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Abstract

Stochastic Gradient Descent (SGD) is being
used routinely for optimizing non-convex
functions. Yet, the standard convergence
theory for SGD in the smooth non-convex
setting gives a slow sublinear convergence
to a stationary point. In this work, we
provide several convergence theorems for
SGD showing convergence to a global
minimum for non-convex problems satisfying
some extra structural assumptions. In
particular, we focus on two large classes
of structured non-convex functions: (i)
Quasar (Strongly) Convex functions (a
generalization of convex functions) and (ii)
functions satisfying the Polyak-Lojasiewicz
condition (a generalization of strongly-convex
functions). Our analysis relies on an Expected

Residual condition which we show is a strictly
weaker assumption than previously used
growth conditions, expected smoothness or
bounded variance assumptions. We provide
theoretical guarantees for the convergence
of SGD for di↵erent step-size selections
including constant, decreasing and the
recently proposed stochastic Polyak step-size.
In addition, all of our analysis holds for
the arbitrary sampling paradigm, and as
such, we give insights into the complexity of
minibatching and determine an optimal mini-
batch size. Finally, we show that for models
that interpolate the training data, we can
dispense of our Expected Residual condition
and give state-of-the-art results in this setting.
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1 INTRODUCTION

We consider the unconstrained finite-sum optimization
problem

min
x2Rd

"
f(x) =

1

n

nX

i=1

fi(x)

#
. (1)

We use X
⇤
⇢ Rd to denote the set of minimizers x

⇤

of (1) and assume that X
⇤ is not empty and that

f(x) is lower bounded. This problem is prevalent in
machine learning tasks where x corresponds to the
model parameters, fi(x) represents the loss on the
training point i and the aim is to minimize the average
loss f(x) across training points.

When n is large, stochastic gradient descent (SGD)
and its variants are the preferred methods for solving
(1) mainly because of their cheap per iteration cost.
The standard convergence theory for SGD (Robbins
and Monro, 1951; Nemirovski and Yudin, 1978, 1983;
Shalev-Shwartz et al., 2007; Nemirovski et al., 2009;
Arjevani et al., 2019; Hardt et al., 2016) in the smooth
nonconvex setting shows slow sub-linear convergence
to a stationary point. Yet in contrast, when applying
SGD to many practical nonconvex problems of the
form (1) such as matrix completion (Sa et al., 2015),
deep learning (Ma et al., 2018), and phase retrieval (Tan
and Vershynin, 2019) the iterates converge globally,
and sometimes, even linearly. This is because these
problems often have additional structure and properties,
such as all local minimas are global minimas (Sa et al.,
2015; Kawaguchi, 2016), the model interpolates the
data (Ma et al., 2018) or the function under study is
unimodal on all lines through a minimizer (Hinder et al.,
2019). By exploiting these structures and properties
one can prove significantly tighter convergence bounds.

Here we present a general analysis of SGD for two
large classes of structured nonconvex functions: (i) the
Quasar (Strongly) Convex functions and (ii) functions
satisfying the Polyak-Lojasiewicz (PL) condition. In
all of our results we provide convergence guarantees for
SGD to the global minimum. We also develop several
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corollaries for functions that interpolate the data.

1.1 Background and Main Contributions

Classes of structured nonconvex functions. The
last few years has seen an increased interest in ex-
ploiting additional structure prevalent in large classes
of nonconvex functions. Such conditions include er-
ror bound properties (Fabian et al., 2010), essential
strong convexity (Liu et al., 2014), quasi strong con-
vexity (Necoara et al., 2018; Gower et al., 2019), the
restricted secant inequality (Zhang and Yin, 2013), and
the quadratic growth (QG) condition (Anitescu, 2000;
Loizou, 2019). We focus on two of the weakest condi-
tions: the quasar (strongly) convex functions (Hinder
et al., 2019; Hardt et al., 2018; Guminov and Gasnikov,
2017) and functions satisfying the PL condition (Polyak,
1987; Lojasiewicz, 1963; Karimi et al., 2016). The class
of quasar-convex functions include all convex functions
as a special case, but it also includes several noncon-
vex functions. Recently there is also some evidences
suggesting that the loss function of neural networks
have a quasar-convexity structure (Zhou et al., 2019;
Kleinberg et al., 2018).

Contributions. We show that SGD converges at a
O(1/

p
k) rate on the quasar-convex functions and prove

linear convergence to a neighborhood for PL functions
without any bounded variance assumption or growth
assumptions on the stochastic gradients. Instead, we
rely on the recently introduced expected residual (ER)
condition (Gower et al., 2018).

Assumptions on the gradient. The standard con-
vergence analysis of SGD in the nonconvex setting relies
on the bounded gradients assumption Eikrfi(xk)k2 <

c (Recht et al., 2011; Hazan and Kale, 2014; Rakhlin
et al., 2012) or a growth condition Eikrfi(xk)k2 

c1+c2Ekrf(xk)k2 (Bertsekas and Tsitsiklis, 1996; Bot-
tou et al., 2018; Schmidt et al., 2017). There is now
a line of recent works (Nguyen et al., 2018; Vaswani
et al., 2019a; Gower et al., 2019; Khaled and Richtarik,
2020; Lei et al., 2019; Koloskova et al., 2020; Loizou
et al., 2020) which aims at relaxing these assumptions.

