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A1 Preliminaries

In this supplement, we provide complete proofs of all results found in the paper “Minimax Optimal Regression
over Sobolev Spaces via Laplacian Regularization on Neighborhood Graphs”. Our main theorems (Theorems 1-5)
all follow the same general proof strategy of first establishing bounds in the fixed-design setup. In Section A2,
we establish (estimation or testing) error bounds which hold for any graph G; these bounds are stated with

respect to (functionals of) the graph G, and allow us to upper bound the error of f̂ and ϕ̂ conditional on the
design {X1, . . . , Xn} = {x1, . . . , xn}. In Sections A3, A4, A5, and A6 we develop all the necessary probabilistic
estimates on these functionals, for the particular random neighborhood graph G = Gn,r. It is in these sections
where we invoke our various assumptions on the distribution P and regression function f0. In Section A7, we
prove our main theorems and some other results. In Section A8, we state a few concentration bounds that we use
repeatedly in our proofs.

Pointwise evaluation of Sobolev functions. First, however, as promised in our main text we clarify what
is meant by pointwise evaluation of the regression function f0. Strictly speaking, each f ∈ H1(X) is really
an equivalence class, defined only up to sets of Lebesgue measure 0. In order to make sense of the evaluation
x 7→ f(x), one must therefore pick a representative f? ∈ f . When d = 1, this is resolved in a standard way—since
H1(X ) embeds continuously into C0(X ), there exists a continuous version of every f ∈ H1(X ), and we take this
continuous version as the representative f?. On the other hand, when d ≥ 2, the Sobolev space H1(X ) does not
continuously embed into C0(X ), and we must choose representatives in a different manner. In this case we let f?

be the precise representative [Evans and Gariepy, 2015], defined pointwise at points x ∈ X as

f?(x) =

 lim
ε→0

1

ν(B(x, ε))

∫
B(x,ε)

f(z)dz, if the limit exists,

0, otherwise.

Note that when d = 1, the precise representative of any f ∈ H1(X ) is continuous.

Now we explain why the particular choice of representative is not crucial, using the notion of a Lebesgue point.
Recall that for a locally Lebesgue integrable function f , a given point x ∈ X is a Lebesgue point of f if the limit
of 1/(ν(B(x, ε)))

∫
B(x,ε)

f(x)dx as ε→ 0 exists, and satisfies

lim
ε→0

1

ν
(
B(x, ε)

) ∫
B(x,ε)

f(x)dx = f(x).

Let E denote the set of Lebesgue points of f . By the Lebesgue differentiation theorem [Evans and Gariepy, 2015],
if f ∈ L1(X ) then almost every x ∈ X is a Lebesgue point, ν(X \ E) = 0. Since f0 ∈ H1(X ) ⊆ L1(X ), we can
conclude that any function g0 ∈ f0 disagrees with the precise representative f?0 only on a set of Lebesgue measure
0. Moreover, since we always assume the design distribution P has a continuous density, with probability 1 it
holds that g0(Xi) = f?0 (Xi) for all i = 1, . . . , n. This justifies the notation f0(Xi) used in the main text.



A2 Graph-dependent error bounds

In this section, we adopt the fixed design perspective; or equivalently, condition on Xi = xi for i = 1, . . . , n. Let
G =

(
[n],W

)
be a fixed graph on {1, . . . , n} with Laplacian matrix L = D −W . The randomness thus all comes

from the responses
Yi = f0(xi) + εi (A.1)

where the noise variables εi are independent N(0, 1). In the rest of this section, we will mildly abuse notation
and write f0 = (f0(x1), . . . , f0(xn)) ∈ Rn. We will also write Y = (Y1, . . . , Yn).

Recall (2) and (3): the Laplacian smoothing estimator of f0 on G is

f̂ := argmin
f∈Rn

{ n∑
i=1

(Yi − fi)2 + ρ · f>Lf
}

= (ρL+ I)−1Y.

and the Laplacian smoothing test statistic is

T̂ :=
1

n
‖f̂‖22.

We note that in this section, many of the derivations involved in upper bounding the estimation error of f̂ are
similar to those of Sadhanala et al. [2016], with the difference being that we seek bounds in high probability
rather than in expectation. We keep the work here self-contained for purposes of completeness.

A2.1 Error bounds for linear smoothers

Let S ∈ Rn×n be a fixed square, symmetric matrix, and let

qf := SY

be a linear estimator of f0. In Lemma 3 we upper bound the error 1
n‖ qf − f0‖22 as a function of the eigenvalues

of S. Let λ(S) = (λ1(S), . . . , λn(S)) ∈ Rn denote these eigenvalues, and let vk(S) denote the corresponding
unit-norm eigenvectors, so that S =

∑n
k=1 λk(S) · vk(S)vk(S)>. Denote Zk = vk(S)>ε, and observe that

Z = (Z1, . . . , Zn) ∼ N(0, I).

Lemma 3. Let qf = SY for a square, symmetric matrix, S ∈ Rn×n. Then

Pf0
(

1

n

∥∥ qf − f0

∥∥2

2
≥ 10

n

∥∥λ(S)
∥∥2

2
+

2

n

∥∥(S − I)f0

∥∥2

2

)
≤ 1− exp

(
−
∥∥λ(S)

∥∥2

2

)
Here we have written Pf0(·) for the probability law under the regression “function” f0 ∈ Rn.

In Lemma 4, we upper bound the error of a test involving the statistic ‖ qf‖22 = Y>S2Y. We will require that S
be a contraction, meaning that it has operator norm no greater than 1, ‖Sv‖2 ≤ ‖v‖2 for all v ∈ Rn.

Lemma 4. Let qT = Y>S2Y for a square, symmetric matrix S ∈ Rn×n. Suppose S is a contraction. Define the
threshold qtα to be

qtα := ‖λ(S)‖22 +

√
2

α
‖λ(S)‖24. (A.2)

It holds that:

• Type I error.
P0

(
qT > qtα

)
≤ α. (A.3)

• Type II error. Under the further assumption

f>0 S
2f0 ≥

(
2

√
2

α
+ 2b

)
· ‖λ(S)‖24, (A.4)

then

Pf0
(
qT ≤ qtα

)
≤ 1

b2
+

16

b‖λ(S)‖24
. (A.5)
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Proof of Lemma 3. The expectation Ef0 [ qf ] = Sf0, and by the triangle inequality,

1

n

∥∥ qf − f0

∥∥2

2
≤ 2

n

(∥∥ qf − Ef0 [ qf ]
∥∥2

2
+
∥∥Ef0 [ qf ]− f0

∥∥2

2

)
=

2

n

(∥∥Sε∥∥2

2
+
∥∥(S − I)f0

∥∥2

2

)
.

Writing ‖Sε‖22 =
∑n
k=1 λk(S)2Z2

k , the claim follows from the result of Laurent and Massart [2000] on concentration
of χ2-random variables, which for completeness we restate in Lemma 16. To be explicit, taking t = ‖λ(S)‖22 in
Lemma 16 completes the proof of Lemma 3.

Proof of Lemma 4. We compute the mean and variance of T as a function of f0, then apply Chebyshev’s
inequality.

Mean. We make use of the eigendecomposition S =
∑n
k=1 λk(S) · vk(S)vk(S)> to obtain

qT = f>0 S
2f0 + 2f>0 S

2ε+ ε>S2ε

= f>0 S
2f0 + 2f>0 S

2ε+
n∑
k=1

(
λk(S)

)2
(ε>vk(S))2

= f>0 S
2f0 + 2f>0 S

2ε+

n∑
k=1

(
λk(S)

)2
Z2
k ,

(A.6)

implying

Ef0
[
qT
]

= f>0 S
2f0 +

n∑
k=1

(
λk(S)

)2
. (A.7)

Variance. We start from (A.6). Recalling that Var(Z2
k) = 2, it follows from the Cauchy-Schwarz inequality

that

Varf0
[
qT
]
≤ 8f>0 S

4f0 + 4

n∑
k=1

(
λk(S)

)4
. (A.8)

Bounding Type I and Type II error. The upper bound (A.3) on Type I error follows immediately from (A.7),
(A.8), and Chebyshev’s inequality.

We now establish the upper bound (A.5) on Type II error. From assumption (A.4), we see that f>0 S
2f>0 −qtα ≤ 0.

As a result,

Pf0
(
qT ≤ qtα

)
= Pf0

(
qT − Ef0

[
qT
]
≤ qtα − Ef0

[
qT
])

≤ Pf0
(∣∣∣ qT − Ef0

[
qT
]∣∣∣ ≥ ∣∣∣qtα − Ef0

[
qT
]∣∣∣)

≤
Varf0

[
qT
](

qtα − Ef0
[
qT
])2 ,

where the last line follows from Chebyshev’s inequality. Plugging in the expressions (A.7) and (A.8) for the mean

and variance of qT , as well as the definition of qtα in (A.2), we obtain that

Pf0
(
qT ≤ qtα

)
≤ 4‖λ(S)‖44(

f>0 S
2f0 −

√
2/α‖λ(S)‖24

)2 +
8f>0 S

4f0(
f>0 S

2f0 −
√

2/α‖λ(S)‖24
)2 . (A.9)

We now use the assumed lower bound f>0 S
2f0 ≥ (2

√
2/α+ 2b)‖λ(S)‖24 to separately upper bound each of the

two terms on the right hand side of (A.9). It follows immediately that

4‖λ(S)‖44(
f>0 S

2f0 −
√

2/α‖λ(S)‖24
)2 ≤ 1

b2
, (A.10)



giving a sufficient upper bound on the first term. Now we upper bound the second term,

8f>0 S
4f0(

f>0 S
2f0 −

√
2/α‖λ(S)‖24

)2 ≤ 32f>0 S
4f0(

f>0 S
2f0

)2 ≤ 16

b‖λ(S)‖24
f>0 S

4f0

f>0 S
2f0
≤ 16

b‖λ(S)‖24
, (A.11)

where the final inequality is satisfied because S is a contraction. Plugging (A.10) and (A.11) back into (A.9)
then gives the desired result.

