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Abstract

We present a unified framework for analyzing
local SGD methods in the convex and strongly
convex regimes for distributed/federated
training of supervised machine learning mod-
els. We recover several known methods as
a special case of our general framework, in-
cluding Local-SGD/FedAvg, SCAFFOLD, and
several variants of SGD not originally designed
for federated learning. Our framework cov-
ers both the identical and heterogeneous data
settings, supports both random and determin-
istic number of local steps, and can work with
a wide array of local stochastic gradient es-
timators, including shifted estimators which
are able to adjust the fixed points of local
iterations for faster convergence. As an appli-
cation of our framework, we develop multiple
novel FL optimizers which are superior to
existing methods. In particular, we develop
the first linearly converging local SGD method
which does not require any data homogeneity
or other strong assumptions.

1 Introduction

In this paper we are interested in a centralized dis-
tributed optimization problem of the form

min
x∈Rd

f(x) = 1
n

n∑
i=1

fi(x), (1)

where n is the number of devices/clients/nodes/workers.
We assume that fi can be represented either as a) an
expectation, i.e.,

fi(x) = Eξi∼Di [fξi(x)] , (2)
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where Di describes the distribution of data on device i,
or b) as a finite sum, i.e.,

fi(x) = 1
m

m∑
j=1

fij(x). (3)

While our theory allows the number of functions m to
vary across the devices, for simplicity of exposition, we
restrict the narrative to this simpler case.

Federated learning (FL)—an emerging subfield of ma-
chine learning (McMahan et al., 2016; Konečný et al.,
2016; McMahan et al., 2017)—is traditionally cast as
an instance of problem (1) with several idiosyncrasies.
First, the number of devices n is very large: tens of
thousands to millions. Second, the devices (e.g., mobile
phones) are often very heterogeneous in their compute,
connectivity, and storage capabilities. The data defin-
ing each function fi reflects the usage patterns of the
device owner, and as such, it is either unrelated or
at best related only weakly. Moreover, device own-
ers desire to protect their local private data, and for
that reason, training needs to take place with the data
remaining on the devices. Finally, and this is of key
importance for the development in this work, commu-
nication among the workers, typically conducted via a
trusted aggregation server, is very expensive.

Communication bottleneck. There are two main
directions in the literature for tackling the communica-
tion cost issue in FL. The first approach consists of al-
gorithms that aim to reduce the number of transmitted
bits by applying a carefully chosen gradient compres-
sion scheme, such as quantization (Alistarh et al., 2016;
Bernstein et al., 2018; Mishchenko et al., 2019; Horváth
et al., 2019; Ramezani-Kebrya et al., 2019; Reisizadeh
et al., 2020), sparsification (Aji and Heafield, 2017;
Lin et al., 2017; Alistarh et al., 2018; Wangni et al.,
2018; Wang et al., 2018; Mishchenko et al., 2020), or
other more sophisticated strategies (Karimireddy et al.,
2019b; Stich and Karimireddy, 2019; Wu et al., 2018;
Vogels et al., 2019; Beznosikov et al., 2020; Gorbunov
et al., 2020b). The second approach—one that we in-
vestigate in this paper—instead focuses on increasing
the total amount of local computation in between the
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communication rounds in the hope that this will reduce
the total number of communication rounds needed to
build a model of sufficient quality (Shamir et al., 2014;
Zhang and Lin, 2015; Reddi et al., 2016; Li et al., 2018;
Pathak and Wainwright, 2020). These two approaches,
communication compression and local computation, can
be combined for a better practical performance (Basu
et al., 2019).

Local first-order algorithms. Motivated by recent
development in the field (Zinkevich et al., 2010; McMa-
han et al., 2016; Stich, 2018; Lin et al., 2018; Liang
et al., 2019; Wu et al., 2019; Karimireddy et al., 2019a;
Khaled et al., 2020; Woodworth et al., 2020b), in this
paper we perform an in-depth and general study of local
first-order algorithms. Contrasted with zero or higher
order local methods, local first order methods perform
several gradient-type steps in between the communica-
tion rounds. In particular, we consider the following
family of methods:

xk+1
i =

x
k
i − γgki , if ck+1 = 0,

1
n

n∑
i=1

(
xki − γgki

)
, if ck+1 = 1,

(4)

where xki represents the local variable maintained by the
i-th device, gki represents local first order direction1 and
(possibly random) sequence {ck}k≥1 with ck ∈ {0, 1}
encoding the times when communication takes place.

Both the classical Local-SGD/FedAvg (McMahan et al.,
2016; Stich, 2018; Khaled et al., 2020; Woodworth et al.,
2020b) and shifted local SGD (Liang et al., 2019; Karim-
ireddy et al., 2019a) methods fall into this category
of algorithms. However, most of the existing methods
have been analyzed with limited flexibility only, leaving
many potentially fruitful directions unexplored. The
most important unexplored questions include i) better
understanding of the local shift that aims to correct
the fixed point of local methods, ii) support for more
sophisticated local gradient estimators that allow for
importance sampling, variance reduction, or coordi-
nate descent, iii) variable number of local steps, and
iv) general theory supporting multiple data similarity
types, including identical, heterogeneous and partially
heterogeneous (ζ-heterogeneous - defined later).

Consequently, there is a need for a single framework
unifying the theory of local stochastic first order meth-
ods, ideally one capable of pointing to new and more
efficient variants. This is what we do in this work.