Contributions. We use the recently introduced Ex-
pected Residual (ER) condition (Gower et al., 2018).
We give the first convergence proofs for SGD under
the ER condition and we show that ER is a strictly
weaker assumption than the Strong Growth Condi-
tion (SGC) (Schmidt and Roux, 2013), Weak Growth
(WGC) (Vaswani et al., 2019a) or the Expected Smooth-
ness (ES) (Gower et al., 2019) assumptions. Further-
more, we show that the ER condition holds for a large
class of nonconvex functions including 1) smooth and
interpolated functions 2) smooth and x

⇤
– convex func-

tions1. Not only does the ER assumption hold for a
larger class of functions, our resulting convergence rates
under ER either match or exceed the state-of-the-art
for quasar-convex and PL functions.

PL condition. The PL condition (Polyak, 1987; Lo-
jasiewicz, 1963) was introduced as a su�cient condition
for the linear convergence of Gradient Descent for non-
convex functions. Assuming bounded gradients, it was
shown in Karimi et al. (2016) that SGD with a de-
creasing step size converges sublinearly at a rate of
O(1/

p
k) for PL functions. In contrast, by using a step

size which depends on the total number of iterations,
the same convergence rate can be achieved without the
need for the bounded gradient assumption (Khaled and
Richtarik, 2020). Assuming in addition the interpola-
tion condition and SGC Vaswani et al. (2019a) showed
that SGD converges linearly for PL functions, but the
specialization of this last result to gradient descent
results in a suboptimal dependence on the condition
number2 of the function.

Contributions. We provide a complete minibatch anal-
ysis of SGD for PL functions which recovers the best
known dependence on the condition number for Gradi-
ent Descent (Karimi et al., 2016) while also matching
the current state-of-the-art rate derived in Vaswani
et al. (2019a); Lei et al. (2019) for SGD for interpo-
lated functions. All of which relies on the weaker ER
condition. Moreover, we propose a switching step size
scheme similar to Gower et al. (2019) which does not
require knowledge of the last iterate of the algorithm.
Using this step size, we prove that SGD converges sub-
linearly at a rate of O(1/k) for PL functions without
any additional bounded gradient of bounded variance
assumption or growth assumption.

Step-size selection for SGD. The most important
parameter that one should select to guarantee the con-
vergence of SGD is the step-size or learning rate. There
are several choices that one can use including constant
step-size (Moulines and Bach, 2011; Needell et al., 2016;
Gower et al., 2019; Needell and Ward, 2017; Nguyen
et al., 2018), decreasing step-size (Robbins and Monro,
1951; Ghadimi and Lan, 2013; Gower et al., 2019; Ne-
mirovski et al., 2009; Karimi et al., 2016) and adaptive
step-size Duchi et al. (2011); Liu et al. (2019); Kingma
and Ba (2015); Bengio (2015); Vaswani et al. (2019b);
Ward et al. (2019).

Contributions. We provide convergence theorems for
SGD under several step-size rules for minimizing quasar-
convex functions and functions satisfying the PL condi-

1
The x⇤

– convexity includes all convex functions and

several nonconvex functions.
2
Theorem 4 in Vaswani et al. (2019a) specialized to GD

gives a rate of µ2/L2
where L is the smoothness constant

and µ the PL constant.
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tion, including constant and decreasing step-sizes and
a recently introduced adaptive learning rate called the
stochastic Polyak step-size (Loizou et al., 2020).

Over-parameterized models and Interpolation.

Recently it was shown that SGD converges consider-
ably faster when the underlying model is su�ciently
over-parameterized as to interpolate the data. This in-
cludes problems such as deep matrix factorization (Ro-
linek and Martius, 2018; Rahimi and Recht, 2017),
binary classification using kernels (Loizou et al., 2020),
consistent linear systems (Gower and Richtárik, 2015;
Richtárik and Takác, 2020; Loizou and Richtárik, 2017,
2019) and multi-class classification using deep net-
works (Vaswani et al., 2019a; Loizou et al., 2020).

Contributions. As a corollary of our main theorems
we show that for models that interpolate the training
data, we can further relax our assumptions, dispense
of the ER condition altogether and instead, simply
assume that each fi is smooth. Our results here match
the state-of-the-art convergence results (Vaswani et al.,
2019a) but again under strictly weaker assumptions.

1.2 SGD and Arbitrary Sampling

We assume we are given access to unbiased estimates
g(x) 2 Rd of the gradient such that E [g(x)] = rf(x).
For example, we can use a minibatch to form an esti-
mate of the gradient such as g(x) = 1

b

P
i2B rfi(x),

where B ⇢ {1, . . . , n} will be chosen uniformly at ran-
dom and |B| = b. To allow for any form of minibatching
we use the arbitrary sampling notation

g(x) = rfv(x) :=
1

n

nX

i=1

virfi(x), (2)

where v 2 Rn
+ is a random sampling vec-

tor such that E [vi] = 1, for i = 1, . . . , n and
fv(x) := 1

n

Pn
i=1 vifi(x). Note that it follows im-

mediately from this definition of sampling vector that
E [g(x)] = 1

n

Pn
i=1 E [vi]rfi(x) = rf(x). In this work

we mostly focus on the b–minibatch sampling, however
we highlight that our analysis holds for every form of
minibatching.
Definition 1.1 (Minibatch sampling). Let b 2 [n].
We say that v 2 Rn is a b–minibatch sampling if for
every subset S 2 [n] with |S| = b we have that

P
"
v =

n

b

X

i2S

ei

#
= 1/

✓
n

b

◆
:=

b!(n� b)!

n!

