
Nested Barycentric Coordinate System as an Explicit Feature Map

A NBCS Hausdorff distance
Approximation

In this section we show that the nested barycentric
coordinate system (NBCS) can represent an arbitrarily
close approximation to any convex body. As stated the
NBCS produces a (not necessarily convex) piece-wise
linear classifier. In fact, this method can approximate
multiple convex bodies. For simplicity, we focus on the
case of a single convex body, and demonstrate how our
method approximates it. This will be done by placing
split points at the barycenters of their containing sim-
plices, where the barycenter of a simplex with vertices
p0, . . . , pd is given by (p0 + · · ·+ pd)/(d+ 1).

In order to state our result formally, we introduce some
notation: Given a point p ∈ Rd and a parameter ε > 0,
let Bε(p) = {q ∈ Rd : ‖q − p‖2 ≤ ε} be the ball of
radius ε centered at p. Given a set X ⊆ Rd, let

X(−ε) = {p ∈ X : Bε(p) ⊆ X}

be the set of all points of X that are at distance at
least ε from the boundary of X. Recall that S denotes
the unit simplex.

Theorem A.1. Let P ⊆ S be a given convex body
of diameter 1, and let 0 < ε < 1 be given. Set s =
2O(d) ln2(1/ε). Then there exists a nested system Bt of
min{(d+ 1)s, dn} distinct simplices obtained by always
placing split points at the barycenters of their containing
simplices, and a corresponding set of weights w, such
that

P̃ = {x ∈ S : w · φt(x) ≥ 0} (9)

satisfies the following:

1. vol(P̃ \ P ) < ε vol(S).

2. P (−ε) ⊆ P̃ (−ε) ⊆ P ⊆ P̃ .

Further, this system may be computed in time

O(min{(d+ 1)s, dns}[d2n+ eO(
√
d log d)]).

The importance of Theorem A.1 is that a simple NBCS
can closely approximate any convex body P . And if P
has margin ε, NBCS can produce (P̃ (−ε)) which falls
fully within the margin of P . As described in section
2, finding a consistent polytope to a convex body with
margin is a problem of great interest which was widely
investigated.

Proof. The construction proceeds in stages i =
0, 1, . . . , s. At stage 0 the only points present are the
vertices of S. At each stage i, i ≥ 1, a new split point
is placed at the barycenter of each existing simplex,

and the final construction is called the s-stage uni-
form subdivision of S. Let Ai be the set of simplices
present at stage i; as there is nothing to be gained
by splitting an empty simplex, every empty simplex
must have a sibling containing a point, and so clearly
|Ai| = min{(d+ 1)i, dn}. Note that all simplices in Ai
have the same volume.

The weights wi are assigned as follows: Initially, ver-
tices q0, . . . , qd of S are assigned weights w0 = · · · =
wd = −1. At each stage i ≥ 1, each new split point is
given the smallest possible weight that ensures P̃ ⊇ P ,
where P̃ is given by (9). Once a weight is assigned to
a point, it is never changed again. In other words, for
those points of Bi+1 that already belonged to Bi, their
weights at Bi+1 are the same as their weights at Bi.
This completes the system construction.

We first derive the runtime of the construction: The
difficult step is finding the weight of the new split point,
specified to be the smallest weight ensuring that P̃ ⊇ P .
Now, the intersection between a hyperplane and a sim-
plex has at most d2 vertices, which lie along some of the
edges of the simplex. Decreasing the weight of the new
split point causes the hyperplane to shift, and equiv-
alently, causes each intersection point to move along
an edge of the simplex. The hyperplane intersects P
when one of these points enters P , and so it suffices
to compute for each edge its intersection with P . This
can be done via linear programming (Eisenstat, 2014)
in time O(d2n+ eO(

√
d log d)) (Gärtner, 1995). As each

stage has min{(d+ 1)i, dn} simplices, the runtime fol-
lows, and we proceed to prove the remaining bounds
of the Theorem.

