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Abstract

We introduce a new embedding technique
based on a barycentric coordinate system.
We show that our embedding can be used
to transform the problem of polytope approxi-
mation into one of finding a linear classifier in
a higher dimensional (but nevertheless quite
sparse) representation. In effect, this embed-
ding maps a piecewise linear function into an
everywhere-linear function, and allows us to
invoke well-known algorithms for the latter
problem to solve the former.
We demonstrate that our embedding has ap-
plications to the problems of approximating
separating polytopes — in fact, it can ap-
proximate any convex body and unions of
convex bodies — as well as to classification
by separating polytopes and piecewise linear
regression.

1 Introduction

In this paper we introduce a new embedding technique
which uses a barycentric coordinate system to embed
input points into a higher-dimensional representation,
where the target space is nevertheless quite sparse.
The embedding, which we term the Nested Barycentric
Coordinate System (NBCS), has the useful property
that a piece-wise linear function in the origin space
can be represented as a single linear function in the
target space. We will demonstrate that the NBCS
has application to multiple problems, including the
following:

Approximating and learning polytopes. The problem
of finding a simple polytope consistent with a labelled
set is known to be computationally intractable (Khot
and Saket, 2011), although better bounds are known
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for polytopes with margin (Gottlieb et al., 2018). Still,
state-of-the-art algorithms for this problem feature
a steep dependence on the inverse margin and half-
space number defining the polytope. We will show
that NBCS can be used to model this problem as the
well-studied maximum-margin hyperplane problem. In
fact, our technique can even solve the case where the
labelled space is defined by a union of multiple disjoint
polytopes.

The related problem of learning a separating polytope
is known to require a large sample size (Goyal and
Rademacher, 2009), although this too can be mitigated
when the polytope has a large margin (Gottlieb et al.,
2018). We show that NBCS can be used for this learn-
ing problem as well.

Function approximation and regression. The problem
of computing a piece-wise linear approximation to an
input function is of significant mathematical and numer-
ical interest. The learning counterpart of this problem
is to model a finite number of function observations
using a piece-wise linear regressor, while avoiding over-
fitting. However, algorithms for these problems often
scale poorly with increased dimension or observation
size (Hannah and Dunson, 2013). As with polytope
approximation, we can show that NBCS can be used
to transform the problem of finding a piece-wise linear
approximator or regressor to that of finding a single
linear approximator or regressor.

Techniques. Our proposed embedding technique
partitions the input space into a nested hierarchy of
simplices, and then embeds each data point into fea-
tures corresponding to the barycentric coordinates of
its containing simplex. This yields an explicit feature
map, and allows us to fit a linear separator (or train
a linear classifier) in the rich feature space obtained
from the simplices.

For sample size n in d-dimensional space, our method
has runtime O(d2n) regardless of the dimension of the
embedding space (when the approximation parameter
is taken to be fixed, see Sections 5 and 7 for exact
bounds). In contrast, standard polynomial embed-
ding techniques for p-degree polynomials typically run
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in time O(dpn). Likewise, typical kernel embedding
have runtime O(dn2), and so scale poorly to big data.
Our embedding technique allows for highly non-linear
decision boundaries, although these are linear within
each simplex (and hence piecewise-linear overall), as
explained in Section 3. At the same time, our approach
is sufficiently robust to closely approximate realizable
convex bodies or functions for any given error in only
linear time for a fixed dimension (Section 4). We also
give generalization bounds based on empirical margin
(Theorem 5.1) and a novel hybrid sample compres-
sion technique (Theorem 5.2). Finally, we perform an
extensive empirical evaluation in which our method
compares favorably with a wide range of other popular
kernel and embedding methods, for classification and
regression (Section 7).