A2.2 Analysis of Laplacian smoothing

Upper bounds on the mean squared error of f̂ , and Type I and Type II error of T̂ , follow from setting S = (ρL+I)−1

in Lemmas 3 and 4. We give these results in Lemma 5 and 6, and prove them immediately. Recall that λ1, . . . , λn
are the n eigenvalues of L (sorted in ascending order).

Lemma 5. For any ρ > 0,

1

n

∥∥f̂ − f0

∥∥2

2
≤ 2ρ

n

(
f>0 Lf0

)
+

10

n

n∑
k=1

1(
ρλk + 1

)2 , (A.12)

with probability at least 1− exp
(
−
∑n
k=1

(
ρλk + 1

)−2
)

.

Recall that

t̂α :=
1

n

n∑
k=1

1(
ρλk + 1

)2 +
1

n

√√√√ 2

α

n∑
k=1

1(
ρλk + 1

)4 .
Lemma 6. For any ρ > 0 and any b ≥ 1, it holds that:

• Type I error.

P0

(
T̂ > t̂α

)
≤ α. (A.13)

• Type II error. If

1

n
‖f0‖22 ≥

2ρ

n

(
f>0 Lf0

)
+

2
√

2/α+ 2b

n

(
n∑
k=1

1

(ρλk + 1)4

)1/2

, (A.14)

then

Pf0
(
T̂ (G) ≤ t̂α

)
≤ 1

b2
+

16

b

(
n∑
k=1

1

(ρλk + 1)4

)−1/2

. (A.15)

Proof of Lemma 5. Let Ŝ = (I + ρL)−1, the estimator f̂ = ŜY , and

∥∥λ(Ŝ)
∥∥2

2
=

n∑
k=1

1(
1 + ρλk

)2 .
We deduce the following upper bound on the bias term,∥∥(Ŝ − I)f0

∥∥2

2
= f>0 L

1/2L−1/2
(
Ŝ − I

)2
L−1/2L1/2f0

≤ f>0 Lf0 · λn
(
L−1/2

(
Ŝ − I

)2
L−1/2

)
= f>0 Lf0 · max

k∈[n]

{
1

λk

(
1− 1

ρλk + 1

)2
}

≤ f>0 Lf0 · ρ.

In the above, we have written L−1/2 for the square root of the pseudoinverse of L, the maximum is over all indices
k such that λk > 0, and the last inequality follows from the basic algebraic identity 1− 1/(1 + x)2 ≤ 2x for any
x > 0. The claim of the Lemma then follows from Lemma 3.
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Proof of Lemma 6. Let Ŝ := (I + ρL)−1, so that T̂ = 1
nY>Ŝ2Y. Note that Ŝ is a contraction, so that we

may invoke Lemma 4. The bound on Type I error (A.13) follows immediately from (A.3). To establish the bound

on Type II error, we must lower bound f>0 Ŝ
2f0. We first note that by assumption (A.14),

f>0 Ŝ
2f0 =

∥∥f0

∥∥2

2
− f>0 (I − Ŝ2)f0

≥ 2ρ
(
f>0 Lf0

)
− f>0

(
I − Ŝ2

)
f0 +

(
2

√
2

α
+ 2b

)
·

(
n∑
k=1

1

(ρλk + 1)4

)−1/2

.

Upper bounding f>0
(
I − Ŝ2

)
f0 as follows:

f>0

(
I − Ŝ2

)
f0 = f>0 L

1/2L−1/2
(
I − Ŝ2

)
L−1/2L1/2f0

≤ f>0 Lf0 · λn
(
L−1/2

(
I − Ŝ2

)
L−1/2

)
= f>0 Lf0 ·max

k

{
1

λk

(
1− 1

(ρλk + 1)2

)}
≤ f>0 Lf0 · 2ρ,

—where in the above the maximum is over all indices k such that λk > 0—we deduce that

f>0 Ŝ
2f0 ≥

(
2

√
2

α
+ 2b

)
·
( n∑
k=1

1

(ρλk + 1)4

)−1/2

.

The upper bound on Type II error (A.15) then follows from Lemma 4.

A3 Neighborhood graph Sobolev semi-norm

In this section, we prove Lemma 1, which states an upper bound on f>Lf that holds when f is bounded in
Sobolev norm. We also establish stronger bounds in the case when f has a bounded Lipschitz constant; this latter
result justifies one of our remarks after Theorem 1.

Throughout this proof, we will assume that f ∈ H1(X ) has zero-mean, meaning
∫
X f(x) dx = 0. This is without

loss of generality—assuming for the moment that (14) holds for zero-mean functions, for any f ∈ H1(X ), taking
a =

∫
X f(x) dx and g = f − a, we have that

f>Lf = g>Lg ≤ C2

δ
n2rd+2|g|2H1(X ) =

C2

δ
n2rd+2|f |2H1(X ).

Now, for any zero-mean function f ∈ H1(X ) it follows by the Poincare inequality (see Section 5.8, Theorem 1 of
Evans [2010]) that ‖f‖2H1(X ) ≤ C8|f |2H1(X ), for some constant C8 that does not depend on f . Therefore, to prove
Lemma 1, it suffices to show that

E
[
f>Lf

]
≤ Cn2rd+2‖f‖2H1(X ),

since the high-probability upper bound then follows immediately by Markov’s inequality. (Recall that L is positive
semi-definite, and therefore f>Lf is a non-negative random variable).

Since

f>Lf =
1

2

n∑
i,j=1

(
f(Xi)− f(Xj)

)2
Wij ,

it follows that

E
[
f>Lf

]
=
n(n− 1)

2
E
[(
f(X ′)− f(X)

)2

K

(
‖X ′ −X‖

r

)]
, (A.16)

where X and X ′ are random variables independently drawn from P .

Now, take Ω to be an arbitrary bounded open set such that B(x, c0) ⊆ Ω for all x ∈ X . For the remainder of
this proof, we will assume that (i) f ∈ H1(Ω) and additionally (ii) ‖f‖H1(Ω) ≤ C5‖f‖H1(X ) for a constant C5



that does not depend on f . This is without loss of generality, since by Theorem 1 in Chapter 5.4 of Evans [2010]
there exists an extension operator E : H1(X ) → H1(Ω) for which the extension Ef satisfies both (i) and (ii).
Additionally, we will assume f ∈ C∞(Ω). Again, this is without loss of generality, as C∞(Ω) is dense in H1(Ω)
and the expectation on the right hand side of (A.16) is continuous in H1(Ω). The reason for dealing with a
smooth extension f ∈ C∞(Ω) is so that we can make sense of the following equality for any x and x′ in X :

f(x′)− f(x) =

∫ 1

0

∇f
(
x+ t(x′ − x)

)>
(x′ − x) dt. (A.17)

Obviously

E
[(
f(X ′)− f(X)

)2
K

(
‖X ′ −X‖

r

)]
≤ p2

max

∫
X

∫
X

(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
dx′ dx, (A.18)

so that it remains now to bound the double integral. Replacing difference by integrated derivative as in (A.17),
we obtain∫
X

∫
X

(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
dx′ dx =

∫
X

∫
X

[∫ 1

0

∇f
(
x+ t(x′ − x)

)>
(x′ − x) dt

]2

K

(
‖x′ − x‖

r

)
dx′ dx

(i)

≤
∫
X

∫
X

∫ 1

0

[
∇f
(
x+ t(x′ − x)

)>
(x′ − x)

]2

K

(
‖x′ − x‖

r

)
dt dx′ dx

(ii)

≤ rd+2

∫
X

∫
B(0,1)

∫ 1

0

[
∇f
(
x+ trz

)>
z

]2

K
(
‖z‖
)
dt dz dx

(iii)

≤ rd+2

∫
Ω

∫
B(0,1)

∫ 1

0

[
∇f
(
x̃
)>
z
]2
K
(
‖z‖
)
dt dz dx̃, (A.19)

where (i) follows by Jensen’s inequality, (ii) follows by substituting z = (x′ − x)/r and (K1), and (iii) by
exchanging integrals, substituting x̃ = x+ trz, and noting that x ∈ X implies that x̃ ∈ Ω.

Now, writing
(
∇f(x̃)>z

)2
=
(∑d

i=1 zif
(ei)(x)

)2
, expanding the square and integrating, we have that for any

x̃ ∈ X , ∫
B(0,1)

[
∇f
(
x̃
)>
z
]2
K
(
‖z‖
)
dz =

d∑
i,j=1

f (ei)(x̃)f (ej)(x̃)

∫
Rd

zizjK(‖z‖) dz

=

d∑
i=1

(
f (ei)(x̃)

)2 ∫
B(0,1)

z2
iK
(
‖z‖
)
dz

= σK‖∇f(x̃)‖2,

where the last equality follows from the rotational symmetry ofK(‖z‖). Plugging back into (A.19), we obtain∫
X

∫
X

(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
dx′ dx ≤ rd+2σK‖f‖2H1(Ω) ≤ C5r

d+2σK‖f‖2H1(X ),

proving the claim of Lemma 1 upon taking C2 := C8C5σKp
2
max in the statement of the lemma.

A3.1 Stronger bounds under Lipschitz assumption

Suppose f satisfies |f(x′) − f(x)| ≤ M‖x − x‖ for all x, x′ ∈ X . Then we can strengthen the high probability
bound in Lemma 1 from 1−δ to 1−δ2/n, at the cost of only a constant factor in the upper bound on f>Lf .