1Vector gki can be a simple unbiased estimator of
∇fi(xki ), but can also involve a local “shift” designed to
correct the (inherently wrong) fixed point of local methods.
We elaborate on this point later.

Unification of stochastic algorithms. There have
been multiple recent papers aiming to unify the theory
of first-order optimization algorithms. The closest to
our work is the unification of (non-local) stochastic
algorithms in (Gorbunov et al., 2020a) that proposes a
relatively simple yet powerful framework for analyzing
variants of SGD that allow for minibatching, arbitrary
sampling,2 variance reduction, subspace gradient ora-
cle, and quantization. We recover this framework as a
special case in a non-local regime. Next, a framework
for analyzing error compensated or delayed SGD meth-
ods was recently proposed in (Gorbunov et al., 2020b).
Another relevant approach covers the unification of
decentralized SGD algorithms (Koloskova et al., 2020),
which is able to recover the basic variant of Local-SGD
as well. While our framework matches their rate for
basic Local-SGD, we cover a broader range of local
methods in this work as we focus on the centralized
setting.

1.1 Our Contributions

In this paper, we propose a general framework for
analyzing a broad family of local stochastic gradient
methods of the form (4). Given that a particular local
algorithm satisfies a specific parametric assumption
(Assumption 2.3) in a certain scenario, we provide a
tight convergence rate of such a method.

Let us give a glimpse of our results and their generality.
A local algorithm of the form (4) is allowed to consist
of an arbitrary local stochastic gradient estimator (see
Section 4 for details), a possible drift/shift to correct for
the non-stationarity of local methods3 and a fixed or
random local loop size. Further, we provide a tight con-
vergence rate in both the identical and heterogeneous
data regimes for strongly (quasi) convex and convex
objectives. Consequently, our framework is capable of:

•Recovering known optimizers along with their
tight rates. We recover multiple known local optimiz-
ers as a special case of our general framework, along
with their convergence rates (up to small constant fac-
tors). This includes FedAvg/Local-SGD (McMahan
et al., 2016; Stich, 2018) with currently the best-known
convergence rate (Khaled et al., 2020; Woodworth et al.,
2020b; Koloskova et al., 2020; Woodworth et al., 2020a)
and SCAFFOLD (Karimireddy et al., 2019a). Moreover,
in a special case we recover a general framework for an-

2A tight convergence rate given any sampling strategy
and any smoothness structure of the objective.

3Basic local algorithms such as FedAvg/Local-SGD or
FedProx (Li et al., 2018) have incorrect fixed points (Pathak
and Wainwright, 2020). To eliminate this issue, a strategy
of adding an extra “drift” or “shift” to the local gradient
has been proposed recently (Liang et al., 2019; Karimireddy
et al., 2019a).
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alyzing non-local SGD method developed in (Gorbunov
et al., 2020a), and consequently we recover multiple
variants of SGD with and without variance reduction,
including SAGA (Defazio et al., 2014), L-SVRG (Kovalev
et al., 2019), SEGA (Hanzely et al., 2018), gradient com-
pression methods (Mishchenko et al., 2019; Horváth
et al., 2019) and many more.

• Filling missing gaps for known methods. Many
of the recovered optimizers have only been analyzed
under specific and often limiting circumstances and
regimes. Our framework allows us to extend known
methods into multiple hitherto unexplored settings.
For instance, for each (local) method our framework
encodes, we allow for a random/fixed local loop size,
identical/heterogeneous/ζ-heterogeneous data (intro-
duced soon), and convex/strongly convex objective.

• Extending the established optimizers. To the
best of our knowledge, none of the known local meth-
ods have been analyzed under arbitrary smoothness
structure of the local objectives4 and consequently, our
framework is the first to allow for the local stochastic
gradient to be constructed via importance (possibly
minibatch) sampling. Next, we allow for a local loop
with a random length, which is a new development
contrasting with the classical fixed-length regime. We
discuss advantages of of the random loop in Section 3.

• New efficient algorithms. Perhaps most impor-
tantly, our framework is powerful enough to point
to a range of novel methods. A notable example is
S-Local-SVRG, which is a local variance reduced SGD

method able to learn the optimal drift. This is the
first time that local variance reduction is successfully
combined with an on-the-fly learning of the local drift.
Consequently, this is the first method which enjoys a
linear convergence rate to the exact optimum (as op-
posed to a neighborhood of the solution only) without
any restrictive assumptions and is thus superior in the-
ory to the convergence of all existing local first order
methods. We also develop another linearly converging
method: S*-Local-SGD*. Albeit not of practical sig-
nificance as it depends on the a-priori knowledge of
the optimal solution x∗, it is of theoretical interest as
it enabled us to discover S-Local-SVRG. See Table 2
which summarizes all our complexity results.

Notation. Due to its generality, our paper is heavy
in notation. For the reader’s convenience, we present a
notation table in Sec. A of the appendix.

4By this we mean that function fi,j from (3) is Mi,j-
smooth with Mi,j ∈ Rd×d,Mi,j � 0, i.e., for all x, y ∈
Rd we have fi,j(x) ≤ fi,j(y) + 〈∇fi,j(y), x − y〉 + 1

2
(x −

y)>Mi,j(x−y). As an example, logistic regression possesses
naturally such a structure with matrices Mi,j of rank 1.

2 Our Framework

In this section we present the main result of the paper.
Let us first introduce the key assumptions that we
impose on our objective (1). We start with a relaxation
of µ-strong convexity.