2 Related Work

Approximating convex polytopes. Learning ar-
bitrary convex bodies requires a very large sample size
(Goyal and Rademacher, 2009), and so we focus instead
on convex polytopes defined by a small number of half-
spaces. However, the problem of finding consistent
polytopes is known to be NP-complete even when the
polytope is simply the intersection of two hyperplanes
(Megiddo, 1988). In fact, Khot and Saket (2011) showed
that “unless NP = RP, it is hard to (even) weakly
PAC-learn intersection of two halfspaces”, even when
allowed the richer class of O(1) intersecting halfspaces.
Klivans and Sherstov (2009) showed that learning an
intersection of nε halfspaces is intractable regardless of
hypothesis representation (under certain cryptographic
assumptions). These negative results have motivated
researchers to consider the problem of discovering con-
sistent polytopes which have some separating margin.
Several approximation and learning algorithms have
been suggested for this problem, featuring bounds with
steep dependence on the inverse margin and number of
halfspaces forming the polytope (Arriaga and Vempala,
2006; Klivans and Servedio, 2008; Gottlieb et al., 2018;
Goel and Klivans, 2018).

In contrast, we show in Section 4 that our method
is capable of approximating any convex polytope in
time independent of the halfspace number: We can
achieve linear runtime (in fixed dimension) with mild
dependence on the inverse margin, or quadratic runtime
with only polylogarithmic dependence on the inverse
margin. We accomplish this by finding a linear sepa-
rator in the higher-dimensional embedded space, and
projecting the solution back into the origin space. How-
ever, our approach is not strictly comparable to those
above, as they are concerned with minimizing the dis-
agreement between the computed polytope (or object)
and the true underlying polytope with respect to the

point space, while we minimize the volume of the space
between the polytopes.

Embeddings and Kernel maps. Finding piece-
wise linear functions, as of today, have no embedding
or kernel trick. Kernel methods provide two principal
benefits over embedding techniques: (1) They implic-
itly induce a non-linear feature map, which allows for
a richer space of classifiers and (2) when the kernel
trick is available, they effectively replace the dimension
d of the feature space with the sample size n as the
computational complexity parameter. As such, these
are well-suited for the ‘high dimension, moderate data
size’ regime. For very large datasets, however, naive
use of kernel methods becomes prohibitive. The cost is
incurred both at the training stage, where an optimal
classifier is searched for over an n-dimensional space,
and at the hypothesis evaluation stage, where a sum
of n kernel evaluations must be computed. For these
reasons, for large data sets, explicit feature maps are pre-
ferred. Various approximations have been proposed to
mitigate the computational challenges associated with
explicit feature maps, including Chang et al. (2010);
Maji et al. (2012); Perronnin et al. (2010); Rahimi and
Recht (2007); Vedaldi and Zisserman (2012); Li et al.
(2010); Shahrampour and Tarokh (2018); Chum (2015);
Zafeiriou and Kotsia (2013). Kernel approximations
for explicit feature maps come in two basic varieties:

Data-dependent kernel approximations. This cate-
gory includes Nystrom’s approximation (Williams and
Seeger, 2000), which projects the data onto a suitably
selected subspace. If K(x, zi) is the projection of exam-
ple x onto the basis element zi, the points {z1, . . . , zn}
are chosen to maximally capture the data variabil-
ity. Some methods select zi from the sample. The
selection can be random (Williams and Seeger, 2001),
greedy (Smola and Schökopf, 2000), or involve an in-
complete Cholesky decomposition (Fine and Schein-
berg, 2001). Perronnin et al. (2010) applied Nystrom’s
approximation to each dimension of the data indepen-
dently, greatly increasing the efficiency of the method.

Data-independent kernel approximations. This cate-
gory includes sampling the Fourier domain to compute
explicit maps for translation invariant kernels. Rahimi
and Recht (2007, 2009) do this for the radial basis
function kernel, also known as Random Kitchen Sinks.
Li et al. (2010); Vedaldi and Zisserman (2012) applied
this technique to certain group-invariant kernels, and
proposed an adaptive approximation to the χ2 kernel.
Porikli and Ozkan (2011) map the input data onto a
low-dimensional spectral (Fourier) feature space via a
cosine transform. Vempati et al. (2010) proposed a
skewed chi squared kernel, which allows for a simple
Monte Carlo approximation of the feature map. Maji
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et al. (2012) approximated the intersection kernel and
the χ2 kernel by a sparse closed-form feature map. Pele
et al. (2013) suggested using not only piecewise linear
function in each feature separately but also to add
all pairs of features. Chang et al. (2010) conducted
an extensive study on the usage of the second-order
polynomial explicit feature map. Bernal et al. (2012)
approximated second order features relationships via a
Conditional Random Field model.