Let S′ ∈ Ai be a simplex with vertices qi0 , . . . , qid and
weights wi0 , . . . , wid , respectively. Let q′ = (qi0 + · · ·+
qid)/(d+ 1) be the barycenter of S′. By Theorem 3.2,
if q′ is assigned weight wavg = (wi0 + · · ·wid)/(d+ 1),
then P̃ ∩ S′ remains unchanged. Hence, the weight
w′ that will be assigned to q′ by our construction will
satisfy w′ ≤ wavg. And therefore, at each stage, P̃ only
shrinks. If at stage i a certain simplex S′ ∈ Ai satisfies
S′ ∩P = ∅, then at stage i+ 1 the barycenter of S′ will
be assigned weight −∞, so that the interior of S′ will
lie completely outside of P̃ .

Let us denote by P̃s the region P̃ produced by this con-
struction after stage s. (See Figure 6 for an illustration
in the plane.) We will now prove that, if s is made
large enough, then P̃s approximates the given convex
body P arbitrarily well, as stated in the theorem.

The diameter of a compact subset of Rd is the maxi-
mum distance between two points in the set. In partic-
ular, the diameter of a simplex is the largest distance
between two vertices of the simplex.
Lemma A.2. Let S′ be a simplex with vertices
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Figure 6: Four stages of the approximation of a given convex polygon in the plane.

p0, . . . , pd, let c be the diameter of S′, and let q be
the barycenter of S′. Then the distance between q and
any vertex pi is at most cd/(d+ 1).

Proof. Fix pi = 0 for concreteness. Then, under the
constraints ‖pj‖2 ≤ c for j 6= i, the distance between q
and pi is maximized by the degenerate simplex that has
pj = (c, 0, . . . 0) for all j 6= i, which yields the claimed
distance.

Lemma A.3. Let S′ be a simplex with diameter c. Let
A be the collection of the (d + 1)d simplices obtained
by a d-stage uniform subdivision of S′. Then there are
at least (d+ 1)! simplices in A with diameter at most
cd/(d+ 1).

Proof. By Lemma A.2, every simplex in A that contains
at most one vertex of S′ will have diameter at most
cd/(d + 1). Each time a simplex S′′ is subdivided
into d + 1 simplices by an interior point q, the new
simplices share only d of their vertices with S′′. Hence,
at stage 1 of the subdivision of S′, there are d + 1
simplices that share only d vertices with S′; at stage
2, there are (d + 1)d simplices that share only d − 1
vertices with S′; and so on, until at stage d there are
(d+ 1)d · · · 2 = (d+ 1)! simplices that share only one
vertex with S′.

Recall that Ai denotes the collection of simplices
present in the i-stage uniform subdivision of S.

Lemma A.4. Let k, z be integers, and set s = zkd.
Then at most a

(
z(1− e−d)k

)
-fraction of the simplices

in As have diameter larger than (d/(d+ 1))z.

Proof. By repeated application of Lemma A.3. After
kd stages, at most an α-fraction of the simplices in
Akd have diameter larger than d/(d + 1), for α =(

1− (d+1)!
(d+1)d

)k
. All the other simplices have diameter

at most d/(d + 1). Of the latter simplices, after kd
more stages, at most an α-fraction of their descendants
have diameter larger than (d/(d+ 1))2. Hence, in A2kd,
the fraction of simplices with diameter larger than
(d/(d+1))2 is at most α+(1−α)α < 2α. And so on. In

Azkd, the fraction of simplices with diameter larger than
(d/(d+1))z is at most zα. Since (d+1)!/(d+1)d > e−d

for all d, the lemma follows.

We can now complete the proof of Theorem A.1. Given
ε, let ρ = ε/(2

√
2d2). Choose z minimally so that

(d/(d+ 1))z ≤ ρ, and then choose k minimally so that
z(1 − e−d)k ≤ ε/2. Let s = zkd. (Hence, we have
s ≤ cd ln2(1/ε) for some c.) Let Z1 be the region
surrounding P that is at distance at most ρ from P ,
and let Z2 be the union of all the simplices in As with
diameter larger than ρ. By the choice of s, every point
in P̃s \ P belongs to Z1 ∪ Z2. Let us bound each of
vol(Z1) and vol(Z2).

As ρ → 0 (keeping P fixed) we have vol(Z1) ≤
(1 + o(1))ρ surf(P ), where surf denotes the (d − 1)-
dimensional surface volume.

