u; induced by a representa-
tion mapping t : X — Z. A classifier f : Z — {0,1}
used by a data processor satisfies §— Demographic Par-
ity on pyg if and only if A(f,t) <.

Since the data controller does not know ex-ante which
classifier data processors will use, it has to construct
a mapping ¢ such that all classifiers f : Z — {0,1}
satisfy 0— demographic parity on u; for some pre-
specified 6 > 0. A demographic parity certificate is
therefore an upper bound on the demographic dispar-
ity of any classifiers that access samples from the rep-
resentation distribution p;.

Definition 2.2. Demographic Parity Certificate
Let § > 0. A representation space (Z, ;) can be cer-
tified with d— demographic parity if and only if

A*(t) 2 sup  A(f,t) =6. (2)

f:Z2—{0,1}

To construct a representation mapping certified
with A*(t)— demographic parity, the data controller
needs to evaluate the supremum over all test func-
tions/auditors f, that are constructed on the basis
of a finite sample D,, = {(z4,s;)}?,. Let F,, denote
the set of all auditors f,, : Z x (£ x {0,1})" — {0,1}
constructed from a sample of size n.

Definition 2.3. Empirical Demographic Parity
Certificate Let n > 1 and § > 0. A representation

space (Z, i) is certified with an empirical 6— demo-
graphic parity certificate if and only if

An(t) = sup A(fn,t) =0. (3)

n- n

The question is how to choose a representation map-
ping t : X — Z so that empirical certificates A, (t)
approximate well the true demographic parity certifi-
cate A*(t). Approximation properties of empirical cer-
tificates are important for a data controller to upper
bound the demographic disparity of any downstream
processor that uses fresh samples obtained after ¢ has
been constructed.

Since the data controller cannot constrain the data
distribution over X x {0,1}, we are looking for
distribution-free approximation rates. In general,
distribution-free rates do not exist (Devroye et al.
(2013), ch. 7). But, in our setting, the data controller
has some control over the representation distribution
via t. In fact, the approximation A*(¢) — A, (t) de-
pends on how much information in X is encoded by
t in Z. If t randomly maps X to Z, the data con-
troller can certify pu; with 0— demographic parity, but
1 is useless to downstream data processors. The data
controller trades-off representation demographic par-
ity with information by learning an encoder t : X — 2
and a decoder function g : Z — X that solves the fol-
lowing fair empirical representation problem

I?in Lrec(g,t,Dy) subject to A, (t) <6, (4)
g

where § > 0 is a pre-specified demographic parity
threshold and L,.. is a reconstruction loss.

2.2 Necessary Condition

This section identifies a necessary condition on ¢ for
an empirical demographic parity certificate to approx-
imate A*(t) well. The necessary condition bounds the
amount of information measured by the x? mutual in-
formation between feature X and representation Z:

— m(Z|X =2)\?
,Ut(z) ) ‘ (5)

[2(X,Z) 2 E,E. (“t(z)

The x? mutual information relies on a statisti-
cal distance, the y%—divergence — x*(Z,Z|X) =
[.(dP(Z|X)/dP(Z) — 1)* dP(Z) - to average the dis-
tance between Z and Z|X = z for x € X. It has been
used in information theory to estimate the information
that flows through a neural network (see Goldfeld et al.
(2019)). In the context of fair representation learning,
we find that empirical demographic parity certificates
cannot provide good approximations of the representa-
tion’s true demographic parity if the x? input-output
mutual information is large:
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Theorem 2.1. Let n > 1. Consider a representation
function t : X — Z. Then, for all test function f, €
Fn

A= Al 20 (1= s )

Jo

(6)

where the suppremum on the left hand side is taken

over all distributions p over X xS and the suppremum

on the right hand side is taken over all distribution p,
over X.

sup Ep,
o

Encoding more information of X in Z exposes the
representation distribution p; to mirroring distribu-
tions over X with heavy tails. Intuitively, u; is a
(possibly infinite) mixture of conditional distributions
P(Z|X = x) for x € X and I,2(X, Z) measures an
average distance between those conditional distribu-
tions. As I,2(X, Z) increases, the conditional distri-
butions P(Z|X = x) become far apart for a growing
mass of x € X. It generates a representation distribu-
tion too complex for a finite sample to represent it and
for an auditor f, to detect all the correlations between
representation and sensitive attribute.