Proposition 1. Let r ≥ C0(log n/n)1/d. For any f such that |f(x′)− f(x)| ≤M‖x− x‖ for all x, x′ ∈ X , with
probability at least 1− Cδ2/n it holds that

f>Lf ≤
(

1

δ
+ C2

)
n2rd+2M2.
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Proof of Proposition 1. We will prove Proposition 1 using Chebyshev’s inequality, so the key step is to upper
bound the variance of f>Lf . Putting ∆ij := K(‖Xi −Xj‖/r) · (f(Xi)− f(Xj))

2, we can write the variance of
f>Lf as a sum of covariances,

Var
[
f>Lf

]
=

1

4

n∑
i,j=1

n∑
`,m=1

Cov
[
∆ij , ∆`m

]
.

Clearly Cov
[
∆ij , ∆`m

]
depends on the cardinality of I := {i, j, k, `}; we divide into cases, and upper bound the

covariance in each case.∣∣I∣∣ = 4. In this case ∆ij and ∆`m are independent, and Cov
[
∆ij , ∆`m

]
= 0.∣∣I∣∣ = 3. Taking i = ` without loss of generality, and noting that the expectation of ∆ij and ∆im is non-negative, we

have

Cov
[
∆ij , ∆im

]
≤ E

[
∆ij∆im

]
=

∫
X

∫
X

∫
X

(
f(z)− f(x)

)2(
f(x′)− f(x)

)2
K

(
‖x′ − x‖

r

)
K

(
‖z − x‖

r

)
p(z)p(x′)p(x) dz dx′ dx

≤ p3
maxM

4r4

∫
X

∫
X

∫
X
K

(
‖x′ − x‖

r

)
K

(
‖z − x‖

r

)
dz dx′ dx

≤ p3
maxM

4r4+2d.

∣∣I∣∣ = 2. Taking i = ` and j = m without loss of generality, we have

Var
[
∆ij

]
≤ E

[
∆2
ij

]
≤
∫
X

∫
X

(
f(x′)− f(x)

)4[
K

(
‖x′ − x‖

r

)]2

p(x′)p(x) dx′ dx

≤ p2
maxM

4r4K(0)

∫
X

∫
X
K

(
‖x′ − x‖

r

)
dx′ dx

≤ p2
maxM

4r4+dK(0).

∣∣I∣∣ = 1. In this case ∆ij = ∆`m = 0.

Therefore
Var
[
f>Lf

]
≤ n3p3

maxM
4r4+2d + n2p2

maxM
4r4+dK(0) ≤ CM4n3r4+2d,

where the latter inequality follows since nrd � 1. For any δ > 0, it follows from Chebyshev’s inequality that

P
(∣∣∣f>Lf − E

[
f>Lf

]∣∣∣ ≥ M2

δ
n2rd+2

)
≤ C δ

2

n
,

and since we have already upper bounded E
[
f>Lf

]
≤ C2M

2n2rd+2, the proposition follows.

Note that the bound on Var[∆ij ] follows as long as we can control ‖∇f‖L4(X ); this implies the Lipschitz
assumption—which gives us control of ‖∇f‖L∞(X )—can be weakened. However, the Sobolev assumption—which
gives us control only over ‖∇f‖L2(X )—will not do the job.

A4 Bounds on neighborhood graph eigenvalues

In this section, we prove Lemma 2, following the lead of Burago et al. [2014], Garćıa Trillos et al. [2019], Calder
and Garćıa Trillos [2019], who establish similar results with respect to a manifold without boundary. To prove
this lemma, in Theorem 5 we give estimates on the difference between eigenvalues of the graph Laplacian L and
eigenvalues of the weighted Laplace-Beltrami operator ∆P . We recall ∆P is defined as

∆P f(x) := − 1

p(x)
div
(
p2∇f

)
(x).



To avoid confusion, in this section we write λk(Gn,r) for the kth smallest eigenvalue of the graph Laplacian matrix
L and λk(∆P ) for the kth smallest eigenvalue of ∆P

1. Some other notation: throughout this section, we will
write A,A0, A1, . . . and a, a0, a1, . . . for constants which may depend on X , d, K, and p, but do not depend on n;
we keep track of all such constants explicitly in our proofs. We let LK denote the Lipschitz constant of the kernel
K. Finally, for notational ease we set θ and δ̃ to be the following (small) positive numbers:

δ̃ := max

{
n−1/d,min

{
1

2d+3A0
,

1

A3
,
K(1)

8LKA0
,

1

8 max{A1, A}c0

}
r

}
, and θ :=

1

8 max{A1, A}
. (A.20)

We note that each of δ̃, θ and δ̃/r are of at most constant order.

Theorem 5. For any ` ∈ N such that

1−A

(
r
√
λ`(∆P ) + θ + δ̃

)
≥ 1

2
(A.21)

with probability at least 1−A0n exp(−a0nθ
2δ̃d), it holds that

aλk(Gn,r) ≤ nrd+2λk(∆P ) ≤ Aλk(Gn,r), for all 1 ≤ k ≤ ` (A.22)

Before moving forward to the proofs of Lemma 2 and Theorem 5, it is worth being clear about the differences
between Theorem 5 and the results of Burago et al. [2014], Garćıa Trillos et al. [2019], Calder and Garćıa Trillos
[2019]. First of all, the reason we cannot directly use the results of these works in the proof of Lemma 2 is that
they all assume the domain X is without boundary, whereas for our results in Section 4 we instead assume X
has a (Lipschitz smooth) boundary. Fortunately, in this setting the high-level strategy shared by Burago et al.
[2014], Garćıa Trillos et al. [2019], Calder and Garćıa Trillos [2019] can still be used—indeed we follow it closely,
as we summarize in Section A4.1. However, many calculations need to be redone, in order to account for points
x which are on or sufficiently close to the boundary of X . For completeness and ease of reading, we provide a
self-contained proof of Theorem 5, but we comment where appropriate on connections between the technical
results we use in this proof, and those derived in Burago et al. [2014], Garćıa Trillos et al. [2019], Calder and
Garćıa Trillos [2019].

On the other hand, we should also point out that unlike the results of Burago et al. [2014], Garćıa Trillos et al.
[2019], Calder and Garćıa Trillos [2019], Theorem 5 does not imply that λk(Gn,r) is a consistent estimate of
λk(∆P ), i.e. it does not imply that |(nrd+2)−1λk(Gn,r)− λk(∆P )| → 0 as n→∞, r → 0. The key difficulty in
proving consistency when X has a boundary can be summarized as follows: while at points x ∈ X satisfying
B(x, r) ⊆ X , the graph Laplacian L is a reasonable approximation of the operator ∆P , at points x near the
boundary L is known to approximate a different operator altogether [Belkin et al., 2012]. This is reminiscent of
the boundary effects present in the analysis of kernel smoothing. We believe a more subtle analysis might imply
convergence of eigenvalues in this setting. However, the conclusion of Theorem 5—that λk(Gn,r)/(nr

d+2λk(∆P ))
is bounded above and below by constants that do not depend on k—suffices for our purposes.

The bulk of the remainder of this section is devoted to the proof of Theorem 5. First, however, we show that
under our regularity conditions on p and X , Lemma 2 is a simple consequence of Theorem 5. The link between
the two is Weyl’s Law.

Proposition 2 (Weyl’s Law). Suppose the density p and the domain X satisfy (P1) and (P2). Then there exist
constants a2 and A2 such that

a2k
2/d ≤ λk(∆P ) ≤ A2k

2/d for all k ∈ N, k > 1. (A.23)

See Lemma 28 of Dunlop et al. [2020] for a proof that (P1) and (P2) imply Weyl’s Law.

1Under the assumptions (P1) and (P2), the operator ∆P has a discrete spectrum; see Garćıa Trillos and Slepčev [2018]
for more details.
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Proof of Lemma 2. Put

`? =

⌊((
1/(2A)− (θ + δ̃)

)
rA

1/2
2

)d⌋
.

Let us verify that λ`?(∆P ) satisfies the condition (A.21) of Theorem 5. Setting c0 := 1/(21/d4A
1/2
2 ), the assumed

upper bound on the radius r ≤ c0 guarantees that `? ≥ 2. Therefore, by Proposition 2 we have that√
λ`?(∆P ) ≤ A1/2

2 `
1/d
? ≤ 1

r

(
1

2A
− (θ + δ̃)

)
.

Rearranging the above inequality shows that condition (A.21) is satisfied.

It is therefore the case that the inequalities in (A.22) hold with probability at least 1 − A0n exp(−a0nθ
2δ̃d).

Together, (A.22) and (A.23) imply the following bounds on the graph Laplacian eigenvalues:

a

A2
nrd+2k2/d ≤ λk(Gn,r) ≤

A

a2
nrd+2k2/d for all 2 ≤ k ≤ `?.

It remains to bound λk(Gn,r) for those indices k which are greater than `?. On the one hand, since the eigenvalues
are sorted in ascending order, we can use the lower bound on λ`?(Gn,r) that we have just derived:

λk(Gn,r) ≥ λ`?(Gn,r) ≥
a2

A
nrd+2`

2/d
? ≥ a2

64A3A2
nrd.

On the other hand, for any graph G the maximum eigenvalue of the Laplacian is upper bounded by twice the
maximum degree [Chung and Graham, 1997]. Writing Dmax(Gn,r) for the maximum degree of Gn,r, it is thus a
consequence of Lemma 19 that

λk(Gn,r) ≤ 2Dmax(Gn,r) ≤ 4pmaxnr
d,

with probability at least 1− 2n exp
(
−nrdpmin/(3K(0)2)

)
. In sum, we have shown that with probability at least

1−A0n exp(−a0nθ
2δ̃d)− 2n exp

(
−nrdpmin/(3K(0)2)

)
,

min

{
a2

A
nrd+2k2/d,

a2

A364A3
nrd
}
≤ λk(Gn,r) ≤ min

{
A2

a
nr2+dk2/d, 4pmaxnr

d

}
for all 2 ≤ k ≤ n.

