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A Background: Variational
Autoencoder

VSAE is built upon the variational autoencoder
(VAE) (Kingma and Welling, 2014; Rezende et al.,
2014). Latent variable models attempt to model p(x, z)
over observations of x. However, the marginal like-
lihood p(x) = [ p(x|z)p(z)dz is computationally in-
tractable. By introducing a parametric proposal dis-
tribution ¢ (z|x), a common strategy to alleviate the
issue is to maximize an evidence lower bound (ELBO)

of p(x):

Lo,¢(x) = Eyg, (a)x) [l0g po(x|2)] — Dk1(qe(z/x)|Ip(2))

Conditional Log-Likelihood KL Regularizer

VAE realizes inference network (encoder) ¢g(z|x) and
generative network (decoder) pg(z|x) with deep neural
networks, and uses a standard Gaussian as the prior
p(z). Thus, Lg,4(x) is optimized over all training data
w.r.t the parameters {6, ¢} using backpropagation with
reparameterization trick.

B Derivation: Expected ELBO on x,

The unobserved x,, makes the complete log-likelihood
intractable and a common approach is to marginalize
over x, and directly model log p(x,, m). To model the
dependence between x,, and m, we do not ignore xy
using marginalization. Instead, we want to maximize
log p(x0, m|0, €) through the lens of modeling complete
log-likelihood log p(xo, X4, m|@, €), where 8 and € are
parameters of data and mask generative models.

By introducing a distribution ¢(x,) defined over the
unobserved attributes, for any choice of g(xy), we can
decompose the observed log-likelihood:

log p(xo, m|6,€) = (11)

/Gl,e(xoa Xu7 m) + DKL(Q(XU)||p(XU|XO7 1’1’17 07 6))
where the lower bound
0500, m) = [ 0%0) 05 (X, Xm0, €}

- / 4(x%) 10g ¢(xu) e

o[ step: fix 0, € as 8, €*, so the lower bound

£g*,e* (Xo, Xy, M) = (12)
log p(x0, m|0%, €") — Dk1,(q(%xu)||p(Xu X0, m, 0, €))

Suppose the ELBO is tight and we have the
generative model p(xe,Xy,m,z) that can model

the dependency between x,, X, and m. As
Dxkr, > 0, the maximum is obtained if the pro-
posal distribution ¢(xy) = p(xXulXe,m,0% €*) =
[ p(z]x0, m, 6%, €*)p(xu|m, z, 07, €*)dz.

oM step: fix Q(Xu) as q*(Xu) = p(xu|xo,m,0*,e*),
and maximize the lower bound w.r.t parameters:

! (%o, Xu, m) = / 0" () 108 D(xu, Xo. M6, €)dxa

- / o) log g (ku)dxe  (13)

Let L .4,0,e(Xo, Xu, m) denote the ELBO derived in
Eq. (4) that lower bounds the complete data log-
likelihood, log p(xy, X0, m|0,€) > L 4 0.e(Xos Xu, M)
where ¢, 1 are parameters of proposal distribution of
variational inference. We have

/q*(xu) log p(Xu, X0, m|0, €)dxy,

Z/q*(xu)£¢7¢7g7e(xo,xu,m)dxu =L (14)

Therefore,
log p(x0, m|@,€) > L" > L' — const (15)

The objective is to maximize the expected lower bound
L', which lower bounds the lower bound £ + const.

C Model Architecture

In all models, all the layers are modeled by multi-
layer perceptrons (MLPs). To fairly compare, we use
author’s public code and all other baselines are im-
plemented with same backbone networks and at least
as many parameters as our method. Basically, the
attributive proposal networks take single attribute of
data vector as input to infer the attributive proposal
distribution; the collective proposal network takes the
observed data vectors and mask vector (concatenation
is used here) as input to infer the collective proposal
distributions. The input vector to collective proposal
network should have consistent dimension for the neu-
ral network, here we concatenate all attribute vectors
and replace the unobserved attribute vectors with stan-
dard normal noise. Our implementation is based on
PyTorch. All experiments were conducted on one Tesla
P100 and one GeForce GTX 1080.

C.1 Encoders

Attributive proposal networks. In UCI repository
experiment, the attributive encoders are modeled by
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3-layer 16-dim MLPs for numerical data and 3-layer
64-dim MLPs for categorical data, all followed by
Batch Normalization and Leaky ReLU nonlinear
activations. In MNIST+MNIST experiment, the
attributive encoders are modeled by 3-layer 128-dim
MLPs followed by Leaky ReLU nonlinear activations.
We set the latent dimension as 2-dim for every
attributes in UCI repository experiments and 256-dim
for every attribute in other experiments.