SVM Decompositions. Simplex decompositions
have been used to produce proximity-based classifiers
(Belkin et al., 2018; Davies, 1996), but to the best of
our knowledge, ours is the first work to utilize either
nested simplex decompositions or barycentric centers
in conjunction with SVM. Simplex decompositions are
related to the quadtree, and the quadtree has been used
together with SVM for various learning tasks (Saavedra
et al., 2004; Beltrami and da Silva, 2015), but not for
the creation of kernel embeddings. Simplex decomposi-
tions are more efficient than quadtrees, since a simplex
naturally decomposes into only d + 1 sub-simplices
(Section 3), while a quadtree cell naturally decomposes
into 2d sub-cells.

As mentioned, our emphasis in this paper is specifically
on explicit feature maps, but there are numerous ap-
proaches to reducing kernel SVM runtime (for example
the CoreSVM of Tsang et al. (2005, 2007)). Another re-
lated paradigm is that of Local SVM (Hao Zhang et al.,
2006; Gu and Han, 2013), which assumes continuity
of the labels with respect to spacial proximity; simi-
larly labeled points tend to cluster together. This dif-
fers from the underlying assumption motivating kernel
SVM, which assumes that the data is approximately lin-
early separable, but not necessarily clusterable. These
approaches find success in distinct settings, and are
incomparable.

Regression and function approximation. Uni-
variate piecewise linear regression is defined as a union
of lines corresponding to distinct segments of the x
axis. Given a partition of the axis into K segments (de-
fined by endpoints a1, . . . , ak) and associated weights
wKk=1 and values bKk=1, define a class of functions func-
tion gk(x) as gk(x) = x when x ∈ [ak, ak+1] and zero
otherwise. The hypothesis takes the form:

f̃(x) =
∑
k∈[K]

wkgk(x) + bk (1)

Typically the objective is to reduce the mean square er-
ror between the target function and its piecewise linear
approximation. The extension to higher dimensions is
far from trivial, as the choice of high-dimensional par-
tition is not immediate, and potentially quite complex.
But if we add assumptions on f(·) such as monotonicity

and convexity, then the problem can take the form of a
convex program, yielding a convex regression problem:

f̃(x) = max
k∈[K]

wTk · x+ bk. (2)

Here wk ∈ Rd and f̃(x) is a piecewise linear convex
function whose knots (split points) are parametrically
estimated.

This convex formulation has a computational complex-
ity of O((d+1)4n5) (Monteiro and Adler (1989)), which
quickly becomes impractical. Some methods include
an objective function constrained to a set of convex
functions only for each pair of observations (Hildreth
(1954); Kuosmanen (2008); Seijo and Sen (2011); Allon
et al. (2007); Lim and Glynn (2012)) or semidefinite
constraints over all observations (Aguilera and Morin
(2008); Wang and Ni (2012)). Aguilera et al. (2011)
proposed a two step smoothing and fitting process.
First, the data is smoothed and functional estimates
are generated over an ε-net over the domain. Then
the convex hull of the smoothed estimate is used as a
convex estimator. Although this algorithm does scale
to larger data sets, it does not scale gracefully to large
dimension due to the ε-net dividing each dimension
separately into K partitions, thereby resulting in a new
embedding space of order O(dK). Hannah and Dunson
(2011) proposed a Bayesian model that placed a prior
over the set of all piecewise linear models. They were
able to show adaptive rates of convergence, but the
inference algorithm did not scale to more than a few
thousand observations. Koushanfar et al. (2010) trans-
formed the ordering problem associated with shape
constrained inference into a combinatorial optimization
problem which was solved with dynamic programming;
this scales to a few hundred observations. Magnani and
Boyd (2009) proposed to divide the data intoK random
subsets and a linear model was fit within each subset; a
convex function was generated by taking the maximum
over these hyperplanes. Hannah and Dunson (2013)
introduced convex adaptive partitioning , which creates
a globally convex regression model from locally linear
estimates fit on adaptively selected covariate partitions.
Our work suggests a different approach by embedding
the problem directly into a Hilbert space via an explicit
feature map. In the embedded space, the regression
problem is a non-constrained linear regression problem
instead of a piecewise regression problem. However,
after solving the problem in the embedded space, the
projection back to the original space creates a smooth,
convex, continuous and differentiable piecewise linear
manifold.
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3 The Nested barycentric coordinate
system