Lemma 2 then follows upon setting

C1 := max{2A0, 4}, c1 := min

{
pmin

3K(0)2
,
θ2δ̃

r

}

C3 := max

{
A2

a
, 4pmax

}
, c3 := min

{
a2

A
,

a2

A364A3

}
.

in the statement of that Lemma.

A4.1 Proof of Theorem 5

In this section we prove Theorem 5, following closely the approach of Burago et al. [2014], Garćıa Trillos et al.
[2019], Calder and Garćıa Trillos [2019]. As in these works, we relate λk(∆P ) and λk(Gn,r) by means of the
Dirichlet energies

br(u) :=
1

n2rd+2
u>Lu

and

D2(f) :=

{∫
X ‖∇f(x)‖2p2(x) dx if f ∈ H1(X )

∞ otherwise,

Let us pause briefly to motivate the relevance of br(u) and D2(f). In the following discussion, recall that for a
function u : {X1, . . . , Xn} → R, the empirical norm is defined as ‖u‖2n := 1

n

∑n
i=1(u(Xi))

2, and the class L2(Pn)
consists of those u ∈ Rn for which ‖u‖n <∞. Similarly, for a function f : X → R, the L2(P ) norm of f is

‖f‖2P :=

∫
X

∣∣f(x)
∣∣2p(x) dx,



and the class L2(P ) consists of those f for which ‖f‖P <∞. Now, suppose one could show the following two
results:

(1) an upper bound of br(u) by D2

(
I(u)

)
for an appropriate choice of interpolating map I : L2(Pn)→ L2(X ),

and vice versa an upper bound of D2(f) by br(P(f)) for an appropriate choice of discretization map
P : L2(X )→ L2(Pn),

(2) that I and P were near-isometries, meaning ‖I(u)‖P ≈ ‖u‖n and ‖P(f)‖P ≈ ‖f‖n.

Then, by using the variational characterization of eigenvalues λk(∆P ) and λk(Gn,r)—i.e. the Courant-Fischer
Theorem—one could obtain estimates on the error

∣∣nrd+2λk(∆P )− λk(Gn,r)
∣∣.

We will momentarily define particular maps Ĩ and P̃, and establish that they satisfy both (1) and (2). In order

to define these maps, we must first introduce a particular probability measure P̃n that, with high probability, is
close in transportation distance to both Pn and P . This estimate on the transportation distance—which we now
give—will be the workhorse that allows us to relate br to D2, and ‖ · ‖n to ‖ · ‖P .

Transportation distance between Pn and P . For a measure µ defined on X and map T : X → X , let T]µ
denote the push-forward of µ by T , i.e the measure for which(

T]µ
)
(U) := µ

(
T−1(U)

)
for any Borel subset U ⊆ X . Suppose T]µ = Pn; then the map T is referred to as transportation map between µ
and Pn. The ∞-transportation distance between µ and Pn is then

d∞(µ, Pn) := inf
T :T]µ=Pn

‖T − Id‖L∞(µ) (A.24)

where Id(x) = x is the identity mapping.

Calder and Garćıa Trillos [2019] take X to be a smooth submanifold of Rd without boundary, i.e. they assume X
satisfies (P3). In this setting, they exhibit an absolutely continuous measure P̃n with density p̃n that with high
probability is close to Pn in transportation distance, and for which ‖p− p̃n‖L∞ is also small. In Proposition 3, we
adapt this result to the setting of full-dimensional manifolds with boundary.

Proposition 3. Suppose X satisfies (P1) and p satisfies (P2). Then with probability at least 1 −
A0n exp

{
−a0nθ

2δ̃d
}

, the following statement holds: there exists a probability measure P̃n with density p̃n such
that:

d∞(P̃n, Pn) ≤ A0δ̃ (A.25)

and
‖p̃n − p‖∞ ≤ A0

(
δ̃ + θ

)
(A.26)

For the rest of this section, we let P̃n be a probability measure with density p̃n, that satisfies the conclusions
of Proposition 3. Additionally we denote by T̃n an optimal transport map between P̃n and Pn, meaning a
transportation map which achieves the infimum in (A.24). Finally, we write U1, . . . , Un for the preimages of

X1, . . . , Xn under T̃n, meaning Ui = T̃−1
n (Xi).

Interpolation and discretization maps. The discretization map P̃ : L2(X )→ L2(Pn) is given by averaging
over the cells U1, . . . , Un, (

P̃f
)
(Xi) := n ·

∫
Ui

f(x)p̃n(x) dx.

On the other hand, the interpolation map Ĩ : L2(Pn) → L2(X ) is defined as Ĩu := Λr−2A0δ̃
(P̃?u). Here,

P̃? = u ◦ T̃ is the adjoint of P̃, i.e. (
P̃?u

)
(x) =

n∑
j=1

u(xi)1{x ∈ Ui}

and Λr−2A0δ̃
is a kernel smoothing operator, defined with respect to a carefully chosen kernel ψ. To be precise,

for any h > 0,

Λh(f) :=
1

hdτh(x)

∫
X
ηh(x′, x)f(x′) dx′, ηh(x′, x) := ψ

(
‖x′ − x‖

r

)
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where ψ(t) := (1/σK)
∫∞
t
sK(s) ds and τh(x) := (1/hd)

∫
X ηh(x′, x) dx′ is a normalizing constant.

Propositions 4 and 5 establish our claims regarding P̃ and Ĩ: first, that they approximately preserve the Dirichlet
energies br and D2, and second that they are near-isometries for functions u ∈ L2(Pn) (or f ∈ L2(P )) of small
Dirichlet energy br(u) (or D2(f)).

Proposition 4 (cf. Proposition 4.1 of Calder and Garćıa Trillos [2019]). With probability at least

1−A0n exp(−a0nθ
2δ̃d), we have the following.

(1) For every u ∈ L2(Pn),

σKD2(Ĩu) ≤ A8

(
1 +A1(θ + δ̃)

)
·
(

1 +A3
δ̃

r

)
br(u). (A.27)

(2) For every f ∈ L2(X ),

br(P̃f) ≤
(

1 +A1(θ + δ̃)
)
·
(

1 +A9
δ̃

r

)
·
(C5p

2
max

p2
min

)
· σKD2(f). (A.28)

Proposition 5 (cf. Proposition 4.2 of Calder and Garćıa Trillos [2019]). With probability at least

1−A0n exp(−a0nθ
2δ̃d), we have the following.

(1) For every f ∈ L2(X ), ∣∣∣‖f‖2P − ‖P̃f‖2n∣∣∣ ≤ A5r‖f‖P
√
D2(f) +A1

(
θ + δ̃

)
‖f‖2P . (A.29)

(2) For every u ∈ L2(Pn), ∣∣∣‖Ĩu‖2P − ‖u‖2n∣∣∣ ≤ A6r‖u‖n
√
br(u) +A7

(
θ + δ̃

)
‖u‖2n. (A.30)

We will devote most of the rest of this section to the proofs of Propositions 3, 4, and 5. First, however, we use
these propositions to prove Theorem 5.

Proof of Theorem 5. Throughout this proof, we assume that inequalities (A.27)-(A.30) are satisfied. We take
A and a to be positive constants such that

1

a
≥ 2
(

1 +A1(θ + δ̃)
)(

1 +A9
δ̃

r

)(C5p
2
max

p2
min

)
, and A ≥ max

{
A1, A5,

1√
a
A6, A7, 2A8

(
1 +A1(θ + δ̃)

)(
1 +A3

δ̃

r

)}
.

Let k be any number in 1, . . . , `. We start with the upper bound in (A.22), proceeding as in Proposition 4.4
of Burago et al. [2014]. Let f1, . . . , fk denote the first k eigenfunctions of ∆P and set W := span{f1, . . . , fk},
so that by the Courant-Fischer principle D2(f) ≤ λk(∆P )‖f‖2P for every f ∈ W . As a result, by Part (1) of
Proposition 5 we have that for any f ∈W ,∥∥P̃f∥∥2

n
≥
(

1−A5r
√
λk(∆P )−A1(θ + δ̃)

)
‖f‖2P ≥

1

2
‖f‖2P ,

where the second inequality follows by assumption (A.21).

Therefore P̃ is injective over W , and P̃W has dimension `. This means we can invoke the Courant-Fischer
Theorem, along with Proposition 4, and conclude that

λk(Gn,r)

nrd+2
≤ max
u∈P̃W
u 6=0

br(u)

‖u‖2n

= max
f∈W
f 6=0

br(P̃f)∥∥P̃f∥∥2

n

≤ 2
(

1 +A1(θ + δ̃)
)
·
(

1 +A9
δ̃

r

)
·
(C5p

2
max

p2
min

)
σKλk(∆P ),



establishing the lower bound in (A.22).

The upper bound follows from essentially parallel reasoning. Recalling that v1, . . . , vk denote the first k eigenvectors
of L, set U := span{v1, . . . , vk}, so that nrd+2br(u) ≤ λk(Gn,r)‖u‖2n. By Proposition 5, Part (2), we have that
for every u ∈ U , ∥∥Ĩu∥∥2

P
≥ ‖u‖2n −A6r‖u‖n

√
br(u)−A7

(
θ + δ̃

)
‖u‖2n

≥ ‖u‖2n −A6r‖u‖2n

√
λk(Gn,r)

nrd+2
−A7

(
θ + δ̃

)
‖u‖2n

≥ ‖u‖2n −A6r‖u‖2n

√
1

a
λk(∆P )−A7

(
θ + δ̃

)
‖u‖2n

≥ 1

2
‖u‖2n,

where the second to last inequality follows from the lower bound aλk(Gn,r) ≤ nrd+2λk(∆P ) that we just derived,
and the last inequality from assumption (A.21).

Therefore Ĩ is injective over U , ĨU has dimension k, and by Proposition 4 we conclude that

λk(∆P ) ≤ max
u∈U

D2(Ĩu)

‖u‖2P

≤ 2A8

(
1 +A1(θ + δ̃)

)(
1 +A3

δ̃

r

)
max
u∈U

br(u)

‖u‖2n

≤ 2A8

(
1 +A1(θ + δ̃)

)(
1 +A3

δ̃

r

)
λk(Gn,r)

nrd+2
,

establishing the upper bound in (A.22).