Assumption 2.1 ((µ, x∗)-strong quasi-convexity). Let
x∗ be a minimizer of f . We assume that fi is (µ, x∗)-
strongly quasi-convex for all i ∈ [n] with µ ≥ 0, i.e. for
all x ∈ Rd:

fi(x
∗) ≥ fi(x) + 〈∇fi(x), x∗ − x〉+ µ

2 ‖x− x
∗‖2. (5)

Next, we require classical L-smoothness5 of local objec-
tives, or equivalently, L-Lipschitzness of their gradients.

Assumption 2.2 (L-smoothness). Functions fi are
L-smooth for all i ∈ [n] with L ≥ 0, i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd. (6)

In order to simplify our notation, it will be convenient
to introduce the notion of virtual iterates xk defined
as a mean of the local iterates (Stich and Karimireddy,

2019): xk
def
= 1

n

∑n
i=1 x

k
i . Despite the fact that xk is

being physically computed only for k for which ck =
1, virtual iterates are a very useful tool facilitating
the convergence analysis. Next, we shall measure the
discrepancy between the local and virtual iterates via

the quantity Vk defined as Vk
def
= 1

n

∑n
i=1 ‖xki − xk‖2.

We are now ready to introduce the parametric assump-
tion on both stochastic gradients gki and function f .
This is a non-trivial generalization of the assumption
from (Gorbunov et al., 2020a) to the class of local
stochastic methods of the form (4), and forms the
heart of this work.6

Assumption 2.3 (Key parametric assumption). As-
sume that for all k ≥ 0 and i ∈ [n], local stochastic
directions gki satisfy

1
n

n∑
i=1

Ek

[
gki
]

= 1
n

n∑
i=1

∇fi(xki ), (7)

where Ek[·] defines the expectation w.r.t. random-
ness coming from the k-th iteration only. Fur-
ther, assume that there exist non-negative constants
A,A′, B,B′, C, C ′, F, F ′, G,H,D1, D

′
1, D2, D3 ≥ 0, ρ ∈

5While we require L-smoothness of fi to establish the
main convergence theorem, some of the parameters of
As. 2.3 can be tightened considering a more complex smooth-
ness structure of the local objective.

6Recently, the assumption from (Gorbunov et al., 2020a)
was generalized in a different way to cover the class of the
methods with error compensation and delayed updates (Gor-
bunov et al., 2020b).
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(0, 1] and a sequence of (possibly random) variables
{σ2

k}k≥0 such that

1
n

n∑
i=1

E
[
‖gki ‖2

]
≤2AE

[
f(xk)− f(x∗)

]
+BE

[
σ2
k

]
+ FE [Vk] +D1, (8)

E

[∥∥∥∥ 1
n

n∑
i=1

gki

∥∥∥∥2
]
≤2A′E

[
f(xk)− f(x∗)

]
+B′E

[
σ2
k

]
+ F ′E [Vk] +D′1, (9)

E
[
σ2
k+1

]
≤(1− ρ)E

[
σ2
k

]
+ 2CE

[
f(xk)− f(x∗)

]
+GE [Vk] +D2, (10)

2L
K∑
k=0

wkE[Vk] ≤ 1
2

K∑
k=0

wkE
[
f(xk)− f(x∗)

]
(11)

+ 2LHEσ2
0 + 2LD3γ

2WK ,

where sequences {WK}K≥0, {wk}k≥0 are defined as

WK
def
=

K∑
k=0

wk, wk
def
= 1

(1−min{γµ, ρ4})k+1 , (12)

Admittedly, with its many parameters (whose meaning
will become clear from the rest of the paper), As. 2.3
is not easy to parse on first reading. Several comments
are due at this point. First, while the complexity of
this assumption may be misunderstood as being prob-
lematic, the opposite is true. This assumption enables
us to prove a single theorem (Thm. 2.1) capturing the
convergence behavior, in a tight manner, of all local
first-order methods described by our framework (4).
So, the parametric and structural complexity of this
assumption is paid for by the unification aspect it pro-
vides. Second, for each specific method we consider
in this work, we prove that As. 2.3 is satisfied, and
each such proof is based on much simpler and gener-
ally accepted assumptions. So, As. 2.3 should be seen
as a “meta-assumption” forming an intermediary and
abstract step in the analysis, one revealing the struc-
ture of the inequalities needed to obtain a general and
tight convergence result for local first-order methods.
We dedicate the rest of the paper to explaining these
parameters and to describing the algorithms and the
associate rates their combination encodes. We are now
ready to present our main convergence result.

Theorem 2.1. Let As. 2.1, 2.2 and 2.3 be
satisfied and assume the stepsize satisfies 0 <

γ ≤ min

{
1

2(A′+ 4CB′
3ρ )

, L

F ′+ 4GB′
3ρ

}
. Define xK

def
=

1
WK

∑K
k=0 wkx

k, Φ0 def
=

2‖x0−x∗‖2+ 8B′
3ρ γ

2Eσ2
0+4LHγEσ2

0

γ

and Ψ0 def
= 2

(
D′1 + 4B′

3ρ D2 + 2LγD3

)
. Let θ

def
= 1 −

min
{
γµ, ρ4

}
. Then if µ > 0, we have

E
[
f(xK)

]
− f(x∗) ≤θKΦ0 + γΨ0, (13)

and in the case when µ = 0, we have

E
[
f(xK)

]
− f(x∗) ≤Φ0

K + γΨ0. (14)

As already mentioned, Thm. 2.1 serves as a general,
unified theory for local stochastic gradient algorithms.
The strongly convex case provides a linear convergence
rate up to a specific neighborhood of the optimum.
On the other hand, the weakly convex case yields an
O(K−1) convergence rate up to a particular neighbor-
hood. One might easily derive O(K−1) and O(K−2)
convergence rates to the exact optimum in the strongly
and weakly convex case, respectively, by using a par-
ticular decreasing stepsize rule. The next corollary
gives an example of such a result in the strongly convex
scenario, where the estimate of D3 does not depend on
the stepsize γ. A detailed result that covers all cases is
provided in Section D.2 of the appendix.