Here we describe the nested barycentric coordinate
system. We explain its construction and description,
how to embed a point from the origin space into the
new coordinate system, and how a point in the em-
bedded system can be projected back into the origin
space (Section 3.1). We then show that if we associate
a weight with each simplex point, then the embedding
and weights together imply some (not necessarily con-
vex) polytope on the origin space (Section 3.2). Later
in Section 4 we will show that this system is sufficiently
robust that it can be used to approximate any convex
body.

3.1 Nested barycentric embedding

Let S ⊂ Rd be a regular simplex of unit side-length,
and let (q0, . . . , qd) be its vertices. Each point x in-
side the simplex can be written using the barycentric
coefficients:

x =

d∑
i=0

αiqi

d∑
i=0

αi = 1 0 ≤ αi ≤ 1

(3)

Here αi denotes the coefficient of point x corresponding
to vertex qi. Denote the vector of α’s corresponding
to x by φd+1(x) = (α0, . . . , αd). This vector can be
computed by letting

φd+1(x) = Q−1 · (x, 1)T , (4)

Where Q is the (d + 1) × (d + 1) matrix whose ith
column is (qi, 1)T .

We can further refine the system by introducing a
new point qd+1 inside the simplex, thereby inducing a
partition of the simplex into d+ 1 new sub-simplices,
S1, . . . , Sd+1. We order the coordinates of our system
as (q0, . . . , qd+1). A point x inside the system is embed-
ded by first identifying the sub-simplex Si containing
x, and then utilizing the d + 1 vertices of Si to com-
pute the barycentric coefficients (the α’s) of equation
(3). Then x is assigned a vector wherein each coordi-
nate corresponding to each vertex of Si is set to the
coefficient of that vertex, and the remaining coordi-
nates is set equal to 0. This defines the embedding
φd+2(x) : Rd → Rd+2.

The refinement process can be continued by choosing
points inside simplices to further split these simplices.
In general, after a sequence Qt = (q0, ..., qt) of t + 1
points have been chosen, we have a nested architecture

represented by a (d+ 1)-ary tree Bt. Each node v of
Bt is labeled by a (d+ 1)-tuple of points of Qt, which
are the vertices of a simplex s(v) ⊆ S. The root of the
tree is labeled by the vertices q0, ..., qd of the original
simplex S. The simplices corresponding to the leaves
of Bt form a partition of S. Given a new point qt+1, we
form Bt+1 from Bt by first traversing the tree from the
root down, choosing the nodes who’s simplices contain
qt+1 until we find the leaf v whose simplex contains
qt+1. Then we add d+1 children to v, each one labeled
by a different (d + 1)-tuple in which qt+1 replaces a
vertex of v.

The tree Bt defines an embedding φt(x) : Rd → Rt as
follows: Given x, let v be the leaf of Bt whose simplex
s(v) contains x. Let qi0 , ..., qid be the vertices of s(v).
Write x = Σαijqij as a convex combination of these
vertices, and let αk = 0 for all other points qk. Then
φt(x) = (α0, ..., αt). See Figure 1. (If x lies on the
boundary of several leaf simplices, then we can choose
any of them, since the resulting embedding φt(x) will
be the same in all cases.)

We note that the embedding — the nested barycentric
coordinate system — is sparse, as at most d+ 1 coeffi-
cients are non-zero, and also that the embedded points
lie on the L1 sphere (

∑
α = 1).