Organization of this section. The rest of this section will be devoted to proving Propositions 3, 4 and 5. To
prove the latter two propositions, it will help to introduce the intermediate energies

Ẽr(f, η, V ) :=
1

rd+2

∫
V

∫
X

(
f(x′)− f(x)

)2
η

(
‖x′ − x‖

r

)
p̃n(x′)p̃n(x) dx′ dx

and

Er(f, η, V ) :=
1

rd+2

∫
V

∫
X

(
f(x′)− f(x)

)2
η

(
‖x′ − x‖

r

)
p(x′)p(x) dx′ dx.

Here η : [0,∞)→ [0,∞) is an arbitrary kernel, and V ⊆ X is a measurable set. We will abbreviate Ẽr(f, η,X ) as

Ẽr(f, η) and Ẽr(f,K) = Ẽr(f) (and likewise with Er.)

The proof of Proposition 3 is given in Section A4.2. In Section A4.3, we establish relationships between the (non-
random) functionals Er(f) and D2(f), as well as providing estimates on some assorted integrals. In Section A4.4,

we establish relationships between the stochastic functionals Ẽr(f) and Er(f), between Ẽr
(
Ĩ(u)

)
and br

(
u
)
, and

between Ẽr
(
f
)

and br
(
P̃f
)
. Finally, in Section A4.5 we use these various relationships to prove Propositions 4

and 5.

A4.2 Proof of Proposition 3

We start by defining the density p̃n, which will be piecewise constant over a particular partition Q of X . Specifically,
for each Q in Q and every x ∈ Q, we set

p̃n(x) :=
Pn(Q)

vol(Q)
, (A.31)

where vol(·) denotes the Lebesgue measure. Then P̃n(U) =
∫
U
p̃n(x) dx.

We now construct the partition Q, in progressive degrees of generality on the domain X .
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• In the special case of the unit cube X = (0, 1)d, the partition will simply be a collection of cubes,

Q =
{
Qk : k ∈ [δ̃−1]d

}
,

where Qk = δ̃
(

[k1 − 1, k1]⊗ · · · ⊗ [kd − 1, kd]
)

and we assume without loss of generality that δ̃−1 ∈ N.

• If X is an open, connected set with smooth boundary, then by Proposition 3.2 of Garćıa Trillos and Slepčev
[2015], there exist a finite number N(X ) ∈ N of disjoint polytopes which cover X . Moreover, letting Uj
denote the intersection of the jth of these polytopes with sX , this proposition establishes that for each j there
exists a bi-Lipschitz homeomorphism Φj : Uj → [0, 1]d. We take the collection

Q =

{
Φ−1
j (Qk) : j = 1, . . . , N(X ) and k ∈ [δ̃−1]d

}
to be our partition. Denote by LΦ the maximum of the bi-Lipschitz constants of Φ1, . . . ,ΦN(X ).

• Finally, in the general case where X is an open, connected set with Lipschitz boundary, then there exists
a bi-Lipschitz homeomorphism Ψ between X and a smooth, open, connected set with Lipschitz boundary.
Letting Φj and Q̃j,k be as before, we take the collection

Q =

{
Q̃j,k =

(
Ψ−1 ◦ Φ−1

j

)
(Qk) : j = 1, . . . , N(X ) and k ∈ [δ̃−1]d

}
to be our partition. Denote by LΨ the bi-Lipschitz constant of Ψ.

Let us record a few facts which hold for all Q̃j,k ∈ Q, and which follow from the bi-Lipschitz properties of Φj and
Ψ: first that

diam(Q̃j,k) ≤ LΨ  LΦδ̃, (A.32)

and second that

vol(Q̃j,k) ≥
(

1

LΨLΦ

)d
δ̃d. (A.33)

We now use these facts to show that P̃n satisfies the claims of Proposition 3. On the one hand for every Q ∈ Q,
letting N(Q) denote the number of design points {X1, . . . , Xk} which fall in Q, we have

P̃n(Q) =

∫
Q

p̃n(x) dx = Pn(Q) =
N(Q)

n
.

Moreover, ignoring those cells for which N(Q) = 0 (since P̃n(Q) = 0 for such Q, and so they do not contribute
to the essential supremum in (A.24)), appropriately dividing each remaining cell Q ∈ Q into N(Q) subsets
S1, . . . , SN(Q) of equal volume, and mapping each S` to a different design point Xi ∈ Q, we can exhibit a transport

map T from P̃n to Pn for which

‖T − Id‖L∞(P̃n) ≤ max
Q∈Q

diam(Q) ≤ LΨ  LΦδ̃.

On the other hand, applying the triangle inequality we have that for x ∈ Q̃j,k

|p̃n(x)− p(x)| ≤
∣∣∣∣Pn(Q̃j,k)− P (Q̃j,k)

vol(Q̃j,k)

∣∣∣∣+
1

vol(Q̃j,k)

∫
Q̃j,k

|p(x′)− p(x)| dx,

and using the Lipschitz property of p we find that

‖p̃n − p‖L∞ ≤ max
j,k

∣∣∣∣Pn(Q̃j,k)− P (Q̃j,k)

vol(Q̃j,k)

∣∣∣∣+ LpLΦLΨδ̃. (A.34)

From Hoeffding’s inequality and a union bound, we obtain that

P
(∣∣Pn(Q̃)− P (Q̃)

∣∣ ≤ θP (Q̃) ∀Q̃ ∈ Q
)
≥ 1− 2](Q) · exp

{
−θ

2nmin{P (Q̃)}
3

}
≥ 1− 2N(X )

δ̃d
· exp

{
− θ

2npminδ̃
d

3
(
LΨLΦ

)d}.



Noting that by assumption P (Q̃) ≤ pmaxvol(Q̃) and δ̃−d ≤ n, the claim follows upon plugging back into (A.34),
and setting

a0 :=
1

3
(
LΨLΦ

)d and A0 := max
{

2N(X ), LpLΨLΦ, LΨLΦ

}
in the statement of the proposition.

A4.3 Non-random functionals and integrals

Let us start by making the following observation, which we make use of repeatedly in this section. Let
η : [0,∞)→ [0,∞) be an otherwise arbitrary function. As a consequence of (P1), there exist constants c0 and a3

which depend on X , such that for any 0 < ε ≤ c0 it holds that∫
B(x,ε)∩X

η

(
‖x′ − x‖

ε

)
dx′ ≥ a3 ·

∫
B(x,ε)

η

(
‖x′ − x‖

ε

)
dx′ (A.35)

As a special case: when η(x) = 1, this implies vol
(
B(x, ε) ∩ X

)
≥ a3νdε

d for any 0 < ε ≤ c0.

We have already upper bounded Er(f) by (a constant times) D2(f) in the proof of Lemma 1. In Lemma 7, we
establish the reverse inequality.

Lemma 7 (cf. Lemma 9 of Garćıa Trillos et al. [2019], Lemma 5.5 of Burago et al. [2014]). For any
f ∈ L2(X ), and any 0 < h ≤ c0, it holds that

σKD2(Λhf) ≤ A8Eh(f).

To prove Lemma 7, we require upper and lower bounds on τh(x), as well as an upper bound on the gradient of τh.
The lower bound here—τh(x) ≥ a3—is quite a bit a looser than what can be shown when X has no boundary.
The same is the case regarding the upper bound of the size of the gradient ‖∇τh(x)‖. However, the bounds as
stated here will be sufficient for our purposes.

Lemma 8. For any 0 < h ≤ c0, for all x ∈ X it holds that

a3 ≤ τh(x) ≤ 1.

and

‖∇τh(x)‖ ≤ 1√
dσKh

.

Finally, to prove part (2) of Proposition 5, we require Lemma 9, which gives an estimate on the error Λhf − f in
‖ · ‖2P norm.

Lemma 9 (c.f Lemma 8 of Garćıa Trillos et al. [2019], Lemma 5.4 of Burago et al. [2014]). For any
0 < h ≤ c0, ∥∥Λhf

∥∥2

P
≤ pmax

a3pmin

∥∥f∥∥2

P
, (A.36)

and ∥∥Λhf − f
∥∥2

P
≤ 1

a3σKpmin
h2Eh(f), (A.37)

for all f ∈ L2(X ).

Proof of Lemma 7. For any a ∈ R, Λhf satisfies the identity

Λhf(x) = a+
1

hdτh(x)

∫
X
ηh(x′, x)

(
f(x′)− a

)
dx′,

and by differentiating with respect to x, we obtain

(
∇Λhf

)
(x) =

1

hdτh(x)

∫
X

(
∇ηh(x′, ·)

)
(x)
(
f(x′)− a

)
dx′ +∇

(
1

τh

)
(x) · 1

hd

∫
X
ηh(x′, x)

(
f(x′)− a

)
dx′
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Plugging in a = f(x), we get ∇Λhf(x) = J1(x)/τh(x) + J2(x) for

J1(x) :=
1

hd

∫
X

(
∇ηh(x′, ·)

)
(x)
(
f(x′)− f(x)

)
dx′, J2(x) := ∇

(
1

τh

)
(x) · 1

hd

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)
dx′.

To upper bound
∥∥J1(x)

∥∥2
, we first compute the gradient of ηh(x′, ·),(

∇ηh(x′, ·)
)
(x) =

1

h
ψ′
(
‖x′ − x‖

h

)
(x− x′)
‖x′ − x‖

=
1

σKh2
K

(
‖x′ − x‖

h

)
(x′ − x),

and additionally note that ‖J1(x)‖2 = supw
(
〈J1(x), w〉

)2
where the supremum is over unit norm vector. Taking

w to be a unit norm vector which achieves this supremum, we have that

∥∥J1(x)
∥∥2

=
1

σ2
Kh

4+2d

[∫
X

(
f(x′)− f(x)

)
K

(
‖x′ − x‖

h

)
(x′ − x)>w dx′

]2

≤ 1

σ2
Kh

4+2d

[∫
X
K

(
‖x′ − x‖

h

)(
(x′ − x)>w

)2
dx′
][∫

X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′
]
.