By using a double counting argument you can show that
if v is a b–minibatch sampling, it is also a valid sampling
vector (E [vi] = 1) (Gower et al., 2019). See Gower
et al. (2019) for other choices of sampling vectors v.

With an unbiased estimate of the gradient g(x), we can
now use Stochastic gradient descent (SGD) to solve (1)
by sampling g(xk) i.i.d and iterating

x
k+1 = x

k
� �

k
g(xk) (3)

We also make the following mild assumption on the
gradient noise.

Assumption 1.2. The gradient noise �
2 is finite

�
2 := sup

x⇤2X⇤
E
h
kg(x⇤)k2

i
< 1.

2 CLASSES OF STRUCTURED

NONCONVEX FUNCTIONS

We work with two classes of nonconvex problems: the
quasar-convex functions and the functions that satisfy
the Polyak-Lojasiewicz (PL) condition.

Definition 2.1 (Quasar convex). Let ⇣ 2 (0, 1] and
x
⇤
2 X

⇤. We say that f is ⇣- quasar-convex with
respect to x

⇤ if for all x 2 Rn,

f(x⇤) � f(x) +
1

⇣
hrf(x), x⇤

� xi. (4)

For shorthand we write f 2 QC(⇣) to mean (4). The
class of quasar-convex functions are parameterized by
a positive constant ⇣ 2 (0, 1]. In the case that ⇣ = 1
then (4) is known as star convexity (Nesterov and
Polyak, 2006) (generalization of convexity). One can
think of ⇣ as the value that controls the non-convexity
of the function. As ⇣ becomes smaller the function
becomes “more nonconvex” (Hinder et al., 2019).

One of weakest possible assumptions that guarantee
a global convergence of gradient descent to the global
minimum is the PL condition (Karimi et al., 2016).
Indeed, all local minimas of a function satisfying the
PL condition are also global minimas.
Definition 2.2 (Polyak-Lojasiewicz (PL) Condition).
There exists µ > 0 such that

krf(x)k2 � 2µ [f(x)� f
⇤] (5)

We write f 2 PL(µ) if function f satisfies (5).

In addition we will also consider in several corollaries
the following interpolation condition.
Assumption 2.3. We say that the interpolation con-
dition holds if there exists x⇤

2 X
⇤ such that

min
x2Rn

fi(x) = fi(x
⇤) for i = 1, . . . , n. (6)

This interpolation condition has drawn much attention
recently because many overparametrized deep neural
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networks achieve a zero loss over all training data
points (Ma et al., 2018) and thus satisfy (6).

3 EXPECTED RESIDUAL (ER)

In all of our analysis of SGD we rely on the Expected

Residual (ER) assumption. In this section we formally
define ER, provide new su�cient conditions for it to
hold and relate it to the existing gradient assumptions.

ER measures how far the gradient estimate g(x) is from
the true gradient in the following sense.
Assumption 3.1 (Expected residual). We say that
the ER condition holds or g 2 ER(⇢) if

E
h
kg(x)� g(x⇤)� (rf(x)�rf(x⇤))k2

i

 2⇢ (f(x)� f(x⇤)) , 8x 2 Rd
. (ER)

Note that ER depends on both how g(x) is sampled
and the properties of the f(x) function.

As a direct consequence of Assumption 3.1 we have the
following bound on the variance of g(x).

Lemma 3.2. If g 2 ER(⇢) then

E
⇥
kg(x)k2

⇤
 4⇢(f(x)� f

⇤) + krf(x)k2 +2�2
. (7)

It is this bound on the variance (7) that we use in our
proofs and allows us to avoid the stronger bounded
gradient or bounded variance assumptions.

Connections to other Assumptions. Let us pro-
vide some more familiar su�cient conditions which
guarantee that the ER condition holds. In doing so, we
will also provide simple and informative bounds on the
expected residual constant ⇢ when using minibatching.

We say that fi is Li–smooth if 8x, z 2 Rd holds that:

fi(z)� fi(x)  hrfi(x), z � xi+
Li

2
kz � xk

2
. (8)

Let Lmax := maxi=1,...,n Li. For x⇤
2 X

⇤, we say that
fi is x⇤–convex if

fi(x
⇤)� fi(x)  hrfi(x

⇤), x⇤
� xi , 8x 2 Rd

. (9)

These two assumptions are su�cient for the ER(⇢)
condition to hold and give a useful bound on ⇢, as we
show in the following proposition.
Proposition 3.3. Let v be a sampling vector. If fi
is Li–smooth and there exists x⇤

2 X
⇤ such that fi

is x⇤–convex then g 2 ER(⇢). If in addition v is the
b–minibatch sampling then

⇢(b) = Lmax
n� b

(n� 1)b
, �

2(b) =
1

b

n� b

n� 1
�
2
1 , (10)

where �
2
1 := supx⇤2X⇤

1
n

Pn
i=1 krfi(x⇤)k2 .