(a) step 1

(b) step 2.1 (c) step 2.2

Figure 1: Creation of the nested system

A point in the embedded space can be projected back
into the original space by

x =

t∑
i=0

αiqi. (5)
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Figure 2: An example of a border polytope and two
other disjoint polytopes corresponding to w ·φt(x) = 0.

3.2 Weights, hyperplanes and polytopes

Given an embedding, we will assign a sequence of
real-valued weights w = (w0, . . . , wt) to the vertices
(q0, . . . , qt). Then the set of points R such that

R = {x ∈ S : w · φt(x) ≥ 0} (6)

is a union of interior-disjoint convex regions, each of
which equals the intersection of one of the simplices
with a halfspace (see Figure 2 for an illustration).

Lemma 3.1. Any hyperplane that crosses a single
simplex can be defined by a sequence of weights w =
(w0, . . . , wd), such that all points x that lie on the hy-
perplane satisfy the equation w · φd+1(x) = 0.

Proof. Choose d affinely independent points on the
given hyperplane. These points have a unique set
of barycentric coefficients of the containing simplex,
and thus a unique representation. Finding the desired
weights is equivalent to solving A · w = 0, where A is
a matrix of dimension d× (d+ 1) whose rows are the
embeddings φd+1(x) of the points. Since this homoge-
neous linear system has more unknowns than equations,
it has a nontrivial solution.

In Section 4 we will show that a simple nested barycen-
tric system, together with a prudent choice of weights,
can be used to closely approximate any given convex
body. To this end, we will require a useful property of
these systems — essentially, that splitting a simplex
cannot decrease the expressiveness of the system. For
this end, it is enough to show the following:

Theorem 3.2. Let Bd+1 = (q0, . . . , qd) consist of a
single simplex P , let w = (w0, . . . , wd) be a sequence of
weights, and let H = {x ∈ P : w · φd+1(x) = 0}.
Let qd+1 ∈ P be a split point, and let Bd+2 =
(q0, . . . , qd+1). Then there exists a weight wd+1 for qd+1

such that, letting w′ = (w0, . . . , wd+1), we have

{x ∈ P : w′ · φd+2(x) = 0} = H for all x ∈ P .

Proof. We will show that the desired weight is wd+1 =
φd+1(qd+1) · w. Indeed, let

φd+1(x) = (α0, . . . , αd),

φd+2(x) = (β0, . . . , βd+1),

φd+1(qd+1) = (γ0, . . . , γd).

Then

x =

d+1∑
i=0

βiqi =

d∑
i=0

(βi + βd+1γi)qi.

Since the barycentric representation is unique, this
implies that αi = βi + βd+1γi for all i ≤ d. Hence,

w′ · φd+2(x) =

d∑
i=0

βiwi + βd+1

d∑
i=0

γiwi

=

d∑
i=0

αiwi

= w · φd+1(x),

as claimed.

4 Convex body approximation

In this section prove that a convex manifold can be
approximated in the Hausdorff distance sense using
NBCS. Given a Hausdorff distance of ε an approximate
polytope P̃ can be constructed in O(ln( 1ε )). Also given
a convex body with margin ε a consistent polytope
P̃ (−ε) can be constructed to fall within the ε margin
using even the simplest method of equal volume sub-
divisions. We have also proven that a convex body
or a function can be approximated in the MSE sense
using a more elaborate Archimedean style subdivision.
The first approximation is more useful for classifica-
tion tasks and the second for regression and function
approximation using piecewise linear functions.

Details of these proofs are presented in Section A,B of
the Supplementary Material.

5 Learning algorithms

In Section 4, we demonstrated that the uniform subdi-
vision embedding, coupled with an appropriate choice
of weights, can represent an approximation to any given
convex body. This motivates an embedding technique
for a linear classifier.