Theorem 2.1 implies a trade-off between the informa-
tion passed from features to representations and the
approximation rate of empirical demographic parity
certificates:

Corollary 2.1. With the notations from Theorem 2.1,

o If fing__ sup Ep, |A*(t) — A(fn,t)] < €, then
nop

n€
for all distributions over the feature space X,
Le(X,7) < L

1—eg

o [f there exists a distribution over X such that

IX (X7Z) :3)
sup A (7)) — A ’ 1 > 1 A
£ EFn u () ( ns )— ( )

For the approximation rate of A*(t) — A(f,,t) to be
O(n=*) for some s > 0, it is necessary for the x? mu-
tual information between feature and representation
to be bounded above by O(n/(sln(n)) for all distri-
butions over X. On the other hand, representation
functions ¢ for which the x? mutual information is in-
finite for some distribution over the features space,

never guarantee a meaningful approximate rate be-
tween A*(t) and A, (fn,t).

Examples: The results in corollary 2.1 imply that
empirical certificates of representation distributions in-
duced by many common encoders do not have mean-
ingful approximation rates:

e Suppose that t is injective from R” to R%. Then,
there exists a distribution over X x {0,1} such

that I,2(X,Z) = oo and thus, A*(t) = 1, but
A(fn,t) = 0 for all auditing functions f,.

e Suppose that |{t(z)|z € X}| > n/(In(n))®, for
some « < 1. Then, the approximation rate of
A(fn,t) for all auditing functions f, is w(n™*)
for any s > 0.

2.3 Sufficient Condition

This section shows that a finite x? mutual information
between feature and representation for all distributions
over X is a sufficient condition for empirical demo-
graphic parity certificates to converge at a O(n~'/?)
rate.

Theorem 2.2. Let n > 1. Consider a representation
mapping t : X — Z. Then, for all distribution u over
X x {0,1} with where ng = |{i|s; = s}| and for all
fn € Fn

L2(X,Z|S = s)
N

Ep, |A*(1) ~ Alfut) <2 Y

s=0,1

A finite x? mutual information between X and Z im-
plies that p(Z) and p(Z|X) are close in the sense of
the x2 divergence and thus by sampling representa-
tions from P(Z]X), we have a non-zero probability to
sample all the atoms that can form the representation
distribution p; and thus to detect all the dependence
between representations and sensitive attributes.

2.4 %2 - versus Classic Mutual Information

Our results in Theorems 2.1 and 2.2 highlight a con-
nection between x? mutual information and approxi-
mation rate of empirical certificates. A similar result
cannot be obtained with the classic mutual informa-
tion Igp (X, Z) that is based on Shannon entropy.

To demonstrate this point, we construct the follow-
ing distribution pu over X x {0,1}. Features are uni-
formly distributed over [0,1] and ¢(z) = 4 for x €
[1/i,1/(i+1)) and ¢ > 0. For each i > 0, the sensitive
attribute is constant over [1/i,1/(i + 1)) and equal to
1 with probability 1/2. We show in the appendix that
Isn(X,Z) <In(2)/2+2, but I,2(X, Z) = cc. Since the
sensitive attribute S is a deterministic function of the
representation Z = t(X), A*(t) = 1. But, for a finite
sample of size n, Ep, A(fn,t) is zero for all auditors
fn, despite Isp (X, Z) < oco.

3 Smooth and Fair Representations

The previous section suggests restricting the fair rep-
resentation problem (4) to encoder ¢ for which the
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x?—mutual information between feature and represen-
tation is finite for all distributions over X'. Here, we
meet this condition by adding an additive Gaussian
white noise (AGWN) channel to the encoder. For
any representation mapping ¢t : X — Z, we denote t,
the convolution of ¢ with a Gaussian noise N'(0, 021,):
t,(X) = t(X) + noise, with noise ~ N(0,0%1y).

3.1 Convergence of Smoothed Empirical
Certificate

The convolved representation Z, = Z 4+ noise gen-
erated by t, has a distribution denoted pisss. The
convolution smoothes the representation distribution
by making P(Z,|X) a Gaussian whose support covers
the support of the representation distribution P(Z,)
and thus, guarantees that samples from different con-
ditional distributions P(Z,|X = z) are not too far
away.

Theorem 3.1. Let 0 > 0 and n > 1. For all repre-
sentation mapping t : X — Z and for any distribution
over X, if |[t||oo £ supgex |[t(2)|]2 , then for s € {0,1}

2
L2 (X, Z|S =s) <exp (HtHQOO) < oo0. (8)
o

Therefore,
inf  sup Ep, [A*(ts) — Alte, fn)]

fn€Fn o

112 _ _ (9)
2o (1) 17,

The upper bound in Theorem 3.1 does not depend on
the dimensions d of the representation space Z, but
only on n~'/2 and on the ratio ||t||o0 /o that can be in-
terpreted as a signal-to-noise ratio in the AGWN chan-
nel. Larger values of ||¢||oo increase the variance of Z
and thus require larger noise ¢ to keep the conditional
distribution P(Z,|X) close to the distribution P(Z,).
The bound is only meaningful if ||¢||cc < oo, which
holds, for example, if the features space is bounded
and ¢ is a continuous mapping.