The bounds in Proposition 3.3 have been proven before
but under the stronger assumption that each fi is
convex3. In this work by dropping the requirement that
each fi is convex we are able to consider interesting
classes of nonconvex functions.

Indeed, the following theorem establishes that only
smoothness and the interpolation condition are su�-
cient for the ER to hold. Furthermore, we place the ER
within a hierarchy of the following assumptions used
in analysing SGD for smooth nonconvex functions:

SGC: Strong Growth Condition ( ⇢SGC > 0)

E
h
kg(x)k2

i
 ⇢SGC krf(x)k2 . (11)

WGC: Weak Growth Condition(⇢WGC > 0)

E
h
kg(x)k2

i
 2⇢WGC(f(x)� f(x⇤)). (12)

ES: Expected Smoothness (L > 0)

E
h
kg(x)� g(x⇤)k2

i
 2L(f(x)� f(x⇤)). (13)

Next in Theorem 3.4 we show that the ER condition
is (strictly) the weakest condition from the above list.
Theorem 3.4. Let ES, WGC and SGC denote As-
sumption 2.1 in Gower et al. (2019), Eq (7) and Eq
(2) in Vaswani et al. (2019a), respectively. Let Li and
x
⇤–convex abbreviate (8) and (9), respectively. Then

the following hierarchy holds,

SGC + L–smooth

WGC Li + Interpolated

ES Li + x
⇤–convex

ER ABC

where L–smooth is shorthand for function f being
L–smooth, and ABC refers to the condition (14)
proposed in the concurrent work, Khaled and
Richtarik (2020). Finally, there are problems such
that ER holds and ES does not hold.

3
See Proposition 3.10 item (iii) in Gower et al. (2019)

and Lemma F.3 in Sebbouh et al. (2019).
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The important assumptions for analyzing SGD in the
nonconvex setting are the ones that are downstream
from Li + Interpolated. This is because there exists
a rich class of nonconvex functions that are smooth
and satisfy the interpolation condition. In contrast,
the WGC is only known to hold for smooth and con-
vex functions satisfying the interpolation assumptions
(Proposition 2 in Vaswani et al. (2019a)).

An important distinction between the ES (13) and
the ER condition, is that (ER) always holds trivially
for full batch sampling (g(x) = rf(x)). In contrast
ES may not hold. We found that this simple fact
prevented us from obtaining the correct rates of con-
vergence of SGD with ES in the full batch setting (see
Appendix D.2).

In concurrent work, Khaled and Richtarik (2020) pro-
pose an analysis of SGD for general smooth non-convex
functions (and functions satisfying the PL condition4)
under the following ABC condition:

ABC. Let A,B,C � 0. We say that ABC condition
holds if

E
⇥
kg(x)k2

⇤
 2A(f(x)� f(x⇤

) +B krf(x)k2 + C. (14)

We note that by properly choosing the constants A,
B and C in the ABC condition we can recover the
assumptions SGC, WGC, and ES appearing in Theo-
rem 3.4. In Appendix B.3 we show how condition (7)
which is a consequence of ER is also a special case of
the ABC assumption.

4 CONVERGENCE ANALYSIS

In this section, we present the main convergence re-
sults. Proofs of all key results can be found in the
Appendix C. In Appendix D, we present additional
convergence results on quasar-strongly convex func-
tions (Section D.1) and on convergence under expected
smoothness (Section D.2).

4.1 Quasar Convex functions

4.1.1 Constant and Decreasing Step-sizes

Now we present our results for quasar-convex functions
for SGD with a constant, finite horizon and decreasing
step sizes.
Theorem 4.1. Assume f(x) is L–smooth, ⇣�quasar-
convex with respect to x

⇤ and g 2 ER(⇢). Let 0 <

�k <
⇣

2⇢+L for all k 2 N and let r0 := kx
0
� x

⇤
k
2.

4
Under di↵erent step-size selection than the one we

propose in our theorems for PL functions.

Then iterates of SGD given by (3) satisfy:

min
t=0,...,k�1

E
⇥
f(xt)� f(x⇤)

⇤


1

Pk�1
i=0 �i(⇣ � �i(2⇢+ L))

"
r
0

2
+ �

2
k�1X

t=0

�
2
t

#
.

(15)

Moreover, for � <
⇣

2⇢+L we have that

1. If 8k 2 N, �k = � ⌘
1
2

⇣
(2⇢+L) then 8k 2 N,

min
t=0,...,k�1

E
⇥
f(xt)� f(x⇤)

⇤
 2r0

2⇢+ L

⇣2k
+

�
2

2⇢+ L
.