Corollary 2.1. Consider the setup from Thm. 2.1 and
by 1

ν denote the resulting upper bound on γ.7 Suppose
that µ > 0 and D3 does not depend on γ. Let

γ = min

 1
ν ,

ln

(
max

{
2,min

{
Υ1µ

2K2

Υ2
,
Υ1µ

3K3

Υ3

}})
µK

 ,

where Υ1 = 2‖x0 − x∗‖2 +
8B′Eσ2

0

3ν2ρ +
4LHEσ2

0

ν , Υ2 =

2D′1 + 4B′D2

3ρ , Υ3 = 4LD3. Then, the procedure (4)
achieves

E
[
f(xK)

]
− f(x∗) ≤ ε

as long as

K ≥ Õ
((

1
ρ + ν

µ

)
log
(
νΥ1

ε

)
+ Υ2

µε +
√

Υ3

µ2ε

)
.

Remark 2.1. Admittedly, Thm. 2.1 does not yield
the tightest known convergence rate in the heteroge-
neous setup under As. 2.1. Specifically, the neigh-
borhood to which Local-SGD converges can be slightly
smaller (Koloskova et al., 2020). While we provide a
tighter theory that matches the best-known results, we
have deferred it to the appendix for the sake of clarity.
In particular, to get the tightest rate, one shall replace
the bound on the second moment of the stochastic direc-
tion (8) with two analogous bounds – first one for the
variance and the second one for the squared expectation.
See As. E.1 for details. Fortunately, Thm. 2.1 does
not need to change as it does not require parameters
from (8); these are only used later to derive D3, H, γ
based on the data type. Therefore, only a few extra pa-
rameters should be determined in the specific scenario
to get the tightest rate.

7In order to get tight estimate of D3 and H, we will
impose further bounds on γ (see Tbl. 1). Assume that these
extra bounds are included in parameter h.
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Remark 2.2. As we show in the appendix when looking
at particular special cases, local gradient methods are
only as good as their non-local counterparts (i.e., when
τ = 1) in terms of the communication complexity in the
fully heterogeneous setup. Furthermore, the non-local
methods outperform local ones in terms of computation
complexity. While one might think that this observa-
tion is a byproduct of our analysis, our observations
are supported by findings in recent literature on this
topic (Karimireddy et al., 2019a; Khaled et al., 2020).
To rise to the defense of local methods, we remark that
they might be preferable to their non-local cousins in
the homogeneous data setup (Woodworth et al., 2020b)
or for personalized federated learning (Hanzely and
Richtárik, 2020).

The parameters that drive both the convergence speed
and the neighborhood size are determined by As. 2.3. In
order to see through the provided rates, we shall discuss
the value of these parameters in various scenarios. In
general, we would like to have ρ ∈ (0, 1] as large as
possible, while all other parameters are desired to be
small so as to make the inequalities as tight as possible.

Let us start with studying data similarity and inner
loop type as these can be decoupled from the type of
the local direction that the method (4) takes.

3 Data Similarity and Local Loop

We now explain how our framework supports fixed and
random local loop, and several data similarity regimes.

Local loop. Our framework supports local loop of a
fixed length τ ≥ 1 (i.e., we support local methods per-
forming τ local iterations in between communications).
This option, which is the de facto standard for local
methods in theory and practice (McMahan et al., 2016),
is recovered by setting caτ = 1 for all non-negative inte-
gers a and ck = 0 for k that are not divisible by τ in (4).
However, our framework also captures the very rarely
considered local loop with a random length. We recover
this when ck are random samples from the Bernoulli
distribution Be(p) with parameter p ∈ (0, 1].

Data similarity. We look at various possible data
similarity regimes. The first option we consider is the
fully heterogeneous setting where we do not assume
any similarity between the local objectives whatsoever.
Secondly, we consider the identical data regime with
f1 = . . . = fn. Lastly, we consider the ζ-heterogeneous
data setting, which bounds the dissimilarity between
the full and the local gradients (Woodworth et al.,
2020a) (see Def. 3.1).

Definition 3.1 (ζ-heterogeneous functions). We say
that functions f1, . . . , fn are ζ-heterogeneous for some

ζ ≥ 0 if the following inequality holds for all x ∈ Rd:

1
n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ ζ2. (15)

The ζ-heterogeneous data regime recovers the hetero-
geneous data for ζ =∞ and identical data for ζ = 0.

In Sec. E of the appendix, we show that the local loop
type and the data similarity type affect parameters H
and D3 from As. 2.3 only. However, in order to obtain
an efficient bound on these parameters, we impose
additional constraints on the stepsize γ. While we do
not have space to formally state our results in the main
body, we provide a comprehensive summary in Tbl. 1.