Both Theorems 2.2 and 3.1 rely on a plug-in auditor
that first estimates the class-conditional densities u?,
and pj,,. From a sample D, = {(x;,s;)}", we con-
struct an empirical estimate of p., over Z x {0,1}
as

1 n
o (2,5) = — > P(X =) (10)
i=1,s8,=s
with P(.|X = ;) ~ N (t,(x;),014). Our plug-in audi-
tor fPI%9 compares fi o (2,0) t0 fin o (2,1):
f,’;lug(z) _ {0 if pin,o(2,0) > pino(2,1)

. (11)
1 otherwise.

Since we obtain the upper bounds in Theorems 2.2 and
3.1 with the plug-in auditor fP!“9 we can guarantee
that the representation demographic parity is within
O(n~1/2) of the empirical certificate signed by fri*s.

3.2 Learning Fair Representation

In practice, the representation mapping ¢t and the
decoder g are modelled by neural networks. An
AGWN channel is added to t to learn a smoothed
representation distribution p.,. The data controller
trades off minimizing a reconstruction loss Ly..(t, g) =
E,[lyec(t, g, 2)] with minimizing demographic disparity
Lpp(t) = A*(t,). With a sample D,, = {(z;, ;) } 4,
the data controller uses the plug-in auditor and solves
the empirical minimization problem as

in =3 lpeo(t,0,0) + A, 1), (12)
where A controls for the strength of the fairness con-
straint imposed on the representation distribution.
The minimization problem in (12) differs from pre-
vious work on fair representation learning because of
the noise added to Z and thus, provides theoretical
guarantees that A(fP"9.t,,) approximates A*(t,) at
a rate O(n=1/2),

Moreover, the empirical demographic parity certifi-
cate can be computed without modelling the audi-
tor by an additional adversarial neural network. This
is because we can use our empirical estimates (10)
of the class-conditional densities to estimate the pos-
terior distribution 7n(z,s) = P(S = s|Z = z) as
nn(zas) = /’Ln,U(Z‘S = S)/Mn,a(z)a where Mn,o(z) =
Pno(2,1) + pino(2,0). Since A*(t) relates to the
balanced error rate of predicting the sensitive at-
tributes (see proof of 2.2 or Feldman et al. (2015)),
we can write A*(t) = Lpp(ue,o), where Lpp (o) =
E.p, . [In(z,1)=n(2,0)|] (see Zhao et al. (2013)). Our
approach relies on two results: (i) for any finite sam-
ple of size n, Lpp(iin, o) approximates well £Lpp(tiseo);
(ii) Lpp(tn,s) can be estimated efficiently by Monte-
Carlo estimation. The first observation uses the fol-
lowing result, which is a consequence of Theorem 3.1

Theorem 3.2. Let ¢ > 0 and n > 1. For all repre-
sentation mappingt: X — Z

sup Ep, |Lpp(piixe) — LDP(tin,o)]
m

/12 B B (13)
< 2exp <||2g;o> (ng Y2y ny 1/2)~

Therefore, we can use Lpp(fin,s) as an approximation
of Lpp(pss). That is, in place of y; ,, we propose to
use the distribution fi,, -, for which 7, is the posteri-
ori probability. Moreover, £Lpp (i, ») can be efficiently
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Figure 2: Generalization of empirical demographic parity certificates for the Swiss Roll data. Dots are colored

by reconstruction loss.

approximated by Monte Carlo integration. For a sam-
ple D, = {(zi,yi)}iey, 1S, and pl , are mixtures
of d-dimensional Gaussians. Thereby, we approximate
EDP(Mn,(r) with

n m

1
% ZZ E€[|77n(zij7 1) - nn(zijvo)‘v
i=1 j=1

£DP (/’Ln,a) =

(14)
where z;; = t(z;) + noise;;, {noisej;} is a vector of
n x m draws from a d-dimensional Gaussian N (0, 1)
and m is the number of draws per sample point.
Lpp (#n,o) is an unbiased approximation of Lpp(tin,o)
and achieves a Mean-Squared-Error (MSE) of order
O(n=tm™1) (see proof of Theorem 4 in appendix).