Furthermore, P and S are both convex with P ⊆ S, so
surf(P ) ≤ surf(S). Since S = Sd where Sd ⊂ Rd is a
regular simplex of unit side-length, we have vol(Sd) =√
d+ 1/(d!

√
2d) and surf(Sd) = (d + 1) vol(Sd−1) ≈√

2d2 vol(Sd). Hence, by the choice of ρ, we have
vol(Z1) ≤ (ε/2) vol(S). By Lemma A.4, we also have
vol(Z2) ≤ (ε/2) vol(S). Hence, vol(P̃s \ P ) ≤ ε vol(S),
and the first item follows.

For the second item, by construction P ⊆ P̃ . Now
given a parameter ε > 0, apply the first part of the
theorem with ε′ = vol(Bε)/(2 vol(S)), where vol(Bε) ≈
εdπd/2/(d/2)! is the volume of a d-dimensional ball of
radius ε. (A calculation shows that ε′ ≥ εd, so it
suffices to take s = (c′)d ln2(1/ε) for an appropriate
constant c′.) Suppose for a contradiction that there
exists a point p ∈ P̃ (−ε)

s that is outside of P . Then
the ball B = Bε(p) is contained in P̃ . But since P is
convex, more than half of B is outside of P . Hence,
vol(P̃s \ P ) > vol(B)/2 = ε′ vol(S), contradicting the
first part of the theorem. This implies that P̃ (−ε)

s ⊆ P .
Finally, P ⊂ P̃ implies that P (−ε) ⊂ P̃ (−ε), concluding
the second item and the proof of Theorem A.1.
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B NBCS MSE Function
Approximation

In this section we show how to approximate any con-
cave function f(x) using a Bt NBCS. Our objective
is to reduce the mean square error between the target
function f(x) and its piecewise linear approximation
f̃t(x) = w · φt(x):

errt(x) = f(x)− f̃t(x)

L(w, t) =

∫
V

|| errt(x)||2dV

where dV = dx1dx2 . . .. For simplicity we will add a
split point inside each simplex at stage t + 1, while
retaining all the same weights from stage t.
Lemma B.1. Given a NBCS of rank t with a set of
weights that minimizes L(w, t), then for any choice of
a new coordinate qt+1 inside simplex S′, there exists a
weight wt+1 such that:

L(w, t+ 1) ≤ L(w, t). (10)

Proof. Let

φt(x) = (α0, . . . , αt),

φt+1(x) = (β0, . . . , βt+1),

φt(qd+1) = (γ0, . . . , γd).

As show in Section 3.2 αi = βi + βd+1γi, so it follows
that,

errt+1(x) =

∫
V

||f(x)−
t+1∑
i=0

wiβi(x)||2dV

=

∫
V

||f(x)−
t∑
i=0

wiβi(x)− wt+1βt+1(x)||2dV

=

∫
V

||f(x)−
t∑
i=0

wiαi(x)

+ βt+1(x)

t∑
i=0

wiγi − wt+1βt+1(x)||2dV

=

∫
V

||f(x)−
t∑
i=0

wiαi(x)

− βt+1(x)(wt+1 −
t∑
i=0

wiγi)||2dV

=

∫
V

|| errt(x)− βt+1(x)(wt+1 −
t∑
i=0

wiγi)||2dV.

(11)
This above equation implies the following:

1. If point x 6∈ S′ then βt+1(x) = 0 and the contribu-
tion of x remains the same as in the previous step.
We will therefore only integrate over S′.

2. If we assign the weight wt+1 =
∑t
i=0 wiγi then

L(w, t+ 1) = L(w, t).

3. If

t∑
i=0

wiγi < wt+1 <

t∑
i=0

wiγi + 2
errt(x)

βt+1(x)
∀x ∈ S′

(12)
then L(w, t + 1) < L(w, t) and the algorithm
strictly reduces the objective function at step t+1.

In order to find the optimal weight wt+1, we will dif-
ferentiate with respect to wt+1:

∂L

∂wt+1
= 0

=⇒
∫
V

−2errt(x)βt+1(x) + 2β2
t+1(x)(wt+1 −

t∑
i=0

wiγi) = 0

=⇒ wt+1 =

t∑
i=0

wiγi +

∫
S′

errt(x)

βt+1(x)
dV.