Collective proposal networks. In general, any in-
ference network capable of domain fusion (Morency
et al., 2011) can be naturally used here to map the ob-
served data x, and the mask m to the latent variables
z. One may also use techniques like in (Ma et al., 2019)
to input a set of attributes. In this paper we simply
use an MLP architecture, whose input is the complete
data vector with unobserved attributes replaced with
noise. So the collective encoder dimension is consistent
for all data instances.

C.2 Decoders

We feed the aggregated latent variable to the mask
decoder first. Then the output of mask decoder will be
an extra condition for data decoders.

Mask Decoder.

UCI datasets: Linear(latent-dimension, 16)—
BatchNorm1d(16)— LeakyReLU— Linear(16, 16)—
LeakyReLU— Linear(16, 16)— LeakyReLU— Lin-
ear(16, mask-dimension)— Sigmoid,;

multi-modal datasets: Linear(latent-dimension, 16)—
BatchNorm1d(16)— LeakyReLU— Linear(16,16)—
LeakyReLU— Linear(16, 16)— LeakyReLU— Lin-
ear(16, mask-dimension)— Sigmoid,;

Data Decoder.

UCT data decoder: Linear(latent-dimension, 64)—
BatchNorm1d(64)— LeakyReLU— Linear(64)—
Linear(64, 64)— Linear(64, data-dimension);
MNIST+MNIST data decoder: Linear(latent
dim., 128)— BatchNorm1d(128)— LeakyReLU—
Linear(128,128)— Linear(128, 128)— Linear(128,
data-dimension)

D Training and Baselines

Training. We use Adam optimizer for all models. For
UCI numerical, mixed and CMU-MOSI experiment,
learning rate is le-3 and use validation set to find a best
model in 1000 epochs. For UCI categorical experiment,
learning rate is le-2 and use validation set to find a

best model in 2000 epochs. For MNIST+MNIST, Fash-
ionMNIST+label experiments, learning rate is le-4 and
use validation set to find a best model in 1000 epochs.
For evaluation, we evaluate numerical data by NRMSE,
categorical data by PFC, images by MSE, labels by
PFC, multimedia features by MSE. Initially we train
the model for some (empirically choose 100) epochs
without estimating the conditional log-likelihood of x,
to obtain a good approximated posterior. And then
first feed the partially-observed data to the model and
generate 100 samples of the unobserved attributes Xy;
then feed the same batch for another pass and estimate
the conditional log-likelihood with observed x,, m and
generated Xy.

Baselines. The baselines did not cover all types of
experiments we consider. For example, HIVAE (Naza-
bal et al., 2020) reported experiments only on tabular
data and MVAE (Wu and Goodman, 2018) reported
experiments on multi-modal data. Therefore, we re-
implement those models to fit our experiments if they
do not have relevant experimental setups. All the
re-implemented baselines use the same backbone archi-
tecture and the total number of parameters same as (or
more than) our method. All the deep latent variable
model baselines have same size of latent variables. In
the setting of AE/VAE, the input is the whole data
without the mask; In CVAE w/ mask, the encoder and
decoder are both conditioned on the mask vector.

We also include additional baselines outside of deep
latent variable models as in Table 6.

E Additional Experimental Results

E.1 TUCI datasets

Please refer to Table 6 for results on more base-
lines MissForest (Stekhoven and Biihlmann, 2011),
MICE (Azur et al., 2011), GAIN (Yoon et al., 2018)
and MisGAN (Li et al., 2019) on the datasets reported
in main paper. We include more results on mixed
datasets for the DLVM baselines (refer to Table ?7?)
and non-MCAR missing mechanisms (refer to Table 5).
In Table 5, we also include MCAR baselines under
non-MCAR setting to get a sense of quantitative im-
provement.