To sum up, the data controller learns (¢,g) by mini-
mizing the following combined empirical loss

1 4
ragl - XZ: lrec(t, g, %) + App(tin,o)- (15)
Practical implementation. We minimize the loss
(15) by stochastic gradient descent. Each mini-batch
is split in half: the first half is used to estimate p,, » as
in (10); the second half to estimate the loss in (15). At
the end of training, we compute a leave-one-out bal-
anced error rate BER(fP!9) for the plug-in auditor
on both a test and train samples and infer an empir-
ical certificate as A(fPlU9,t) = 1 — 2BER(fP!"9) (see
Feldman et al. (2015)).

Choice of 0. The Gaussian noise ¢ is an hyper-
parameter chosen so that empirical certificates es-
timated on train and test data are similar. To
set the value o, we divided the data in train-
ing/validation/test sets. The test set is used for evalu-
ating the disparity of downstream classifiers. The val-
idation set is used to tune the value of o as follows: we
start with a small value of o (¢ =~ 0.005) and increase it
until the value of empirical certificate A(fP/9, 1) esti-
mated by our plug-in auditor fP!“9 on the training set
exceeds (up to a small tolerance factor 0.025) the one

estimated on the validation set. Therefore, we choose
o so that the plug-in auditor generalizes well to unseen
data.

4 Experiments

The objective of this experimental section is to demon-
strate that (i) our AGWN fair representation method,
unlike competitive approaches, generates robust fair-
ness certificates that generalize to unseen data; and,
(ii) it is competitive with existing fair representation
methods in terms of fairness-accuracy trade-off. All
details related to dataset and neural network architec-
tures are in the appendix.

Datasets. We first consider two synthetic datasets.
Our first synthetic data consists of two 3D Swiss rolls:
one for S = 0 and one shifted South-West for S = 1.
Our second synthetic data is a variant of the DSprites
dataset (Matthey et al. (2017)) that contains 64 by
64 black and white images of various shapes (heart,
square, circle). The DSprites dataset has six indepen-
dent factors of variation: color (black or white); shape
(square, heart, ellipse), scales (6 values), orientation
(40 angles in [0, 27]); x- and y- positions (32 values
each). We adapt the sampling to generate a source of
potential unfairness as in Creager et al. (2019).

We also apply our approach of fair representation
learning with a AGWN channel to two fair learn-
ing benchmarks, Adults’ and Heritage?. The Adults
dataset contains 49K individuals and includes infor-
mation on 10 features related to professional occupa-
tion, education attainment, race, capital gains, hours
worked and marital status. The sensitive attribute is
the gender to which individuals self-identify to.

The Health Heritage dataset contains 220K individ-
uals with 66 features related to age, clinical diag-
noses and procedure, lab results, drug prescriptions

"https://archive.ics.uci.edu/ml/datasets/adult
https:/ /foreverdata.org/1015/index.html
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Figure 3: Generalization properties of empirical demographic parity certificates for DSprites. See Figure 2.

and claims payment aggregated over 3 years. The sen-
sitive attribute is the gender to which individuals self-
identify to.
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Figure 4: Generalization of empirical demographic
parity certificates for Adults and Heritage.

Effect of noise on certificate reliability. We train
an encoder-decoder mapping (¢,g) with an increas-
ing amount of Gaussian noise; estimate an empirical
A(fP'9.t)—demographic parity certificate; and then,
test whether A(fP'%9 t) is larger than the demographic
disparity A(fproc,t) of different downstream proces-
sors fproc that predict sensitive attributes from new
samples of the representation distribution. Empirical
certificates are robust if A(f29.t) > A(fproc,t) for
any of the processors fproc-

All datasets are split into a train set for training the
auto-encoder (t,g); two test sets to first train down-
stream processors and then evaluate their accuracy.

Comparative adversarial methods. We bench-

mark the use of an AGWN channel with approaches in
fair representation learning based on adversarial audi-
tor trained with (i) a cross-entropy loss (AdvCE, Ed-
wards and Storkey (2015)); or, with (ii) a group L1 loss
(AdvL1, Madras et al. (2018)). The processors have
same width and depth as the adversarial auditors.

5 Results and Discussion

Certificate reliability. Figure 2 and Figure 3 pro-
vide a comparison of AdvCE, AdvL1 and AGWN
with respect to the generalization of the empirical de-
mographic parity certificates for the Swiss roll and
Dspirites datasets, respectively. Each dot shows em-
pirical demographic parity certificate A(f,,t) for an
encoder t € {AGW N, AdvCE, AdvL1} against an es-
timate of the disparity A(fproc,t) of downstream pro-
cessors predicting sensitive attributes.