By a change of variables, we obtain∫
X
K

(
‖x′ − x‖

h

)(
(x′ − x)>w

)2
dx′ ≤ hd+2

∫
X
K
(
‖z‖
)(
z>w

)2
dz ≤ σKhd+2,

with the resulting upper bound∥∥J1(x)
∥∥2 ≤ 1

σKh2+d

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′.

To upper bound
∥∥J2(x)

∥∥2
, we use the Cauchy-Schwarz inequality along with the observation ηh(x′, x) ≤

1
σK
K
(
‖x′ − x‖/h

)
to deduce∥∥J2(x)
∥∥2 ≤

∥∥∥∇( 1

τh

)
(x)
∥∥∥2 1

h2d

[∫
X
ηh(x′, x) dx′

]
·
[∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′
]

=
∥∥∥∇( 1

τh

)
(x)
∥∥∥2 τh(x)

hd

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′

≤
∥∥∥∇( 1

τh

)
(x)
∥∥∥2 τh(x)

σKhd

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′

≤ 1

da2
3σ

2
Kh

2+d

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
dx′,

where the last inequality follows from the estimates on τh and ∇τh provided in Lemma 8. Combining our

bounds on
∥∥J1(x)

∥∥2
and

∥∥J2(x)
∥∥2

along with the lower bound on τh(x) in Lemma 8 and integrating over X , we
have

σKD2(Λhf) = σK

∫
X

∥∥∥∥(∇Λhf)(x)

∥∥∥∥2

p2(x) dx

≤ 2σK

∫
X

(∥∥J1(x)
∥∥2

τ2
h(x)

+
∥∥J2(x)

∥∥2

)
p2(x) dx

≤
(

1

a2
3

+
1

da2
3σK

)
2

hd+2

∫
X

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
p2(x) dx′ dx

≤ 2
(

1 +
Lph

pmin

)( 1

a2
3

+
1

da2
3σK

)
Eh(f),

and taking A8 := 2
(

1 +
Lpc0
pmin

)(
1
a23

+ 1
da23σK

)
completes the proof of Lemma 7.



Proof of Lemma 8. We first establish our estimates of τh(x), and then upper bound ‖∇τh(x)‖. Using (A.35),
we have that

τh(x) =
1

hd

∫
X∩B(x,h)

ψ

(
‖x′ − x‖

h

)
dx′

≥ a3

hd

∫
B(x,h)

ψ

(
‖x′ − x‖

h

)
dx′

= a3

∫
B(0,1)

ψ(‖z‖) dz,

and it follows from similar reasoning that τh(x) ≤
∫
B(0,1)

ψ(‖z‖) dz.

We will now show that
∫
B(0,1)

ψ(‖z‖) dz = 1, from which we derive the estimates a3 ≤ τh(x) ≤ 1. To see the

identity, note that on the one hand, by converting to polar coordinates and integrating by parts we obtain∫
B(0,1)

ψ
(
‖z‖
)
dz = dνd

∫ 1

0

ψ(t)td−1 dt = −νd
∫ 1

0

ψ′(t)td dt =
νd
σK

∫ 1

0

td+1K(t) dt;

on the other hand, again converting to polar coordinates, we have

σK =
1

d

∫
Rd

‖x‖2K(‖x‖) dx = νd

∫ 1

0

td+1K(t) dt,

and so
∫
B(0,1)

ψ(‖z‖) dz = 1.

Now we upper bound ‖∇τh(x)‖2. Exchanging derivative and integral, we have

∇τh(x) =
1

hd

∫
X

(
∇ηh(x′, ·)

)
(x) dx′ =

1

σKhd+2

∫
X
K

(
‖x′ − x‖

h

)
(x′ − x) dx′,

whence by the Cauchy-Schwarz inequality,

‖∇τh(x)‖2 ≤ 1

σ2
Kh

2d+4

[∫
X
K

(
‖x′ − x‖

h

)
dx′
][∫

X
K

(
‖x′ − x‖

h

)
‖x′ − x‖2 dx′,

]
≤ 1

dσKh2
,

concluding the proof of Lemma 8.

We remark that while ∇τ(x) = 0 when B(x, r) ∈ X , near the boundary the upper bound we derived by using
Cauchy-Schwarz appears tight.

Proof of Lemma 9. By Jensen’s inequality and Lemma 8,∣∣∣Λhf(x)
∣∣∣2 ≤ 1

hdτh(x)

∫
X
ηh(x′, x)

[
f(x′)

]2
dx′

≤ 1

a3hdpmin

∫
X
ηh(x′, x)

[
f(x′)

]2
p(x′) dx′.

Then, integrating over x, and recalling that
∫
B(0,1)

ψ(‖z‖) = 1 as shown in the proof of Lemma 8, we have

∥∥Λhf
∥∥2

P
≤ 1

a3hdpmin

∫
X

∫
X
ηh(x′, x)

[
f(x′)

]2
p(x′)p(x) dx′ dx

≤ pmax

a3hdpmin

∫
X

[
f(x′)

]2
p(x′)

(∫
X
ηh(x′, x) dx

)
dx′

≤ pmax

a3pmin

∫
X

[
f(x′)

]2
p(x′)

(∫
B(0,1)

ψ(‖z‖) dz
)
dx′

=
pmax

a3pmin
‖f‖2P .
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To establish (A.37), noting that Λha = a for any a ∈ R, we have that

∣∣Λrf(x)− f(x)
∣∣2 =

[
1

hdτh(x)

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)
dx′
]2

≤ 1

h2dτ2
h(x)

[∫
X
ηh(x′, x) dx′

]
·
[∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′
]

=
1

hdτh(x)

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
dx′.

≤ 1

hdτh(x)pmin

∫
X
ηh(x′, x)

(
f(x′)− f(x)

)2
p(x′) dx′.

From here, we can use the lower bound τh(x) ≥ a3 stated in Lemma 8, as well as the upper bound ηh(x′, x) ≤
(1/σK)K(‖x′ − x‖/h), to deduce∣∣Λrf(x)− f(x)

∣∣2 ≤ 1

hda3σKpmin

∫
X
K

(
‖x′ − x‖

h

)(
f(x′)− f(x)

)2
p(x′) dx′.

Then integrating over X with respect to p yields (A.37).

A4.4 Random functionals

We will use Lemma 10 in the proof of Proposition 5.

Lemma 10 (cf. Lemma 3.4 of Burago et al. [2014]). Let U ⊆ X be a measurable subset such that vol(U) > 0,

and diam(U) ≤ 2A0δ̃. Then, letting a = (P̃n(U))−1 ·
∫
U
f(x)p̃n(x) dx be the average of f over U , it holds that∫

U

∣∣∣f(x)− a
∣∣∣2p̃n(x) dx ≤ A3r

2Ẽr(f, U).

Now we relate Ẽr(f) and Er(f). Some standard calculations show that for A1 := 3A0/pmin,(
1−A1(θ + δ̃)

)
Er(f) ≤ Ẽr(f) ≤

(
1 +A1(θ + δ̃)

)
Er(f), (A.38)

as well as implying that the norms ‖f‖P and ‖f‖n satisfy(
1−A1(θ + δ̃)

)
‖f‖2P ≤ ‖f‖2P̃n

≤
(
1 +A1(θ + δ̃)

)
‖f‖2P . (A.39)

Lemma 11 relates the graph Sobolev semi-norm br(P̃f) to the non-local energy Ẽr(f).

Lemma 11 (cf. Lemma 13 of Garćıa Trillos et al. [2019], Lemma 4.3 of Burago et al. [2014]). For
any f ∈ L2(X ),

br(P̃f) ≤
(

1 +A9
δ̃

r

)
Ẽr+2A0δ̃

(f).

In Lemma 12, we establish the reverse of Lemma 11.

Lemma 12 (cf. Lemma 14 of Garćıa Trillos et al. [2019]). For any u ∈ L2(Pn),

Ẽr−2A0δ̃

(
P̃?u

)
≤
(

1 +A3
δ̃

r

)
br(u).

Proof of Lemma 10. A symmetrization argument implies that∫
U

∣∣∣f(x)− a
∣∣∣2p̃n(x) dx =

1

2P̃n(U)

∫
U

∫
U

∣∣f(x′)− f(x)
∣∣2p̃n(x′)p̃n(x) dx′ dx (A.40)

Now, since x′ and x belong to U , we have that ‖x′ − x‖ ≤ 2A0δ̃. Set V = B(x, r) ∩ B(x′, r), and note that

B(x, r − 2A0δ̃) ⊆ V . Moreover, r − 2A0δ̃ ≤ r ≤ c0 by assumption. Therefore by (A.35),

vol
(
V ∩ X

)
≥ vol

(
B(x, r − 2A0δ̃) ∩ X

)
≥ a3νd(r − 2A0δ̃)

d ≥ a3νd
2d

rd



where the last inequality follows since δ̃ ≤ 1
4A0

r. Using the triangle inequality∣∣f(x′)− f(x)
∣∣2 ≤ 2

(∣∣f(x′)− f(z)
∣∣2 +

∣∣f(z)− f(x)
∣∣2)

we have that for any x and x′ in U ,∣∣f(x′)− f(x)
∣∣2 ≤ 2

vol(V ∩ X )

∫
V ∩X

∣∣f(x′)− f(z)
∣∣2 +

∣∣f(z)− f(x)
∣∣2 dz

≤ 2d+1

a3νdrd

∫
V ∩X

∣∣f(x′)− f(z)
∣∣2 +

∣∣f(z)− f(x)
∣∣2 dz

≤ 2d+2

K(1)a3νdrdpmin

(
F (x′) + F (x)

)
, (A.41)

where in the last inequality we set

F (x) :=

∫
X
K

(
‖z − x‖

r

)(
f(z)− f(x)

)2
p̃n(x) dx,

and use the facts that p̃n(x) ≥ pmin/2, that K(‖z − x‖/r) ≥ K(1) for all z ∈ B(x, r).