For some parameter q (determined by cross validation),
our classification algorithm produces a q-stage uniform
subdivision: Beginning with a single simplex covering
the entire space, at each stage we add to the system the
barycentric center of each simplex, thereby splitting
all simplices into d + 1 sub-simplices. We call a set
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of d + 1 simplices formed by a split siblings. The
procedure stops after q stages, having produced (d+1)q

simplices. We note that there is nothing to be gained
by splitting an empty simplex, so the algorithm may
ignore these (and this may also help us avoid creating
thin simplices). Then an empty simplex must have a
sibling that contains points, and since a simplex has d
siblings, we have that the total number of simplices is
not greater than min{(d+ 1)q, dnq}.

Parameter q is analogous to depth parameter s of
Lemma A.4; however, we have consistently observed by
empirical cross-validation that it suffices to take q as
a very small constant (at most 5), and so we stipulate
in our algorithm that q be bound by a small universal
constant.

Having computed the nested coordinate system, we use
it to embed all points into high-dimensional space. To
find an appropriate weight assignment w for the simplex
points, we compute a linear classifier on the embedded
space to separate the data. A linear classifier takes
the form h(x) = sign(w · x), and this w serves as our
weight vector for the embedding – we note that as w is
computed globally over points (and not locally as was
done in Section 4), we expect it to produce a smoother
classifier with no rigid spikes. We use soft SVM as our
linear classifier, and note that the training phase can
be executed in time O(dn) on (d + 1)-sparse vectors
(Joachims, 2006). The total runtime of the algorithm
is bounded by the cost of executing the sparse SVM
plus the total number of simplex points, that is

O(min{d(d+1)q+dn, d2qn}) = min{dO(1)+dn,O(d2n)}.

To classify a new point, we can simply search top-
bottom for its lowest containing simplex: We begin
at the initial simplex, investigate which of its d sub-
simplices contains the query point, and iterate on that
simplex. This can all be done in time O(qd2) = O(d2).
After bounding the run time, we want to bound the
out of sample error:

Theorem 5.1. If our classifier achieves sample error
R̂ with margin γ (i.e., R̂ is the fraction of the points
whose margin is less than γ) on a sample of size n
after stopping at stage q, its generalization error R is
bounded by

R̂+O(1/(γ
√
n) +

√
log(q/δ)/n) (7)

with probability at least 1− δ.

This bound is a consequence of the SVM margin bound
(Mohri et al., 2012, Theorem 4.5) and the stratification
technique (Shawe-Taylor et al., 1998), where the q-th
stage receives weight 1/2q.

Adaptive splitting strategies. The above algo-
rithm is data-independent in its selection of split points.
It is reasonable to suggest that a data-dependent choice
of split points can improve the performance of the
learning algorithm, and this too may be less prone to
creating thin simplices. Several greedy strategies sug-
gest themselves, but after empirical trials we suggest
the following split heuristic: At every stage, a linear
classifier of the embedding space is computed. For
each simplex, we identify the points in the simplex
have been misclassified so far, and choose a data point
which is closest to the barycentric center of the mis-
classified points. As before, we limit the heuristic to a
constant number of stages, and it is also not necessary
to subdivide an empty simplex, or one that contains not
many misclassified points. (See Section 7 for empirical
results.) The following bounds follow from Corollary
C.1.2:

Theorem 5.2. If our adaptive classifier achieves sam-
ple error R̂ with margin γ (i.e., R̂ is the fraction of
the points whose margin is less than γ) on a sample of
size n after stopping at stage q and retaining k split
points, its generalization error R is bounded by

R̂+O(1/(γ
√
n− k) +

√
log(q/δ)/(n− k)) (8)

with probability at least 1− δ.

We note that in the above algorithms, computations
done on individual simplices are easily parallelizable.