(13)

This equation can be interpreted as follows: the new
weight is the linear estimation of point qt+1, since∑t

i=0 wiγi = f̃(qt+1), plus a weighted sum over the
rest of the points of their deviation from the previ-
ous estimated model weighted in some sence by their
distance from point qt+1.

Lemma B.1 establishes that any new split point added
to the hierarchical structure of NBCS can potentially
reduce the target function. But it does not establish
which candidate split point is the best, nor does it
bound the number of times this procedure must be
repeated in order to reduce the target function beneath
an error estimate of ε. In order to find an upper bound
on the number of splits necessary to achieve a given
error estimate ε , and in order to describe a procedure
to find the best split points, we need to assume addi-
tional properties on f(·) — specifically, continuity and
concavity — and also make the trivial stipulation that
we choose wt+1 = f(qt+1); that is, the weight of point
qt must be the value of the function at that point.

Theorem B.2. Let f(·) be a concave function and
and let ε > 0 be a given number, then there exists a
Bt NBCS and a corresponding set of weights w, such
that the integrated mean square error L(w, t) ≤ ε (for
t = O(ln 1

ε )).

Proof. We shall prove this theorem by means of a con-
structive proof. The proposed construction proceeds in
stages i = 0, 1, . . . , t. At stage 0 the only points present
are the vertices of the original d-dimensional simplex
to which all data points are confined. At step zero the
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weight of coordinate qi is given by wi = f(qi). Let S0

be the simplex S0 = {x, y|y = w · φ0(x)} (Note , this a
d dimensional simplex in the d+ 1 space). Likewise let
the manifold F = {x, y |y = f(x)}. Next, we perform
the shearing transformation f ′(x) = f(x)− w · φ0(x).
Now the function f ′(x) evaluated at the vertices of S0

is zero, and all subsequent stages will produce concave
functions with this property. As the volume under the
curve remains the same under the shearing transfor-
mation, and the concavity property is unaffected, then
f ′(x) is a concave function defined inside S0. Next,
create the simplex S′0 which is both parallel to S0 and
is also tangent to the manifold F at some point p′ (see
figure 7 for an illustration).

The concavity property implies that ∀y ∈ S′0 y ≥
f(x). We will say that manifold A is above B if
∀y1 ∈ A, y2 ∈ B y1 ≥ y2. Project the point p′ back
to S0, and call the projection point p. The point p is
the choice of our new knot (split point). The point p′
splits S′0 into d + 1 simplices, let S′k be the simplex
where the point p′ substitutes the vertex q′k. Likewise
the p split S0 into d+1 simplices, let Sk be the simplex
where the point p substitutes the vertex qk. We call
2 simplices properly parallel if they share the same x
coordinates and only their y coordinate differs in a con-
stant value. Thus, we have constructed d+ 1 properly
parallel simplices ({Sk, S′k}). If we take the vertices
of 2 properly parallel simplices, we can construct from
the vertices a V-polytope which is hyper-parallelogram
in the d + 1 space. We have divided our space to
d + 1 such hyper-parallelograms termed Πk, where
each contains different parts of the manifold F the
simplex S0 and S′0 and which all meet at line p − p′.
∀k Fk ∈ Πk, Sk ∈ Πk, S

′
k ∈ Πk. Take the point p′

and construct d+ 1 simplices where p′ substitutes on
of S0 vertices, let S′′k be the simplex where the point p′
substitues the vertex qk. The integrated area under S′′k
is vol(Πk)

d , also we note that because of the concavity
Fk is above S′′k and coincide with the vertices of S′′k .
From the above we conclude that:

vol(S′′k ) ≤ vol(Fk) ≤ vol(Πk) (14)

The integrated error therefore between F and our linear
approximation is d−1

d from the error in the previous
stage.