Methods with a random loop communicate once per p−1

iterations on average, while the fixed loop variant com-
municates once every τ iterations. Consequently, we
shall compare the two loop types for τ = p−1. In such
a case, parameters D3 and H and the extra conditions
on stepsize γ match exactly, meaning that the loop
type does not influence the convergence rate. Having
said that, random loop choice provides more flexibil-
ity compared to the fixed loop. Indeed, one might
want the local direction gki to be synchronized with
the communication time-stamps in some special cases.
However, our framework does not allow such synchro-
nization for a fixed loop since we assume that the local
direction gki follows some stationary distribution over
stochastic gradients. The random local loop comes in
handy here; the random variable that determines the
communication follows a stationary distribution, thus
possibly synchronized with the local computations.

4 Local Stochastic Direction

This section discusses how the choice of gki allows us to
obtain the remaining parameters from As. 2.3 that were
not covered in the previous section. To cover the most
practical scenarios, we set gki to be a difference of two
components aki , b

k
i ∈ Rd, which we explain next. We

stress that the construction of gki is very general: we re-
cover various state-of-the-art methods along with their
rates while covering many new interesting algorithms.
We will discuss this in more detail in Sec. 5.

4.1 Unbiased local gradient estimator aki

The first component of the local direction that the
method (4) takes is aki – an unbiased, possibly vari-
ance reduced, estimator of the local gradient, i.e.,
Ek[aki ] = ∇fi(xki ). Besides the unbiasedness, aki is
allowed to be anything that satisfies the parametric
recursive relation from (Gorbunov et al., 2020a), which
tightly covers many variants of SGD including non-
uniform, minibatch, and variance reduced stochastic
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Table 1: The effect of data similarity and local loop on As. 2.3. Constant factors are ignored. Homogeneous data
are recovered as a special case of ζ-heterogeneous data with ζ = 0. Heterogeneous case is slightly loose in light of
Remark 2.1. If one replaces the bound on the second moments (8) with a analogous bound on variance squared
expectation (see As. E.1), the bounds on γ, D3 and H will have (τ − 1) times better dependence on the variance
parameters (or 1−p

p times for the random loop). See Sec. E.1.1 and E.2.1 of appendix for more details.

Data Loop Extra upper bounds on γ D3 H

het fixed 1
τµ
, 1

τ

√(
F+ BG

ρ(1−ρ)

) , 1

τ

√
2L
(
A+ BC

ρ(1−ρ)

) (τ − 1)2
(
D1 + BD2

ρ

)
B(τ−1)2γ2

ρ

ζ-het fixed 1
τµ
, 1√

τ
(
F+ BG

ρ(1−ρ)

) , 1√
Lτ
(
A+ BC

ρ(1−ρ)

) (τ − 1)
(
D1 + ζ2

γµ
+ BD2

ρ

)
B(τ−1)γ2

ρ

het random p
µ

, p√
(1−p)F

,
p
√
ρ(1−ρ)√

BG(1−p)
, p√

L(1−p)
(
A+ BC

ρ(1−ρ)

) (1−p)
(
D1+

BD2
ρ

)
p2

B(1−p)γ2

p2ρ

ζ-het radnom p
µ

,
√

p
F (1−p) ,

√
pρ(1−ρ)
BG(1−p) ,

√
p

L(1−p)
(
A+ BC

ρ(1−ρ)

) (1−p)
p

(
D1 + ζ2

γµ
+ BD2

ρ

)
B(1−p)γ2

pρ

gradient. The parameters of such a relation are capable
of encoding both the general smoothness structure of
the objective and the gradient estimator’s properties
that include a diminishing variance, for example. We
state the adapted version of this recursive relation as
As. 4.1.

Assumption 4.1. Let the unbiased local gradient es-
timator aki be such that

Ek

[
‖aki −∇fi(x∗)‖2

]
≤ 2AiDfi(x

k
i , x
∗) +Biσ

2
i,k +D1,i,

Ek

[
σ2
i,k+1

]
≤ (1− ρi)σ2

ik + 2CiDfi(x
k
i , x
∗) +D2,i

for Ai ≥ 0, Bi ≥ 0, D1,i ≥ 0, 0 ≤ ρi ≤ 1, Ci ≥ 0, D2,i ≥
0 and a non-negative sequence {σ2

i,k}∞k=0.8

Note that the parameters of As. 4.1 can be taken di-
rectly from (Gorbunov et al., 2020a) and offer a broad
range of unbiased local gradient estimators aki in dif-
ferent scenarios. The most interesting setups covered
include minibatching, importance sampling, variance
reduction, all either under the classical smoothness as-
sumption or under a uniform bound on the stochastic
gradient variance.

Our next goal is to derive the parameters of As. 2.3
from the parameters of As. 4.1. However, let us first
discuss the second component of the local direction –
the local shift bki .

4.2 Local shift bki

The local update rule (4) can include the local
shift/drift bki allowing us to eliminate the infamous
non-stationarity of the local methods. The general
requirement for the choice of bki is so that it sums up

8By Dfi(x
k
i , x

k) we mean Bregman distance between

xki , x
k defined as Dfi(x

k
i , x

k)
def
= fi(x

k
i ) − fi(x

k) −
〈∇fi(xk), xki − xk〉.

to zero (
∑n
i=1 b

k
i = 0) to avoid unnecessary extra bias.

For the sake of simplicity (while maintaining general-
ity), we will consider three choices of bki – zero, ideal
shift (= ∇fi(x∗)) and on-the-fly shift via a possibly
outdated local stochastic non-variance reduced gradient
estimator that satisfies a similar bound as As. 4.1.