(16)
2. Suppose SGD (3) is run for T iterations. If 8k =
0, . . . , T � 1, �k = �p

T
then

min
t=0,...,T�1

E
⇥
f(xt)� f(x⇤)

⇤


r0 + 2�2
�
2

�
p
T

. (17)

3. If 8k 2 N, �k = �p
k+1

then 8k 2 N,

min
t=0,...,k�1

E
⇥
f(xt)� f(x⇤)

⇤


1

4�

r0 + 2�2
�
2(log(k) + 1)

⇣(
p
k � 1)� �(⇢+ L/2)(log(k) + 1)

, (18)

which is a convergence rate of O
⇣

log(k)p
k

⌘
.

To the best of our knowledge, the only prior result
for the convergence of SGD for smooth quasar-convex
functions was a finite horizon result similar to (17)
but under the strong assumption of bounded gradient
variance (Hardt et al., 2018). Of particular impor-

tance is (18) which is the first O

⇣
log(k)/

p
k

⌘
any

time convergence rate for quasar-convex functions. In-
deed, this rate has only been achieved before under the
strictly stronger assumption that the fi’s are smooth,
convex and g(x) has bounded variance (Nemirovski
et al., 2009). Indeed, strictly stronger since due to
Theorem 3.4 the ER condition holds when the fi’s
are smooth and convex without any bounded gradient
assumption.

When considering interpolated functions, we can com-
pletely drop the ER condition due to Theorem 3.4.
In this next corollary we highlight this and show how
the complexity of SGD is a↵ected by increasing the
minibatch size.
Corollary 4.2. Let f be ⇣-quasar-convex with re-
spect to x⇤. Let the interpolation Assumption 2.3 hold
and let each fi be Li–smooth. If v is a b-minibatch
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sampling and �k ⌘
1
2

⇣(n�1)b
2Lmax(n�b)+L(n�1)b then

min
t=0,...,k�1

E
⇥
f(xt)� f(x⇤)

⇤


2Lmax(n� b) + L(n� 1)b

⇣2(n� 1)b

2r0
k

. (19)

This shows that TC(b), the total complexity

as a function of the minibatch size, to bring
min

i=1,...,k�1
E
⇥
f(xi)� f

⇤⇤
 ✏ is given by

TC(b) 
2(n� b)Lmax + (n� 1)bL

⇣2(n� 1)

2r0
✏

. (20)

Thus the optimal minibatch size b
⇤ that minimizes

this total complexity is given by

b
⇤ =

(
1 if (n� 1) � 2Lmax

L

n if (n� 1) < 2Lmax
L .

(21)

Specializing (19) to the full batch setting (n = b), we
have that gradient descent (GD) with step size � = ⇣

4L

converges as follows5: f(xt) � f(x⇤) 
2Lkx

0�x⇤
k
2

⇣2k .

This is exactly the rate given recently for GD for quasar-
convex functions in Guminov and Gasnikov (2017),
with the exception that we have a squared dependency
on ⇣ the quasar-convex parameter.

4.1.2 Stochastic Polyak Step-size (SPS) -

Guarantee Convergence without tuning

The stochastic Polyak step size (SPS) is a recently
proposed adaptive step size selection for SGD (Loizou
et al., 2020). SPS is a natural extension of the classical
Polyak step-size (Polyak, 1987) (commonly used in the
deterministic subgradient method) to the stochastic
setting.

In this work, we generalize the SPS to the arbitrary
sampling regime and provide a novel convergence anal-
ysis of SGD with SPS for the class of smooth, quasar
(strongly) convex functions.

Let v be a sampling vector and let fv =
Pn

i=1 fi(x)vi.
Let f⇤

v = minx2Rn fv(x) which we assume exists. Just
like the gradient, we have that fv is an unbiased esti-
mate of f . Now given a sampling vector v, we define
the Stochastic Polyak Step-size (SPS) as

SPS: �k =
fv(xk)� f

⇤
v

c krfv(xk)k2
, (22)

where 0 < c 2 R. As explained in Loizou et al. (2020),
the SPS rule is particularly e↵ective when training over-

5
Here we use that the smoothness of f guarantees that

f(x1
), . . . , f(xt

) for GD is a decreasing sequence.

parameterized models capable of interpolating the train-
ing data (when the interpolation Assumption 2.3 holds).
In this case, SGD with SPS converges to the exact min-
imum (not to a neighborhood of the solution) (Loizou
et al., 2020). In addition, if f⇤

i := minx2Rn fi(x) then
for machine learning problems using standard unreg-
ularized surrogate loss functions (e.g. squared loss
for regression, hinge loss for classification) it holds
that f

⇤
i = 0 (Loizou et al., 2020). If on top of this,

we assume that interpolation Assumption 2.3 holds
(that is, f

⇤
i = fi(x⇤), 8i 2 [n]), then we have that

f
⇤
i = f

⇤
v = fv(x⇤) = 0 for every i 2 [n] and for every v.

By assuming that every fi is Li–smooth, we have that
fv is Lv–smooth with Lv := 1

n

Pn
i=1 viLi. This smooth-

ness combined with Lemma A.2 and Jensen’s inequality
gives a lower bound on SPS (22):

1

2cE [Lv]

Jensen
 E


1

2cLv

�
 E


�k =

fv(xk)� f
⇤
v

ckrfv(xk)k2

�
.