NBCS Regression. Having shown in Section 4 how
to use NBCS to approximate convex functions, we
can now apply this tool to regression. Consider a
regression problem with yi = f(xi) + εi, where yi ∈ R,
xi ∈ Rd and εi ∼ N(0, σ2) (σ ≤ 1) is an error term.
Theorem B.2 implies that the NBSC embedding reduces
the mean square error at every step, and that the
number of steps can be bounded by O(log 1

σ ). In order
to find an appropriate weight assignment w for the
simplex points, we compute a linear regressor on the
embedded space, where the regressor is of the form
h(x) = w · x+ b. Following the algorithm for concave
function approximation, we can suggest after each step
calculating f ′(x) = f(x) −

∑
wiφ(x) and taking the

data point within each new simplex which maximizes
the value of f ′(x). If f ′(x) evaluated at the knot is less
than the predefined constant parameter ε, then there is
nothing to be gained by further splitting this simplex.
This causes the algorithm to make more splits in the
‘curved’ parts of the manifold than on the nearly linear
ones.
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6 Experiments

Our embedding technique is motivated by provable
bounds for convex polytopes, but we find that it is
sufficiently robust to yield impressive empirical results
for general piecewise linear functions with maximal
margin. All experiments utilized the python scikit-
learn library (Pedregosa et al., 2011) 1. The SVM
regularization parameter C was 5-fold cross-validated
over the set {2−5, 2−3, . . . , 215}, and for the RBF ker-
nel, the γ parameter was five-fold cross-validated over
the set {2−15, 2−3, . . . , 23}. For polynomial kernel we
cross-validated the polynomial exponent d over the set
{2, . . . , 10}.

For our methods, the maximum iteration parameter q
was cross validated over the set {2, . . . , logd(n)}. Our
algorithms usually converged even before reaching the
maximum number of allowed iterations.

Polytope approximation. Before presenting the
experiments, we give a simple example that illustrates
the power of our approach in approximating non-convex
polytopes. We created a random data-set wherein all
positive examples were taken from within a 5-gon in
2D and the negative points from outside it. This data
was randomly generated within the unit circle: For
each halfspace, we sampled a random direction vector
wj uniformly from the unit sphere, and then sampled
a random offset value bj ∈ [.05, .95] to produce the
halfspace (wj , bj). The intersection of these halfspaces
is the target polytope. All data points inside the poly-
tope with margin 0.05 were labeled as positive, all
data points outside the polytope with margin 0.05 were
labeled as negative, and the rest were discarded.

Figure 3 shows the iterative boundary formation, where
the bold black line is the decision boundary and the
dotted lines are the margin (w ·φt(x) = ±1) . For each
iteration, the nested barycentric system is illustrated
by the red lines. A consistent approximation of the
underlying polytope for multiple runs was achieved
after only 3 iterations. Notice how the margins become
smaller at each iteration until reaching their predeter-
mined size, and also that the constructed polytope is
non-convex, although there exists a convex polytope
consistent with the points.

For our regression simulation we chose a piecewise linear
function consisting of four lines with noise. As in Birke
and Dette (2007), we ran simulations with uniformly
distributed design points for the explanatory variables
and added normal noise with standard deviation σ =
0.05 to the response variable. Figure 4 shows the result
of {1, 2, 4} steps along with log10-normalized MSE for

1code can be found at
https://github.com/erankfmn/NBCS-embedding

Figure 3: Learning a polytope separating the red and
blue points. Note that by the third step the poly-
tope is consistent with data, so that no change in the
embedding is effected by the fourth step.

all different steps from 1− 6. Notice how the algorithm
chooses the knots on the vertices of the polytope and
does not add more knots within the linear parts of
the edges. Stipulating a minimum inter-point distance
serves to prevent the creation of simplices with very
thin volume (spikes) and also acts as a regulator to
prevent overfitting.

7 Benchmarks

We compared our method on real-world datasets with
varying sizes and dimensions (see Table 1). We first
confirmed that our runtime on large datasets is compet-
itive with other feature map methods and Core-SVM
(Table 2). We then compared our results to other ex-
plicit feature map methods discussed in Section 2. Here
we focused only on accuracy, since all these methods
have similar runtime complexity. Figure 5 demon-
strates a comparison of the average accuracy between
our embedding technique (adapt-NBCS), Kitchen Sink
(KS) (Rahimi and Recht, 2007), Nystrom’s approxima-
tion (Williams and Seeger, 2000) and the adaptive χ2