Assumption 4.2. Consider the following choices:
Case I: bki = 0,
Case II: bki = ∇fi(x∗),
Case III: bki = hki − 1

n

∑n
i=1 h

k
i where hki ∈ Rd is a

delayed local gradient estimator defined recursively as

hk+1
i =

{
hki with probability 1− ρ′i
lki with probability ρ′i

,

where 0 ≤ ρ′i ≤ 1 and lki ∈ Rd is an unbiased non-
variance reduced possibly stochastic gradient estimator
of ∇fi(xk) such that for some A′i, D3,i ≥ 0 we have

Ek

[
‖lki −∇fi(x∗)‖2

]
≤ 2A′iDfi(x

k
i , x
∗) +D3,i. (16)

Let us look closer at Case III as this one is the most
interesting. Note that what we assume about lki (i.e.,
(16)) is essentially a variant of As. 4.2 with σ2

i,k param-
eters set to zero. This is achievable for a broad range of
non-variance reduced gradient estimators that includes
minibatching and importance sampling (Gower et al.,
2019). An intuitive choice of lki is to set it to aki given
that aki is not variance reduced. In such a case, the
scheme (4) reduces to SCAFFOLD (Karimireddy et al.,
2019a) along with its rate.

However, our framework can do much more beyond this
example. First, we cover the local variance reduced
gradient aki with lki constructed as its non-variance
reduced part. In such a case, the neighborhood of
the optimum from Thm. 2.1 to which the method (4)
converges shrinks. There is a way to get rid of this
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neighborhood, noticing that lki is used only once in a
while. Indeed, the combination of the full local gradient
lki together with the variance reduced aki leads to a lin-
ear rate in the strongly (quasi) convex case or O(K−1)
rate in the weakly convex case. We shall remark that
the variance reduced gradient might require a sporadic
computation of the full local gradient – it makes sense
to synchronize it with the update rule for hki . In such
a case, the computation of lki is for free. We have just
described the S-Local-SVRG method (Algorithm 6).

4.3 Parameters of Assumption 2.3

We proceed with a key lemma that provides us with the
remaining parameters of As. 2.3 that were not covered
in Sec. 3. These parameters will be chosen purely based
on the selection of aki and bki discussed earlier.

Lemma 4.1. For all i ∈ [n] suppose that aki satisfies
As. 4.1, while bki was chosen as per As. 4.2. Then, (8),
(9) and (10) hold with

A = 4 max
i
Ai, B = 2, F = 4Lmax

i
Ai,

D1 =

{
2
n

∑n
i=1

(
D1,i + ‖∇fi(x∗)‖2

)
Case I,

2
n

∑n
i=1D1,i Case II, III,

B′ = 1
n , F

′ = 2Lmaxi Ai
n + 2L2, D′1 = 1

n2

∑n
i=1D1,i

A′ = 2 maxi Ai
n + L,G = CL/2,

ρ =

{
mini ρi Case I, II,

mini min {ρi, ρ′i} Case III,

D2 =


2
n

n∑
i=1

BiD2,i, Case I, II,

1
n

n∑
i=1

(2BiD2,i + ρ′iD3,i) Case III,

C =

{
4 maxi{BiCi} Case I, II,

4 maxi{BiCi}+ 4 maxi{ρ′iA′i} Case III.

We have just broken down the parameters of As. 2.3
based on the optimization objective and the particular
instance of (4). However, it might still be hard to
understand particular rates based on these choices.
In the appendix, we state a range of methods and
decouple their convergence rates. A summary of the
key parameters from As. 2.3 is provided in Tbl. 7.

5 Special Cases

Our theory covers a broad range of local stochastic gra-
dient algorithms. While we are able to recover multiple
known methods along with their rates, we also intro-
duce several new methods along with extending the
analysis of known algorithms. As already mentioned,
our theory covers convex and strongly convex cases,

identical and heterogeneous data regimes. From the al-
gorithmic point of view, we cover the fixed and random
loop, various shift types, and arbitrary local stochastic
gradient estimator. We stress that our framework gives
a tight convergence rate under any circumstances.

While we might not cover all of these combinations
in a deserved detail, we thoroughly study a subset
of them in Sec. G of the appendix. An overview of
these methods is presented in Tbl. 2 together with
their convergence rates in the strongly convex case
(see Tbl. 4 in the appendix for the rates in the weakly
convex setting). Next, we describe a selected number
of special cases of our framework.

•Non-local stochastic methods. Our theory recov-
ers a broad range of non-local stochastic methods. In
particular, if n = 1, we have Vk = 0, and consequently
we can choose A = A′, B = B′, D1 = D′1, F = F ′ =
G = H = D3 = 0. With such a choice, our theory
matches9 the general analysis of stochastic gradient
methods from (Gorbunov et al., 2020a) for τ = 1. Con-
sequently, we recover a broad range of algorithms as a
special case along with their convergence guarantees,
namely SGD (Robbins and Monro, 1951) with its best-
known rate on smooth objectives (Nguyen et al., 2018;
Gower et al., 2019), variance reduced finite sum algo-
rithms such as SAGA (Defazio et al., 2014), SVRG (John-
son and Zhang, 2013), L-SVRG (Hofmann et al., 2015;
Kovalev et al., 2019), variance reduced subspace de-
scent methods such as SEGA/SVRCD (Hanzely et al.,
2018; Hanzely and Richtárik, 2019), quantized meth-
ods (Mishchenko et al., 2019; Horváth et al., 2019) and
others.