(23)

This lower bound combining with the following new
bound allows us to establish the forthcoming theorem
for quasar-convex functions.
Lemma 4.3. Assume interpolation 2.3 holds. Let
fi be Li–smooth and let v be a sampling vector. It
follows that there exists Lmax > 0 such that

1

2Lmax
(f(x)� f

⇤)  E

(fv(x)� f

⇤
v )

2

krfv(x)k2

�
. (24)

Furthermore, for B ⇢ {1, . . . , n} let LB be the
smoothness constant of fB := 1

b

P
i2B fi. If v is

the b–minibatch sampling then

Lmax = Lmax(b) = max
i=1,...,n

�n�1
b�1

�
P

B:i2B L
�1
B

.

With the above lemma we can now establish our main
theorem.
Theorem 4.4. Let v be a sampling vector. Assume
interpolation 2.3 holds. Assume that each fi is ⇣-
quasar-convex with respect to x

⇤ and Li-smooth.
Then SGD with SPS (22) and c >

1
2⇣ converges as

follows:

min
i=0,...,K�1

E
⇥
f(xi)� f

⇤⇤


2c2

2c⇣ � 1

Lmax

K
kx

0
�x

⇤
k
2
,

where Lmax is defined in Lemma (4.3).

We now use Lmax(b) given in Lemma 4.3 to derive the
importance sampling complexity. To the best of our
knowledge, this is the first importance sampling result
for SGD with SPS in any setting.
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Corollary 4.5. Consider the setting of Theorem 4.4
with c = 1/4⇣. Given ✏ > 0 we have that

k �
Lmax

4⇣2
kx

0
� x

⇤
k
2

✏
= O

✓
Lmax

⇣2✏

◆

) min
i=0,...,K�1

E
⇥
f(xi)� f

⇤⇤
< ✏. (25)

1. (Full batch) If we use full batch sampling we
have that Lmax = L and (25) becomes O(L/✏⇣2)
2. (Importance sampling). If we use single ele-
ment sampling with pi = Li/

P
j Lj we have that

Lmax = 1
n

P
j=1 Lj := L and (25) becomes O(L/✏⇣2).

We highlight that the result on importance sampling of
Corollary 25 requires the knowledge of the smoothness
parameters Li. This comes in contradiction with the
parameter-free nature of the stochastic Polyak step-size.
However, such result was missing from the literature
and we believe that it could work as a first step towards
the understanding of e�cient (parameter-free) non-
uniform sampling variants of SGD with SPS. We leave
such extensions for future work.

4.2 PL Condition

Here we present our convergence results for functions
satisfying the PL condition (5).

4.2.1 Constant Step-size

Let us start by presenting convergence guarantees for
SGD with constant step-size.
Theorem 4.6. Let f be L-smooth. Assume f 2

PL(µ) and g 2 ER(⇢). Let �k = � 
1

1+2⇢/µ
1
L , for

all k, then SGD given by (3) converges as follows:

E[f(xk)�f
⇤]  (1� �µ)k [f(x0)�f

⇤]+
L��

2

µ
. (26)

Hence, given ✏ > 0 and using the step size � =
1
L min

n
µ✏
2�2 ,

1
1+2⇢/µ

o
we have that

k �
L

µ
max

⇢
2�2

µ✏
, 1 +

2⇢

µ

�
log

✓
2(f(x0)� f

⇤)

✏

◆

=) E
⇥
f(xk)� f

⇤⇤
 ✏. (27)

When the function is able to interpolate the data (inter-
polation condition 2.3 is satisfied), SGD with constant
step size convergences with a linear rate to the exact
solution (no neighborhood of convergence), as we show
next.
Corollary 4.7. Consider the setting of Theorem 4.6
and assume interpolation 2.3 holds. Then SGD with

�k = � 
1

1+2⇢/µ
1
L converges linearly at a rate of

(1� �µ). Consequently for every ✏ > 0, the iteration
complexity of SGD to achieve E

⇥
f(xk)� f

⇤⇤
 ✏ is

k �
L

µ

✓
1 + 2

⇢

µ

◆
log

✓
f(x0)� f

⇤

✏

◆
. (28)

If v is a b–minibatch sampling then TC(b), the total

complexity with respect to the minibatch size, is

TC(b) 
L

µ

✓
b+ 2

Lmax

µ

n� b

n� 1

◆
log

✓
f(x0)� f

⇤

✏

◆
.

(29)
Finally, let max := Lmax/µ. The minibatch size b

⇤

that optimizes the total complexity is given by

b
⇤ =

(
1 if n� 1 � 2max

n if n� 1 < 2max.
(30)

Note that Corollary 4.7 recovers the linear convergence
rate of the gradient descent algorithm under the PL
condition (Karimi et al., 2016) as a special case. Indeed
for gradient descent we have that � = 0 = ⇢. Thus
by choosing � = 1

L the resulting iteration complex-
ity is L

µ log(✏�1) which is currently the tightest known
convergence result for gradient descent under the PL
condition Karimi et al. (2016). On the other extreme,
we see that for b = 1, that is SGD without minibatching,
we obtain the convergence rate 1� µ

2
/3LLmax which

matches the current state-of-the-art rate (Vaswani
et al., 2019a, Thm. 4), (Khaled and Richtarik, 2020,
Thm. 3) and (Lei et al., 2019, Thm. 4) known under
the exact same assumptions. Thus we recover the best
known rate on either end (b = n and b = 1), and give
the first rates for everything in between 1 < b < n. To
the best of our knowledge our result is the first analysis
of SGD for PL functions that recovers the deterministic
gradient descent convergence as special case.