E.2 multi-modal MINIST dataset

We pair digits as {(0,9),(1,8),(2,7),(3,6),(4,5)}. The
training/test /validation sets respectively contain
23257/4832/5814 samples. For more quantitative re-
sults, please refer to Table 7. Fig. 5 illustrates more
qualitative imputation performance, and Fig. 6 illus-
trates generation from parameter-free prior. Fig. 7
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Method MAR NMAR
Yeast VAE 0.485 £ 0.004 0.462 £ A
CVAE w/ mask  0.483 +0.001 0.443 + A
HI-VAE 0.479 + 0.002 0.434+ A
MIWAE 0.475+0.005 0.456 + 0.036
VSAE (ours) 0.472 +0.006 0.425 4+ 0.007
Whitewine VAE 0.3845 £ A 0.3727 £ A
CVAE w/ mask 0.3841 £ A 0.3726 + A
HI-VAE 0.3840 £ A 0.3724 £ A
MIWAE 0.3834 + A 0.3723 £ A
VSAE (ours) 0.3825 £+ A 03717+ A

Table 5: Addtional Non-MCAR Data Imputa-
tion. We show mean and standard deviation of
NRMSE over 3 independent trials, lower is better.
MCAR baselines are included to get a sense of quanti-
tative improvement. Single imputation of 1000 impor-
tance samplings is used by all models. A < 0.0005.

shows imputation results from multiple independent
samplings given observed attribute.
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Figure 5: Imputation on MNIST+MNIST. Top,
middle and bottom rows visualize observed attribute,
unobserved attribute, and the imputation of unob-
served attribute from VSAE, respectively.

L~
o oo
<
)

\
D

~
\J
D

V|~ W
oo | N
Ol~I~|*|Ww
-2 1 \:\I\C\

~Nlolwlvl e
A I BN )
NlE NSNS
sijnjoojin|oe
N
c

piIolw|lo|~
Slwelen]e |-
| &)
|
~lesjlelWwW|O
Col B I )

Ll C
N9

C
<

Figure 6: Generation on MINIST+MNIST. Gener-
ated Samples w/o conditional information. As shown,
the correspondence between attributes (pre-defined
pairs) are preserved while generation.

Another synthetic multi-modal dataset is to pair
one digit in MNIST with a same digit in SVHN,
which results in more heterogeneity. is The train-
ing/test/validation sets contain 44854,/10000/11214
samples. We synthesize mask vectors over each modal-
ity by sampling from Bernoulli distribution and fixed
after synthesis process. All original data points are only
used once. Please refer to Table 8 for the attribute-wise
imputation performance; Table 9 for the imputation
performance under different missing ratios.

E.3 Image+label experiment

See Table 10 for more results.
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Figure 7: Imputation from multiple independent
sampling from selected latent space. The left-
most digits are observed images in ground truth, and
the right eight digits are imputations of corresponding
unobserved digits.

E.4 Multi-modal experiment

See Table 11, we include additional experiments on
multi-modal datasets to demonstrate the general effec-
tiveness of our model. We choose the datasets following
MVAE (Wu and Goodman, 2018) and MFM (Tsai et al.,
2019). We choose CMU-MOSI and ICT-MMMO (Tsai
et al., 2019) and use the publicly released features of
each modality. All the numbers are calculated on the
feature level. CMU-MOSI (Zadeh et al., 2019) is a
collection of 2199 monologue opinion video clips an-
notated with sentiment. ICT-MMMO consists of 340
online social review videos annotated for sentiment.
We train all the models using Adam optimizer with
learning rate of le-3.



Variational Selective Autoencoder: Learning from Partially-Observed Heterogeneous Data

Phishing Mushroom Yeast Whitewine Heart (mixed)
Attribute type categorical categorical numerical numerical categorical numerical
MissForest 0478 £ A 0419+ A 0424 + A 0.3762 + A 0.487 +0.026 0.634 + 0.005
MICE 0.396 + A 0574+ A 0521+ A 0.4280 + A 0.616 + 0.026 0.749 £+ 0.005
GAIN 0.301 £0.001  0.541 £ 0.006 0.583 £ 0.008 0.3730 £ A 0.708 + 0.021 0.661 + A
MisGAN 0.321 £0.005  0.533 £ 0.009 0.483 £ 0.007 03725+ A 0.538 £ 0.017 0.643 £ 0.019
VSAE (ours) 0.237+ A 0.416 £ 0.009 0.419+0.008 0.3719+ A 0.482+0.014 0.579+0.015

Table 6: Addtional baselines of MCAR Data Imputation on UCI datasets. We consider three types—
categorical, numerical and mixed tabular datasets. Missing ratio is 0.5 on all datasets.We use the public code of
GAIN/MisGAN, package missingpy for MissForest, and package fancyimpute for MICE. A < 0.0005.