• “Star”-shifted local methods. As already men-
tioned, local methods have inherently incorrect fixed
points (Pathak and Wainwright, 2020); and one can
fix these by shifting the local gradients. Star-shifted
local methods employ the ideal stationary shift using
the local gradients at the optimum bki = ∇fi(x∗) (i.e.,
Case II from As. 4.2) and serve as a transition from
the plain local methods (Case I from As. 4.2) to the
local methods that shift using past gradients such as
SCAFFOLD (Case III from As. 4.2). In the appendix,
we present two such methods: S*-Local-SGD (Algo-
rithm 3) and S*-Local-SGD* (Algorithm 5). While
being impractical in most cases since ∇fi(x∗) is not
known, star-shifted local methods give new insights
into the role and effect of the shift for local algorithms.
Specifically, these methods enjoy superior convergence
rate when compared to methods without local shift
(Case I) and methods with a shift constructed from
observed gradients (Case III), while their rate serves
as an aspiring goal for local methods in general. For-

9Up to the non-smooth regularization/proximal steps
and small constant factors.
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Table 2: A selection of methods that can be analyzed using our framework, which we detail in the appendix. A choice
of aki , b

k
i and lki is presented along with the established complexity bounds (= number of iterations to find such x̂ that

E[f(x̂)− f(x∗)] ≤ ε) and a specific setup under which the methods are analyzed. For Algorithms 1-4 we suppress constants
and log 1

ε
factors. Since Algorithms 5 and 6 converge linearly, we suppress constants only while keeping log 1

ε
factors.

All rates are provided in the strongly convex setting. UBV stands for the “Uniform Bound on the Variance” of local
stochastic gradient, which is often assumed when fi is of the form (2). ES stands for the “Expected Smoothness” (Gower
et al., 2019), which does not impose any extra assumption on the objective/noise, but rather can be derived given the
sampling strategy and the smoothness structure of fi. Consequently, such a setup allows us to obtain local methods with
importance sampling. Next, the simple setting is a special case of ES when we uniformly sample a single index on each
node each iteration. ♣: Local-SGD methods have never been analyzed under ES assumption. Notation: σ2 – averaged
(within nodes) uniform upper bound for the variance of local stochastic gradient, σ2

∗ – averaged variance of local stochastic

gradients at the solution, ζ2
∗

def
= 1

n

∑n
i=1 ‖∇fi(x

∗)‖2, maxLij – the worst smoothness of fi,j , i ∈ [n], j ∈ [m], L – the worst
ES constant for all nodes.

Method aki , b
k
i , l

k
i Complexity Setting Sec

Local-SGD, Alg. 1
(Woodworth et al., 2020a)

fξi(x
k
i ), 0,− L

µ
+ σ2

nµε
+
√

Lτ(σ2+τζ2)

µ2ε

UBV,
ζ-Het

G.1.1

Local-SGD, Alg. 1
(Koloskova et al., 2020)

fξi(x
k
i ), 0,− τL

µ
+ σ2

nµε
+
√

L(τ−1)(σ2+(τ−1)ζ2
∗)

µ2ε

UBV,
Het

G.1.1

Local-SGD, Alg. 1
(Khaled et al., 2020)

♣ fξi(x
k
i ), 0,−

L+L/n+
√

(τ−1)LL
µ

+
σ2
∗

nµε

+Lζ2(τ−1)

µ2ε
+
√

L(τ−1)(σ2
∗+ζ

2
∗)

µ2ε

ES,
ζ-Het

G.1.2

Local-SGD, Alg. 1
(Khaled et al., 2020)

♣ fξi(x
k
i ), 0,−

Lτ+L/n+
√

(τ−1)LL
µ

+
σ2
∗

nµε

+
√

L(τ−1)(σ2
∗+(τ−1)ζ2

∗)
µ2ε

ES,
Het

G.1.2

Local-SVRG, Alg. 2
(NEW)

∇fi,ji(xki )−∇fi,ji(yki )
+∇fi(yki ),

0, −

m+
L+maxLij/n+

√
(τ−1)LmaxLij

µ

+Lζ2(τ−1)

µ2ε
+
√

L(τ−1)ζ2
∗

µ2ε

simple,
ζ-Het

G.2

Local-SVRG, Alg. 2
(NEW)

∇fi,ji(xki )−∇fi,ji(yki )
+∇fi(yki ),

0, −

m+
Lτ+maxLij/n+

√
(τ−1)LmaxLij

µ

+
√

L(τ−1)2ζ2
∗

µ2ε

simple,
Het

G.2

S*-Local-SGD, Alg. 3
(NEW)

fξi(x
k
i ),∇fi(x∗),− τL

µ
+ σ2

nµε
+
√

L(τ−1)σ2

µ2ε

UBV,
Het

G.3

SS-Local-SGD, Alg. 4
(Karimireddy et al., 2019a)

fξi(x
k
i ), hki − 1

n

∑n
i=1 h

k
i ,

∇fξ̃ki (yki )
L
pµ

+ σ2

nµε
+
√

L(1−p)σ2

pµ2ε

UBV,
Het

G.4.1

SS-Local-SGD, Alg. 4
(NEW)

fξi(x
k
i ), hki − 1

n

∑n
i=1 h

k
i ,

∇fξ̃ki (yki )