The closest work to our result, on the convergence of
SGD for PL functions is Khaled and Richtarik (2020).
There the authors provide similar convergence result to
Theorem 4.6 but using di↵erent step-size selection and
under the slightly more general ABC condition (14).
In Appendix C.5.1 we present a detailed comparison
of our Theorem 4.6 and Theorem 3 in Khaled and
Richtarik (2020).

4.2.2 Decreasing Step-size

As an extension of Theorem 4.6, we also show how to
obtain a O(1/k) convergence for SGD using an insight-
ful stepsize-switching rule. This stepsize-switching rule
describes when one should switch from a constant to a
decreasing step-size regime.
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Theorem 4.8 (Decreasing step sizes/switching strat-
egy). Let f be an L-smooth. Assume f 2 PL(µ) and

g 2 ER(⇢). Let k⇤ := 2L
µ

⇣
1 + 2 ⇢

µ

⌘
and

�
k =

8
>><

>>:

µ

L(µ+ 2⇢)
, for k  dk

⇤
e

2k + 1

(k + 1)2µ
for k > dk

⇤
e

(31)

If k � dk
⇤
e, then SGD given by (3) satisfies:

E[f(xk)� f
⇤] 

4L�2

µ2

1

k
+

(k⇤)2

k2e2
[f(x0)� f

⇤]. (32)

Stochastic Polyak-Step-size (SPS). For the con-
vergence of SGD with SPS for solving functions satis-
fying the PL condition we refer the interested reader
to Theorem 3.5 in Loizou et al. (2020). There the
authors focus on analyzing SGD with single-element
uniform sampling. By assuming interpolation, their
convergence results can be trivially extended to the ar-
bitrary sampling paradigm using the lower bound (23)
and Lemma 4.3.

5 EXAMPLES

In this section we provide some examples of classes of
nonconvex functions that satisfy the assumptions of
our main theorems.

System Identification. In optimal control some-
times we need to learn the underlining dynamics of the
system we are trying to control. For instance, consider
the system governed by the linear dynamics

ht+1 = Aht +Bwt (33)

yt = Cht +Dwt + ⇠t, (34)

where wt 2 R and yt 2 R are the input and output at
time t, ht 2 Rd is the hidden state, and ⇠t 2 R is a
random variable sampled i.i.d at each iteration. The
parameters we want would to learn are the matrices A 2

Rd⇥d
, B 2 Rd⇥1, C 2 R1⇥d and D 2 R that govern

the dynamics. Furthermore, we can only observe the
input-output pairs (wt, yt) by simulating the dynamics.

Our goal is to use the collected samples of the simula-
tion (wt, yt) to then fit a linear model

ht+1 = Âht + B̂wt

ŷt = Ĉht + D̂wt, (35)

governed by the matrices x := (Â, B̂, Ĉ, D̂) such that
the output of our model ŷt, and that of the simulation

yt are close. That is we want to solve

min
x=(Â,B̂,Ĉ,D̂)

f(x) := Ewt,⇠t

"
1

T

TX

i=1

kyt � ŷtk
2

#
. (36)

As done in Hardt et al. (2018), we assume that the
states wt are sampled from some fixed distribution.

This objective function (36) is highly non-convex due to
repeated multiplications of the parameters, as we can
see by substituting out the hidden states and unrolling
the recurrence (35) since

ŷt = D̂wt +
t�1X

k=t

ĈÂ
t�k�1

B̂wk + ĈÂ
t�1

h0. (37)

Despite this non-convexity, the objective function (36)
is quasar-convex (4) and L–weakly smooth6, that is

krf(x)k2  2L(f(x)� f(x⇤)). (WS)

By also bounding the domain of the parameters, Hardt
et al. (2018) show that the stochastic gradients g(x)
have bounded variance

E
h
krf(x)� g(x)k2

i
 �

2
. (BV)

Hardt et al. (2018) then use quasar convexity, (WS)
and (BV) to show that the linear dynamics (34) can
be learned with SGD in polynomial time.

As a consequence of Hardt et al. (2018) results, first
we show that the objective function (36) satisfies the
assumptions of our Theorem 4.1.
Theorem 5.1. The following hierarchy holds

BV +WS ES ER

Furthermore, there are functions for which (ER) holds
and (BV) does not.

Consequently, since (36) satisfies (BV), (WS) and (4)
we have that it satisfies (ER) and (4), and thus by
Theorem 4.1 SGD applied to (36) converges at a rate
of O(1/

p
t).

We conjecture that the linear dynamics (34) could
be learned without the bounded gradient assumption
by only relying on the (ER) condition. This would
be significant because, it would mean that the costly
projection step onto the constrained set of parameters,
required so that (BV) holds, may not be necessary. We
leave this conjecture to be verified in future work.