0.3 0.5 0.7
AE 0.2124 £ 0.0012 0.2147 £ 0.0008 0.2180 £ 0.0008
VAE 0.1396 + 0.0002 0.1416 + 0.0001 0.1435 £+ 0.0006

CVAE w/ mask
MVAE
HI-VAE

0.1393 £ 0.0002
0.1547 £ 0.0012
0.1464 £+ 0.0024

0.1412 £ 0.0006
0.1562 £ 0.0003
0.1482 4+ 0.0013

0.1425 £ 0.0012
0.1579 £ 0.0006
0.1497 + 0.0016

VSAE 0.1371 £ 0.0001 0.1376 £0.0002 0.1379 + 0.0001

Table 7: Data Imputation on MNIST-+-MNIST under different missing ratios. Missing ratio is 0.3, 0.5
and 0.7. Evaluated by sum error of two attributes. We show mean and standard deviation over 3 independent
runs. Lower is better.

MNIST-MSE/784 SVHN-MSE/3072 Sum error

AE

VAE

CVAE w/ mask
MVAE

HI-VAE

0.0867 £ 0.0001
0.0714 £ 0.0001
0.0692 £ 0.0001
0.0707 = 0.0003
0.0733 £ 0.0013

0.1475 + 0.0006
0.0559 £ 0.0002
0.0558 £ 0.0003
0.0602 £+ 0.0001
0.0611 £+ 0.0001

0.2342 £+ 0.0007
0.1273 £ 0.0003
0.1251 £+ 0.0005
0.1309 4= 0.0005
0.1344 £ 0.0015

VSAE 0.0682 +0.0001 0.0516 £0.0001 0.1198 £+ 0.0001

Table 8: Data Imputation on MNIST-+SVHN. Missing ratio is 0.5. Evaluated by MSE. We show mean and
standard deviation over 3 independent runs. Lower is better.

0.3 0.5 0.7
AE 0.1941 £ 0.0006 0.2342 4+ 0.0007 0.2678 + 0.0012
VAE 0.1264 4+ 0.0001 0.1273 £ 0.0003 0.1322 £+ 0.0005
CVAE w/ mask  0.1255 £ 0.0002 0.1251 £ 0.0005 0.1295 £ 0.0006
MVAE 0.1227 £ 0.0019 0.1202 £0.0006 0.1213 £+ 0.0003
HI-VAE 0.1267 £ 0.0018 0.1279 £ 0.0003 0.1233 £+ 0.0004
VSAE 0.1217 +0.0002 0.1198 +£0.0001 0.1202 + 0.0002

Table 9: Data Imputation on MNIST+SVHN under different missing ratios. Missing ratio is 0.3, 0.5
and 0.7. Evaluated by sum error of two modalities. We show mean and standard deviation over 3 independent
runs. Lower is better.
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FashionMNIST

MNIST

image (MSE) label (PFC)

image (MSE)

label (PFC)

AE

VAE

CVAE w/ mask
MVAE

HI-VAE

VSAE

0.1104 £0.001  0.366 = A 0.0700 £ A 0.406 + A
0.0885 £ A 0411+ A 0.0686 £ A 0.406 £ 0.01
0.0887 + A 0.412+ A 0.0686 + A 0.419+ A

0.1402 £ 0.002 0.374 £0.07 0.2276 4+ 0.002 0.448 + A
0.0875+ A 0.365 £ A 0.0788 4+ 0.004 0.409 + A
0.0874 + A 0.356 = A 0.0681 + A 0.397+0.01

Table 10: Data Imputation on Image-label datasets.. Missing ratio is 0.5. Image and label attribute are
evaluated by MSE and PFC respectively. We show mean and standard deviation over 3 independent runs (lower

is better). A < 0.01.

Acoustic-MSE Visual-MSE  Textual-MSE
AE 0.1211 £ 0.0013 0.00502 + A 0.366 4+ 0.001
VAE 0.0407 £ 0.0005 0.00500 £ A 0.293 4+ 0.001
CVAE w/ mask 0.0396 +0.0042 0.00492+ A  0.295 + 0.001
MVAE 0.0836 = 0.0357 0.00485 + A  0.405 £ 0.002
HI-VAE 0.0644 + 0.0024 0.00571 £ A  0.385 +0.005
VSAE 0.0381 +=0.0027 0.00485 + A 0.243 + A

Table 11: Data Imputation on ICT-MMMO. Missing ratio is 0.5. Evaluated by MSE of each attribute. We

show mean and standard deviation over 3 independent runs (lower is better). A < 0.0001.