Plugging the upper bound (A.41) back into (A.40), we have that∫
U

∣∣∣f(x)− a
∣∣∣2p̃n(x) dx ≤ 2d+2

K(1)a3νdrd

∫
U

F (x)p̃n(x) dx

=
2d+2

K(1)a3νd
r2Ẽr(f, U),

and Lemma 10 follows by taking A3 := 2d+2/(K(1)a3νd).

Proof of Lemma 11. Recalling that
(
P̃f
)
(Xi) = n ·

∫
Ui
f(x)p̃n(x) dx, by Jensen’s inequality,((

P̃f
)
(Xi)−

(
P̃f
)
(Xj)

)2

≤ n2 ·
∫
Ui

∫
Uj

(
f(x′)− f(x)

)2
p̃n(x′)p̃n(x) dx′ dx.

Additionally, the non-increasing and Lipschitz properties of K imply that for any x ∈ Ui and x′ ∈ Uj ,

K

(
‖Xi −Xj‖

r

)
≤ K

((‖x′ − x‖ − 2A0δ̃
)

+

r

)
≤ K

(
‖x′ − x‖
r + 2A0δ̃

)
+

2LKA0δ̃

r
1
{
‖x′ − x‖ ≤ r + 2A0δ̃

}
.

As a result, the graph Dirichlet energy is upper bounded as follows:

br(P̃f) =
1

n2rd+2

n∑
i,j=1

((
P̃f
)
(Xi)−

(
P̃ f
)
(Xj)

)2

K

(
‖Xi −Xj‖

r

)

≤ 1

rd+2

n∑
i,j=1

∫
Ui

∫
Uj

(
f(x′)− f(x)

)2
p̃n(x′)p̃n(x)K

(
‖Xi −Xj‖

r

)
dx′ dx

≤ 1

rd+2

n∑
i,j=1

∫
Ui

∫
Uj

(
f(x′)− f(x)

)2
p̃n(x′)p̃n(x)

[
K

(
‖x′ − x‖
r + 2A0δ̃

)
+

2LKA0δ̃

r
1
{
‖x′ − x‖ ≤ r + 2δ̃

}]
dx′ dx

=
(

1 + 2A0
δ̃

r

)d+2
[
Ẽr+2A0δ̃

(f) +
2LKA0δ̃

r
Ẽr+2A0δ̃

(f ; 1[0,1])

]
,

for 1[0,1](t) = 1{0 ≤ t ≤ 1}. But by assumption Ẽr+2A0δ̃
(f ; 1[0,1]) ≤ 1/(K(1))Ẽr+2A0δ̃

(f), and so we obtain

br(P̃f) ≤
(

1 + 2A0
δ̃

r

)d+2(
1 +

2LKA0δ̃

rK(1)

)
Ẽr+2A0δ̃

(f);

the Lemma follows upon choosing A9 := A0(2d+4 + 4LK

K(1) ).
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Proof of Lemma 12. For brevity, we write r̃ := r − 2A0δ̃. We begin by expanding the energy Ẽr̃
(
P̃?u

)
as a

double sum of double integrals,

Ẽr̃
(
P̃?u

)
=

1

r̃d+2

n∑
i=1

n∑
j=1

∫
Ui

∫
Uj

(
u(Xi)− u(Xj)

)2

K

(
‖x′ − x‖

r̃

)
p̃n(x′)p̃n(x) dx′ dx.

We next use the Lipschitz property of the kernel K—in particular that for x ∈ Ui and x′ ∈ Uj ,

K

(
‖x′ − x‖

r̃

)
≤ K

(
‖Xi −Xj‖

r

)
+

2A0LK δ̃

r̃
· 1
{
‖x′ − x‖

r̃
≤ 1

}
,

—to conclude that

Ẽr̃
(
P̃?u

)
≤ 1

n2r̃d+2

n∑
i=1

n∑
j=1

(
u(Xi)− u(Xj)

)2

K

(
‖Xi −Xj‖

r

)
+

2A0LK δ̃

r̃
Ẽr̃(P̃?u,1[0,1]

)
≤
(

1 + 2d+2A0
δ̃

r

)
br(u) +

2A0LK δ̃

r̃
Ẽr̃(P̃?u,1[0,1]

)
≤
(

1 + 2d+2A0
δ̃

r

)
br(u) +

4A0LK δ̃

K(1)r
Ẽr̃(P̃?u

)
.

In other words,

Ẽr̃
(
P̃?u

)
≤
(

1− 4A0LK δ̃

K(1)r

)−1(
1 + 2d+2A0

δ̃

r

)
br(u)

≤
(

1 +
δ̃

r

(8A0LK
K(1)

+ 2d+3
))

br(u),

where the second inequality follows from the algebraic identities (1− t)−1 ≤ (1 + 2t) for any 0 < t < 1/2 and
(1+s)(1+t) < 1+2s+t for any 0 < t < 1 and s > 0. The Lemma follows upon choosing A3 := 8A0LK

K(1) +2d+3.

A4.5 Proof of Propositions 4 and 5

Proof of Proposition 4. Part (1) of Proposition 4 follows from

σKD2(Λr−2A0δ̃
P̃?u)

(i)

≤ A8Er−2A0δ̃
(P̃?u)

(ii)

≤ A8

(
1 +A1(θ + δ̃)

)
Ẽr−2A0δ̃

(P̃?u)

(iii)

≤ A8

(
1 +A1(θ + δ̃)

)
·
(

1 +A3
δ̃

r

)
br(u),

where (i) follows from Lemma 7, (ii) follows from (A.38), and (iii) follows from Lemma 12.

Part (2) of Proposition 4 follows from

br(P̃f)
(iv)

≤
(

1 +A9
δ̃

r

)
Ẽr+2A0δ̃

(f)

(v)

≤
(

1 +A1(θ + δ̃)
)(

1 +A9
δ̃

r

)
Er+2A0δ̃

(f)

(vi)

≤
(

1 +A1(θ + δ̃)
)
·
(

1 +A9
δ̃

r

)
·
(C5p

2
max

p2
min

)
· σKD2(f),

where (iv) follows from Lemma 11, (v) follows from (A.38), and (vi) follows from the proof of Lemma 1.



Proof of Proposition 5. Proof of (1). We begin by upper bounding
∥∥P̃f∥∥

n
. By the Cauchy-Schwarz inequality

and the bound on ‖p̃n − p‖∞ in (A.26),∣∣∣P̃f(Xi)
∣∣∣2 = n2

∣∣∣∫
Ui

f(x)p̃n(x) dx
∣∣∣2

≤ n
∫
Ui

∣∣f(x)
∣∣2p̃n(x) dx

≤ n
(

1 +A1(θ + δ̃)
)[∫

Ui

∣∣f(x)
∣∣2p(x) dx+A1(θ + δ̃)

∫
Ui

∣∣f(x)
∣∣2p(x) dx

]
,

and summing over i = 1, . . . , n, we obtain

∥∥P̃f∥∥2

n
≤
(

1 +A1(θ + δ̃)

)∥∥f∥∥2

P
. (A.42)

Now, noticing that
∥∥P̃f∥∥

n
=
∥∥P̃?P̃f∥∥

P̃n
, we can use the upper bound (A.42) to show that∣∣∣∥∥P̃f∥∥2

n
−
∥∥f∥∥2

P

∣∣∣ ≤ ∣∣∣∥∥P̃f∥∥2

n
−
∥∥f∥∥2

P̃n

∣∣∣+
∣∣∣∥∥f∥∥2

P̃n
−
∥∥f∥∥2

P

∣∣∣
(i)

≤
∣∣∣∥∥P̃f∥∥2

n
−
∥∥f∥∥2

P̃n

∣∣∣+A1(θ + δ̃)
∥∥f∥∥2

P
(A.43)

(ii)

≤ 2

√
1 +A1(θ + δ̃)

∣∣∣∥∥P̃f∥∥
n
−
∥∥f∥∥

P̃n

∣∣∣ · ∥∥f∥∥
P

+A1(θ + δ̃)
∥∥f∥∥2

P

≤ 2

√
1 +A1(θ + δ̃)

∥∥P̃?P̃f − f∥∥
P̃n
·
∥∥f∥∥

P
+A1(θ + δ̃)

∥∥f∥∥2

P
, (A.44)

where (i) follows from (A.39) and (ii) follows from (A.39) and (A.42).

It remains to upper bound
∥∥P̃?P̃f − f

∥∥2

P̃n
. Noting that P̃?P̃f is piecewise constant over the cells Ui, we

have ∥∥P̃?P̃f − f∥∥2

P̃n
=

n∑
i=1

∫
Ui

(
f(x)− n ·

∫
Ui

f(x′)p̃n(x′) dx′
)2

p̃n(x) dx.

From Lemma 10, we have that for each i = 1, . . . , n,∫
Ui

(
f(x)− n ·

∫
Ui

f(x′)p̃n(x′) dx′
)2

p̃n(x) dx ≤ A3r
2Ẽr(f, Ui).

Summing up over i on both sides of the inequality gives

∥∥P̃?P̃f − f∥∥2

P̃n
≤ A3r

2Ẽr(f,X ) ≤ A3

(
1 +A1(θ + δ̃)

)
·
(C5p

2
max

p2
min

)
· σKr2D2(f),

where the latter inequality follows from the proof of Proposition 4, Part (2). Then Proposition 5, Part (1) follows
by plugging this inequality into (A.44) and taking

A5 := 2
√
A3

(
1 +A1(θ + δ̃)

)(√C5pmax

pmin

)
·
√
σK .