6
To be precise the objective function is well approxi-

mated and upper bounded by a quasar-convex and weakly-

smoooth function, which also requires some domain restric-

tions. SGD is then applied to this upper bound. See (Hardt

et al., 2018) for details.
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Figure 1: Surface plot of x2
+ 3 sin

2
(x) + 1.5y2

+ 4 sin
2
(y)

Contrived Illustrative Example. To given an ex-
ample of a visually non-convex functions that satisfies
both the PL and ER condition we consider the sep-
arable functions f(x) = 1

n

Pn
i=1 fi(xi). If each fi(xi)

satisfies the PL condition with constant µi then f(x)
satisfies the PL condition with µ = mini=1,...,n

µi

n . If in
addition each fi is a smooth function then according
to Theorem 3.4 we have that the ER condition holds,
and thus Theorem 4.7 holds. As an example, consider
the nonconvex function

f(x) =
1

n

nX

i=1

ai(x
2
i + 4bi sin

2(xi)) := fi(x), (38)

where ai > 0 and 1 > bi > 0 for i = 1, . . . , n, so
that each fi satisfies the PL condition (see Karimi et al.
(2016)7). The function (38) is interpolated since x⇤ = 0
is a global minima for each fi. Furthermore fi is smooth
since |f

00
i (x)|  2ai + 6bi. By the above arguments, so

does f satisfy the PL condition. Thus by Theorem 4.7
we know that SGD converges linearly when applied
to (38). To illustrate that such functions (38) are
nonconvex, we have a surface plot for n = 2 in Figure 1.

Nonlinear least squares. Let F : Rd
! Rn be a

di↵erentiable function where DF (x) 2 Rn⇥d is its Jaco-
bian. Now consider the nonlinear least squares problem
minx2Rd f(x) := 1

2n kF (x)� yk
2 = 1

2n

Pn
i=1(Fi(x) �

yi)2, where y 2 Rn
.

Lemma 5.2. Assume there exists x⇤
2 Rd such that

F (x⇤) = y. If the Fi(x) functions are Lipschitz and
the DF (x) has full row rank then F satisfies the PL
and the ER condition.

Star/quasar-convex. Several nonconvex empirical
risk problems are quasar-convex functions (Lee and
Valiant, 2016). Let fi : Rd

7! R be a smooth star-
convex (quasar-convex with ⇣ = 1) centered at 0. Let
A 2 Rm⇥n

, b 2 Rm such that there exists Ax
⇤ = b.

7
In Karimi et al. (2016) the authors claim that x2

+

3 sin
2
(x) is PL. We then used computer aided analysis to

show that x2
+ 3b sin2

(x) satisfies the PL condition for

0 < b < 4.

Since compositions of a�ne maps with star convex func-
tions are star convex (Lee and Valiant, 2016, Section
A.4) we have that fi(Ax� b) is star convex centered
at x

⇤
. Furthermore the average of star convex func-

tions that share the same center are star convex. Thus,
f(x) = 1

n

Pn
i=1 fi(Ax � b), is a star-convex function

which also satisfies the interpolation condition.

6 CONCLUSION

We establish a hierarchy between the expected resid-
ual (ER) condition and a host of other assumptions
previously used in the analysis of SGD in the smooth
setting, showing that ER is a strictly weaker condition.
Using the ER, we present the first convergence results
for SGD under di↵erent step-size selections (constant,
decreasing, and stochastic Polyak step-size) on quasar-
convex functions (4) without the bounded gradient or
bounded variance assumption. For functions satisfying
the PL condition (5) we provide tight theoretical con-
vergence guarantees for minibatch SGD that recover
the best-known convergence results for deterministic
gradient descent and single-element sampling SGD as
special cases, and all minibatch sizes in between.

Acknowledgements

Nicolas Loizou acknowledges support by the IVADO
post-doctoral funding program.

The work of Othmane Sebbouh was supported in
part by the French government under management
of Agence Nationale de la Recherche as part of the
”Investissements d’avenir” program, reference ANR19-
P3IA-0001 (PRAIRIE 3IA Institute). Othmane Seb-
bouh also acknowledges the support of a ”Chaire
d’excellence de l’IDEX Paris Saclay”.

References

Anitescu, M. (2000). Degenerate nonlinear program-
ming with a quadratic growth condition. SIAM

Journal on Optimization, 10(4):1116–1135.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J.,
Srebro, N., and Woodworth, B. (2019). Lower
bounds for non-convex stochastic optimization. arXiv
preprint arXiv:1912.02365.

Bengio, Y. (2015). Rmsprop and equilibrated adap-
tive learning rates for nonconvex optimization. corr
abs/1502.04390.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-

Dynamic Programming. Athena Scientific, 1st edi-
tion.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Op-



SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation

timization methods for large-scale machine learning.
SIAM Review, 60(2):223–311.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adap-
tive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learn-

ing Research, 12(Jul):2121–2159.

Fabian, M. J., Henrion, R., Kruger, A. Y., and Out-
rata, J. V. (2010). Error bounds: necessary and
su�cient conditions. Set-Valued and Variational

Analysis, 18(2):121–149.

Ghadimi, S. and Lan, G. (2013). Stochastic first-
and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization,
23(4):2341–2368.
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