For our next step we will perform the shearing trans-
formation f ′(x) = f(x) −

∑
wiφ1(x), which results

in d + 1 new segments. These divide f(·) into d + 1
different parts (see figure 7 for an illustration). After
applying the transformation, each S′′k is a simplex tak-
ing the place of S0 in the induction step, while f ′(x)
is a concave function which evaluates to zero on the
vertices and represents the integrated error as did f(x)
did in the previous stage. This allows the process to be

inductively repeated. It follows that the error at stage
t+ 1 holds L(w, t+ 1) ≤ d−1

d L(w, t) ≤ (d−1
d )tL(w, 0).

For any given positive number ε the error at stage
t ≥ c ln(ε) for some constant c is smaller than ε.

Remark. As an aside, we note that another appli-
cation for NBCS is multivariate numeric integration.
Numeric integration for very large dimensions is diffi-
cult for precisely the same reason that piecewise linear
function approximation is difficult in the multivari-
ate case. In this case we do not only evaluate f by∑
wiφ(x) but also its integral by the area under curve.

We call this the generalized Archimedes integration pro-
cess, which is reminiscent of Archimedes integration
process for finding the area of a parabola by triangula-
tion, except that this method generalizes the procedure
to any concave function and to multiple dimensions. To
the best of our knowledge, there is no known extension
of Archimedes integration method to a general concave
function in the multivariate case.
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Figure 7: Steps in function approximation method
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C Hybrid PAC-compression bounds

In this section, we present a hybrid compression bound
used in the derivation of Theorem 5.2.

General theory. It will be convenient to present our
results in generality and then specialize. Our notation
and terminology (compression scheme, etc) will be in
line with Hanneke and Kontorovich (2019). Let P be a
distribution on Z. We write Z[n] = (Z1, . . . , Zn) ∼ Pn
and, for f ∈ [0, 1]Z ,

R(f, P ) := E
Z∼P

f(Z), R̂(f, Z[n]) :=
1

n

n∑
i=1

f(Zi).

We write

∆n(f) = ∆n(f, P, Z[n]) := |R(f, P )− R̂(f, Z[n])|

and our main object of interest will be

∆̄n(F) := sup
f∈F

∆n(f, P, Z[n]), (15)

for F ⊂ [0, 1]Z .

The catch is that F may itself be random, determined
by the Z[n] via a compression scheme. For a fixed k ∈ N,
consider a fixed mapping ρ : Zk 7→ f ∈ RZ . In words,
ρ maps k-tuples over Z into real-valued functions over
Z and as such, is a reconstruction function in a sample
compression scheme. Denote by Fρ(Z[n]) the (random)
collection of all functions constructable by ρ on a given
Z[n]:

Fρ(Z[n]) =

{
ρ(ZI) : I ∈

(
[n]

k

)}
, (16)

where
(

[n]
k

)
is the set of all k-subsets of [n], and ZI is

the restriction of Z[n] to the index set I. 2

A trivial application of the union bound yields

P
(
∆̄n(Fρ(Z[n])) ≥ ε

)
≤
(
n

k

)
max
I∈([n]

k )
P (∆n(ρ(ZI)) ≥ ε) .

The key observation is that, conditioned on ZI , the
function ρ(ZI) becomes deterministic and independent
of ZJ , where J := [n] \ I. Thus,

P (∆n(ρ(ZI)) ≥ ε) = E
ZI

[P (∆n(ρ(ZI)) ≥ ε |ZI)] .

2 We consider, for concreteness, permutation and
repetition-invariant compression schemes; the extension to
general ones is straightforward. The only requisite change
consists of replacing I ∈

(
[n]
k

)
with I ∈ [n]k in (16).

Conditional on ZI , we have, for f = ρ(ZI),

∆n(f, P, Z[n]) = |R(f, P )− R̂(f, Z[n])|

=

∣∣∣∣∣ 1n
n∑
i=1

E f(Z)− f(Zi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n∑
i∈J

E f(Z)− f(Zi)

∣∣∣∣∣
+

∣∣∣∣∣ 1n∑
i∈I

E f(Z)− f(Zi)

∣∣∣∣∣
≤ 1

n− k

∣∣∣∣∣∑
i∈J

E f(Z)− f(Zi)

∣∣∣∣∣
+

k

n
max
i∈I
|E f − f(Zi)|

= ∆n−k(f, P, ZJ)

+
k

n
max
i∈I
|E f(Z)− f(Zi)|

≤ ∆n−k(f, P, ZJ) +
k

n
.