Figure 2 and Figure 3 show that the AGWN channel
improves how empirical certificates approximate the
demographic parity of the representation distribution.
As the Gaussian noise o increases from o = 0.005 to
o = 0.05, the A(fP"9 t) empirical certificate upper
bounds the demographic disparity A(fproec,t) for any
of the downstream processors we built, regardless of
their complexity. Moreover, the variance of A(f,,t) —
A(fproe,t) decreases as the Gaussian noise increases.
This is consistent with the upper bound in Theorem
3.1, which decreases with smaller signal-to-noise ratio
|[tl]o /o

Comparative adversarial approaches. Figure 2
and Figure 3 also show that for both comparative
methods, the empirical certificate A(fyq40,¢) estimated
by the adversarial auditor underestimates significantly
the disparity obtained by downstream processors on
fresh samples from the representation distribution.
For example, for the Swiss Roll dataset, 18.2% of near
zero empirical certificates (A(fadv,t) < 0.1) do not
preclude a processor’s disparity larger than 0.3.

Real world data. In Figure 4, we compare again
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Figure 5: Reconstruction loss v.s. worst disparity attained by downstream processors.

disparity of downstream processors against empirical
certificate on Adults and Heritage. Certificate’s relia-
bility is measured by the position of the scatter plot
relative to the 45° line. Figure 4 confirms that (i) the
AGWN channel is sufficient for empirical certificates
to upper-bound the demographic disparity obtained by
various downstream processors; and, (ii) that compar-
ative methods (AdvCE, AdvLl ) generate empirical
fairness certificates that do not bound the disparity of
downstream processors.

Better Fairness/Accuracy

Accuracy

AGWN
s AdvCE
* AdvLl

Worse Fairness/Accura

0100 o125
Demographic Disparity

Figure 6: Accuracy-fairness trade-off.

Accuracy-fairness trade-off. For the Swiss Roll
dataset (Figure 2), AGWN’s reliability appears to
come at the cost of a larger reconstruction loss for
a given empirical fairness certificate. However, it is
not the case for DSprites. Moreover, a fair comparison
across methods requires to measure reconstruction loss
against the worst disparity attained by a downstream
processor, i.e. the upper bound of the point clouds in
Figure 2 and 3. Figure 5 plots the 95" quantile of the
demographic disparity of downstream processors for
a given reconstruction loss. It shows that across all
datasets, for a given L2—loss, the worst demographic
disparity of downstream processors is lower when the
representations are generated by AGWN than AdvCE
or AdvL1. Moreover, for Swiss Roll and Adults, larger
reconstruction losses (> 0.5 for Swiss Roll; > 0.25 for
Adults) with AGWN correspond to low levels of pro-
cessors’ disparity that are never reached by compara-
tive methods.

To explore further how the AGWN channel affects
the information contained in the representation, we
compare the demographic disparity and the accuracy
of downstream processors that predict a task label
Y. We retrain the three fair learning methods — Ad-
vCE, AdvL1 and AGWN - on the Adults dataset but
leave out the income feature. We map test samples
into their corresponding representations and predict
whether their income is over 50K. In Figure 6, we
sweep the parameter space for different values of the
fairness constraint A in (12). Each dot compares the
accuracy and the demographic disparity of neural net-
works of various depth and width. The higher the
accuracy of downstream processors for a given level
of disparity, the better the fairness-accuracy trade-
off. We can draw two conclusions from this experi-
ment. First, for level of disparity between 0.10 and
0.20, AGWN offers the same fairness-accuracy trade-
off as AdvL1 or AdvCE. Second, our AGWN method
is the only one for which varying the coefficient on
the fairness constraint allows to systematically reach
low level of disparity (< 0.1). Consistent with Fig-
ure 5, very few simulations of AdvCe and AdvL1 lead
to the demographic disparity of downstream proces-
sors to be less than 0.075, regardless of the strength
of the fairness penalty used during the training of the
autoencoder. Although the AGWN channel limits the
maximum amount of information that is transferred
from the data to the representation (see Cover and
Thomas (2012)), it also allows for a better empirical
approximation of demographic parity and thus helps
guiding the representation mapping toward the correct
fairness-information trade-off.

6 Conclusion

This paper investigates whether a data controller could
generate representations of the data with fairness guar-
antees that would hold for any downstream proces-
sor using samples from the representation distribution.
For demographic parity certificate to approximate well
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the demographic parity of all future data processors
it is necessary and sufficient to bound the x? mutual
information between feature and representation. We
meet this condition by adding an AGWN channel while
learning a fair representation of the data.

Our work opens promising research avenues in fair rep-
resentation learning. An AGWN channel is only one of
many approaches to bound the x2 mutual information
between feature and representation and ensure the re-
liability of the learned representations.
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