L
pµ

+ L
nµ

+

√
LL(1−p)
pµ

+
σ2
∗

nµε
+
√

L(1−p)σ2
∗

pµ2ε

ES,
Het

G.4.2

S*-Local-SGD*, Alg. 5
(NEW)

∇fi,ji(xki )−∇fi,ji(x∗)
+∇fi(x∗), ∇fi(x∗),−

(
τL
µ

+
maxLij
nµ

+

√
(τ−1)LmaxLij

µ

)
log 1

ε

simple,
Het

G.5

S-Local-SVRG, Alg. 6
(NEW)

∇fi,ji(xki )−∇fi,ji(yk)
+∇fi(yk),

hki − 1
n

∑n
i=1 h

k
i ,∇fi(yk)

(
m+ L

pµ
+

maxLij
nµ

+

√
LmaxLij(1−p)

pµ

)
log 1

ε

simple,
Het

G.6

tunately, in several practical scenarios, one can match
the rate of star methods using an approach from Case
III, as we shall see in the next point.

• Shifted Local SVRG (S-Local-SVRG). As already
mentioned, local SGD suffers from convergence to a
neighborhood of the optimum only, which is credited to
i) inherent variance of the local stochastic gradient, and
ii) incorrect fixed point of local GD. We propose a way
to correct both issues. To the best of our knowledge,
this is the first time that on-device variance reduction
was combined with the trick for reducing the non-
stationarity of local methods. Specifically, the latter is
achieved by selecting bki as a particular instance of Case

III from As. 4.2 such that lki is the full local gradient,
which in turns yields D′1,i = 0, A′i = L. In order to not
waste local computation, we synchronize the evaluation
of lki with the computation of the full local gradient for
the L-SVRG (Hofmann et al., 2015; Kovalev et al., 2019)
estimator, which we use to construct aki . Consequently,
some terms cancel out, and we obtain a simple, fast,
linearly converging local SGD method, which we present
as Algorithm 6 in the appendix. We believe that this is
remarkable since only a very few local methods converge
linearly to the exact optimum.10

10A linearly converging local SGD variant can be recov-
ered from stochastic decoupling (Mishchenko and Richtárik,
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6 Experiments

We perform multiple experiments to verify the theoret-
ical claims of this paper. Due to space limitations, we
only present a single experiment in the main body; the
rest can be found in Section C of the appendix.

We demonstrate the benefit of on-device variance reduc-
tion, which we introduce in this paper. For that pur-
pose, we compare standard Local-SGD (Algorithm 1)
with our Local-SVRG (Algorithm 2) on a regularized
logistic regression problem with LibSVM data (Chang
and Lin, 2011). For each problem instance, we compare
the two algorithms with the stepsize γ ∈ {1, 0.1, 0.01}
(we have normalized the data so that L = 1). The
remaining details for the setup are presented in Sec-
tion C.1 of the appendix.

Our theory predicts that both Local-SGD and
Local-SVRG have identical convergence rate early
on. However, the neighborhood of the optimum to
which Local-SVRG converges is smaller comparing to
Local-SGD. For both methods, the neighborhood is
controlled by the stepsize: the smaller the stepsize is,
the smaller the optimum neighborhood is. The price
to pay is a slower rate at the beginning.

The results are presented in Fig. 1. As predicted,
Local-SVRG always outperforms Local-SGD as it con-
verges to a better neighborhood. Fig. 1 also demon-
strates that one can trade the smaller neighborhood
for the slower convergence by modifying the stepsize.

7 Conclusions and Future Work

This paper develops a unified approach to analyzing
and designing a wide class of local stochastic first order
algorithms. While our framework covers a broad range
of methods, there are still some types of algorithms
that we did not include but desire attention in future
work. First, it would be interesting to study algorithms
with biased local stochastic gradients; these are popu-
lar for minimizing finite sums; see SAG (Schmidt et al.,
2017) or SARAH (Nguyen et al., 2017). The second
hitherto unexplored direction is including Nesterov’s
acceleration (Nesterov, 1983) in our framework. This
idea is gaining traction in the area of local methods
already (Pathak and Wainwright, 2020; Yuan and Ma,
2020). However, it is not at all clear how this should
be done and several attempts at achieving this unifi-
cation goal failed. The third direction is allowing for
a regularized local objective, which has been under-
explored in the FL community so far. Other compelling

2019), although this was not considered therein. Besides
that, FedSplit (Pathak and Wainwright, 2020) achieves a
linear rate too, however, with a much stronger local oracle.
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Figure 1: Comparison of standard Local-SGD (Alg. 1)
and our Local-SVRG (Alg. 2) for varying γ. Logistic
regression applied on LibSVM (Chang and Lin, 2011).
Other parameters: L = 1, µ = 10−4, τ = 40. Parameter
n chosen as per Tbl. 5 in the appendix.

directions that we do not cover are the local higher-
order or proximal methods (Li et al., 2018; Pathak
and Wainwright, 2020) and methods supporting partial
participation (McMahan et al., 2016).
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SEGA: Variance reduction via gradient sketching. In
Advances in Neural Information Processing Systems,
pages 2082–2093.

Hanzely, F. and Richtárik, P. (2019). One method
to rule them all: variance reduction for data, pa-

rameters and many new methods. arXiv preprint
arXiv:1905.11266.
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Tighter theory for local SGD on identical and hetero-
geneous data. In The 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS
2020).

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and
Stich, S. U. (2020). A unified theory of decentral-
ized SGD with changing topology and local updates.
arXiv preprint arXiv:2003.10422.
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