Thus (conditioned on ZI),

∆n(ρ(ZI), P, Z[n]) ≤ ∆n−k(ρ(ZI), P, Z[n]\I) +
k

n

holds with probability 1.

We now state the main result of this section:
Theorem C.1.

P
(

∆̄n(Fρ(Z[n])) ≥
k

n
+ ε

)
≤(

n

k

)
P
(
∆̄n−k(ρ(Z[k]), P, Z[n]\[k]) ≥ ε

)
.

To apply this result to examples of interest, let us
compute the right-hand side of the bound for some
function classes.

Example: VC classes. In our first example, sup-
pose that ρ maps k-tuples of Z to binary concept
classes — which might well be different for each k-
tuple — of VC-dimension at most d. More precisely,
we take Z = X × {0, 1}, where X is an instance space.
Let H = Hz ⊆ {0, 1}X be a concept class defined by
the k-tuple z ∈ Zk, with VC-dimension d. Define
F ⊆ {0, 1}Z to be its associated loss class, where we
write FFIX to distinguish fixed (i.e., deterministic) vs.
random function classes:

FFIX =
{
fh : (x, y) 7→ 1{h(x) 6=y};h ∈ H

}
.

We call this setting a hybrid (k, d) VC sample-
compression scheme. It is well-known (see, e.g., (An-
thony and Bartlett, 1999, Theorem 4.9)) that

E[∆̄n(FFIX)] ≤ c
√
d/n, (17)
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where c > 0 is a universal constant. Further, ∆̄n(FFIX)
is known to be concentrated about its mean (see, e.g.,
(Mohri et al., 2012, Theorem 3.1)):

P
(
∆̄n(FFIX) ≥ E[∆̄n(FFIX)] + ε

)
≤ exp(−2nε2). (18)

Combining Theorem C.1 with (17), and (18), we con-
clude:
Corollary C.1.1. In a hybrid (k, d) VC sample com-
pression scheme, on a sample of size n, a learner’s
sample error êrr(ĥn) and generalization error err(ĥn)
satisfy

err(ĥn) ≤ êrr(ĥn) + c

√
d

n− k
+

√
log[δ−1

(
n
k

)
]

2(n− k)
+
k

n

with probability at least 1− δ.

Example: Margin classes. Here, we take X to be
an abstract set, Y = {−1, 1}, Z = X × Y, and define

H̃ = {hw : X 3 x 7→ w ·Ψ(x); ‖w‖ ≤ 1} ,

where Ψ(x) = Ψz(x) is a map from X to RN determined
by some k-tuple z ∈ Z, with ‖Ψz(·)‖ ≤ 1. Associate
to H̃ the γ-margin loss class

FFIX
γ =

{
fh : X × {−1, 1} 3 (x, y) 7→ Φγ(yh(x));h ∈ H̃

}
,

where Φγ(t) = min(0,max(1, 1−t/γ)). We refer to this
setting as a hybrid (k, γ) margin sample compression
scheme. It is a standard fact (see, e.g., (Mohri et al.,
2012, Theorem 4.4)) that

P
(

∆̄n(FFIX
γ ) ≥ 2

γ
√
n

+ ε

)
≤ exp(−2nε2). (19)

Combining Theorem C.1, (19), and a standard stratifi-
cation argument (see (Mohri et al., 2012, Theorem 4.5)),
we obtain the following result. Fix a map ρ : Zk → Ψ(·).
Given a sample Z[n] = (Xi, Yi)i∈[n] drawn iid, the
learner chooses some k examples to define the random
mapping Ψz : X → RN . Having mapped the sample to
RN , he runs SVM and obtains a hyperplane w.
Corollary C.1.2. With probability at least 1− δ, we
have

E
(X,Y )

[sgn(Y w ·Ψ(X)) ≤ 0 |Z[n]] ≤
1

n

n∑
i=1

max(0, 1− Yiw ·Ψ(Xi))

+
4

‖w‖
√
n− k

+

√
log log2

2
‖w‖

n− k

+

√
log(2

(
n
k

)
/δ)

2(n− k)
+
k

n
.