(Vedaldi and Zisserman, 2012), all of which have open
source implementations within the scikit-learn library.
(We note that Nystrom, KS and CoreSVM are all RBF
kernel approximations using subsampling techniques.)
We included the accuracy achieved by RBF and poly-
nomial SVM in kernel mode. We also included the
accuracy of random forests (RF), a technique which
tied for first place in comparisons made by Delgado
et al. (2014) over the entire UCI dataset. Random
forest is a good comparison to our method since much
like our method it will create piecewise linear bound-
aries, but without maximal margin. Our algorithm’s
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Figure 4: Function approximation over a partial linear
function with noise and the overall log error. Note that
the adaptive splitting did not add any splits to the
linear parts once they were found.

accuracy compared favorably with the others.

For regression purposes, we compared our method to
other embedding and convex regression methods on
real-world datasets. Table 3 demonstrates a comparison
of the the squared correlation coefficient (R2) of our
embedding technique (NBCS) against othe embedding
and kernel techniques as mentioned above

over a large variety of datasets, varying in size and
dimension. The results show that NBCS compared
favorably to other methods for all datasets.

8 Discussion and future work

In this paper, we introduced the barycentric coordinate
system embedding system, and showed its applicability
to problems such as finding consistent polytopes, clas-
sification, function approximation and regression. We
derived a statistical foundation for this approach, and
presented experiments on datasets which show promis-
ing empirical results. Future work includes analytical
and empirical investigations of other natural splitting
strategies.
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Figure 5: classification results for different embedding
techniques
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Table 1: Datasets

Iris Wine Ion Libras Sonar Transf

#dims 4 13 34 90 60 4
#examples 150 178 351 360 208 748
#classes 3 3 2 15 2 2

Steel Cardio3 Cardio10 Segment Landsat Diabetes

#dims 27 21 21 19 36 13
#examples 1941 2126 2126 2310 6435 768
#classes 7 3 10 7 6 2

Table 2: Classification results for different embedding techniques.

Dataset n d 3rd degree SVM CoreSVM-RBF uni-NBCS adapt-NBCS

SkinNonSkin 245,057 4 99.4%, 20 sec 98.9%, 570.4 sec 97.6%, 4 sec 98.8%, 4.2 sec
cod-rna 59,535 8 95.2%, 18.6 sec 94.3%, 23 sec 93.6%, 8.7 sec 94.5%, 9 sec
shuttle 58,000 9 98%, 25.8 sec 93.2%, 5.3 sec 95.4%, 8 sec 97.8%, 6.3 sec
forest cover type 522,911 54 81.5%, 8028 sec 94.5%, 2028 sec 92.3%, 2040 sec 96%, 2140 sec

Table 3: Regression results for different embedding techniques.

Dataset n d Poly KS Nystroem χ2 NBCS

Abalone 4177 8 0.746± 0.01 0.798± 0.01 0.815 ± 0.02 0.805± 0.02 0.812 ± 0.01
Bodyfat 252 14 0.973± 0.01 0.957± 0.02 0.923± 0.02 0.852± 0.02 0.966 ± 0.01
Cadata 20,640 8 0.949± 0.01 0.952± 0.01 0.943± 0.01 0.936± 0.01 0.945 ± 0.01
Cpusmall 8192 12 0.961± 0.01 0.968± 0.01 0.932± 0.01 0.973± 0.01 0.971± 0.01
Housing 506 13 0.672± 0.03 0.769± 0.01 0.854± 0.01 0.844± 0.01 0.825± 0.01
Prim 74 27 0.791± 0.01 0.815± 0.01 0.780± 0.01 0.823± 0.02 0.870± 0.02
Spacega 3107 6 0.682± 0.03 0.711± 0.03 0.781± 0.01 0.823± 0.01 0.875 ± 0.02
Triazines 186 60 0.729± 0.01 0.720± 0.01 0.711± 0.01 0.720± 0.01 0.723± 0.01
Eunite2001 367 16 0.825± 0.01 0.681± 0.03 0.725± 0.02 0.683± 0.03 0.812 ± 0.01
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