Proof of (2). By the triangle inequality and (A.39),∣∣∣‖Ĩu‖2P − ‖u‖2n∣∣∣ ≤ ∣∣∣‖Ĩu‖2P − ‖Ĩu‖2P̃n

∣∣∣+
∣∣∣‖Ĩu‖2

P̃n
− ‖u‖2n

∣∣∣
≤ A1(θ + δ̃)‖Ĩu‖2

P̃n
+
∣∣∣‖Ĩu‖2

P̃n
− ‖u‖2n

∣∣∣
= A1(θ + δ̃)‖Ĩu‖2

P̃n
+
(
‖Ĩu‖P̃n

+ ‖u‖n
)
·
∣∣∣‖Ĩu‖P̃n

− ‖u‖n
∣∣∣ (A.45)
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To upper bound the second term in the above expression, we first note that ‖u‖n = ‖P̃?u‖P̃n
, and thus∣∣∣‖Ĩu‖P̃n

− ‖u‖n
∣∣∣ =

∣∣∣‖Ĩu‖P̃n
− ‖P̃?u‖P̃n

∣∣∣
(iii)

≤ ‖Λr̃P̃?u− P̃?u‖P̃n

(iv)

≤ r̃

√
1

a3σKpmin
Er̃(P̃?u)

(v)

≤ r̃

√
1 +A1(θ + δ̃)

a3σKpmin

(
1 +A3

δ̃

r

)
br(u), (A.46)

where (iii) follows by the triangle inequality, (iv) follows from Lemma 9, and (v) follows from (A.38) and
Lemma 12. On the other hand, by (A.39) and Lemma 9,

‖Ĩu‖2
P̃n
≤
(

1 +A1(θ + δ̃)
)
‖Ĩu‖2P

≤ pmax

a3pmin
·
(

1 +A1(θ + δ̃)
)
‖P̃?u‖2P

≤ pmax

a3pmin
·
(

1 +A1(θ + δ̃)
)2

‖P̃?u‖2
P̃n

=
pmax

a3pmin
·
(

1 +A1(θ + δ̃)
)2

‖u‖2n.

Plugging this estimate along with (A.46) back into (A.45), we obtain part (2) of Proposition 5, upon choosing

A6 :=

(
3

√
2pmax

pmin
+ 1

)√
4

a3σKpmin
, A7 := 4A1

pmax

a3pmin
.

A5 Bound on the empirical norm

In Lemma 13, we lower bound ‖f0‖2n by (a constant times) the L2(X ) norm of f .

Lemma 13. Fix δ ∈ (0, 1) Suppose P satisfies (P2). If f ∈ H1(X ,M) is lower bounded in L2(X ) norm,

‖f‖L2(X ) ≥
C6M

δ
·max

{
n−1/2, n−1/d

}
. (A.47)

Then with probability at least 1− 5δ,

‖f‖2n ≥ δ · E
[
‖f‖2n

]
. (A.48)

Proof of Lemma 13. In this proof, we will find it more convenient to deal with the parameterization b = 1/δ.
To establish (A.48), it is sufficient to show that

E
[
‖f‖4n

]
≤
(

1 +
1

b2

)
·
(
E
[
‖f‖2n

])2
;

then (A.48) follows from the Paley-Zygmund inequality (Lemma 17). Since p ≤ pmax is uniformly bounded, we
can relate E

[
‖f‖4n

]
to the L4(X )-norm,

E
[
‖f‖4n

]
=

(n− 1)

n

(
E
[
‖f‖2n

])2

+
E
[(
f(X1)

)4]
n

≤
(
E
[
‖f‖2n

])2

+ pmax

‖f‖4L4(X )

n
.

We will use the Sobolev inequalities as a tool to show that ‖f‖L4(X )/n ≤
(
E[‖f‖2n]

)2
/(b2pmax), whence the claim

of the Lemma is shown. The nature of the inequalities we use depend on the value of d. In particular, we will use
the following relationships between norms: for any f ∈ H1(X ;M),

supx∈X |f(x)|, d = 1

‖f‖Lq(X ), d = 2, for all 0 < q <∞
‖f‖Lq(X ), d ≥ 3, for all 0 < q ≤ 2d/(d− 2)

 ≤ C7 ·M.



(See Theorem 6 in Section 5.6.3 of Evans [2010] for a complete statement and proof of the various Sobolev
inequalities.)

As a result, we divide our analysis into three cases: (i) the case where d < 2, (ii) the case where d > 2, and (iii)
the borderline case d = 2.

Case 1: d < 2. The L4(X )-norm of f can be bounded in terms of the L2(X ) norm,

‖f‖4L4(X ) ≤
(

sup
x∈X
|f(x)|

)2

·
∫
X

[f(x)]2 dx ≤ C2
7M

2 · ‖f‖2L2(X).

Since by assumption

‖f‖2L2(X ) ≥ C
2
6 · b2 ·M2 · 1

n
,

we have

pmax

‖f‖4L4(X )

n
≤ C2

7M
2pmax ·

‖f‖2L2(X )

n
≤ C7pmax

C2
6b

2
‖f‖4L2(X ) ≤

E
[
‖f‖2n

]
b2

,

where the last inequality follows by taking C6 ≥ C7

√
pmax/pmin.

Case 2: d > 2. Let θ = 2 − d/2 and q = 2d/(d − 2). Noting that 4 = 2θ + (1 − θ)q, Lyapunov’s inequality
implies

‖f‖4L4(X ) ≤ ‖f‖
2θ
L2(X ) · ‖f‖

(1−θ)q
Lq(X ) ≤ ‖f‖

4
L2(X ) ·

(
C7‖f‖H1(X )

‖f‖L2(X )

)d
.

By assumption, ‖f‖L2(X ) ≥ C6b‖f‖H1(X )n
−1/d, and therefore

pmax

‖f‖4L4(X )

n
≤ ‖f‖4L2(X )pmax ·

(
C7‖f‖H1(X )

n1/d‖f‖L2(X )

)d
≤
Cd7pmax‖f‖4L2(X )

Cd6 b
d

≤
E
[
‖f‖2n

]
b2

.

where the last inequality follows by taking C6 ≥ C7(pmax/pmin)1/d, and keeping in mind that d > 2 and
b ≥ 1.

Case 3: d = 2. Fix t ∈ (1/2, 1), and suppose that

‖f‖L2(X ) ≥
C6M

δ
· n−t/2. (A.49)

Putting q = 2/(1− t), we have that ‖f‖Lq(X ) ≤ C7 ·M , and it follows from derivations similar to those in Case 2

that ‖f‖L4(X )/n ≤
(
E[‖f‖2n]

)2
/(b2pmax) when C6 ≥ C7

√
pmax/pmin.

Now, suppose f ∈ L4(X ) satisfies (A.49) only when t = 1. For each k = 1, 2, . . . let fk := n1/(2k)f , so that each
fk satisfies (A.49) with respect to t = 1− 1/k. Clearly ‖fk − f‖L4(X ) → 0 as k →∞, and therefore

1

n
‖f‖L4(X ) =

1

n
lim
k→∞

‖fk‖L4(X ) ≤
1

b2pmax
lim
k→∞

(
E[‖fk‖2n]

)2
=

1

b2pmax

(
E[‖f‖2n]

)2
.

This establishes the claim when d = 2, and completes the proof of Lemma 13.

A6 Graph functionals under the manifold hypothesis

In this section, we restate a few results of Garćıa Trillos et al. [2019], Calder and Garćıa Trillos [2019], which are
analogous to Lemmas 1 and 2 but cover the case where X is an m-dimensional submanifold without boundary.
As such, the results in this section will hold under the assumption (P3). We refer to Garćıa Trillos et al. [2019],
Calder and Garćıa Trillos [2019] for the proofs of these results.

Proposition 6 follows from Lemma 5 of Garćıa Trillos et al. [2019] and Markov’s inequality.

Proposition 6. For any f ∈ H1(X ), with probability at least 1− δ,

f>Lf ≤ C

δ
n2rm+2|f |2H1(X ).
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In Proposition 7, it is assumed that r, δ̃ and θ satisfy the following smallness conditions.

(S1)

n−1/m < δ̃ ≤ 1

4
r and C(θ + δ̃) ≤ 1

2
pmin and C4

(
log(n)/n

)1/m ≤ r ≤ min{c4, 1}.

Proposition 7 (c.f Theorem 2.4 of Calder and Garćıa Trillos [2019]). With probability at least 1 −
Cn exp(−cnθ2δ̃m), the following statement holds. For any k ∈ N such that√

λk(∆P )r + C(θ + δ̃) ≤ 1

2
,

it holds that

nrm+2λk(∆P )

(
1−C

(
r(
√
λk(∆P )+1)+

δ̃

r
+θ
))
≤ λk(Gn,r) ≤ nrm+2λk(∆P )

(
1+C

(
r(
√
λk(∆P )+1)+

δ̃

r
+θ
))

.

Proposition 8 follows from Lemma 3.1 of Calder and Garćıa Trillos [2019], along with a union bound.

Proposition 8. With probability at least 1− 2Cn exp(−cpmaxnr
m), it holds that

Dmax(Gn,r) ≤ Cnrm.

Finally, we note that a Weyl’s Law holds for Riemmanian manifolds without boundary, i.e.

λk(∆P ) � k2/m.

Put Bn,r(k) := min{nrm+2k2/m, nrm}. Following parallel steps to the proof of Lemma 2, one can derive from
Propositions 7 and 8, and Weyl’s Law, that with probability at least 1− Cn exp(−cnrm),

cBn,r(k) ≤ λk ≤ CBn,r(k), for all 2 ≤ k ≤ n. (A.50)

A7 Proofs of main results

We are now in a position to prove Theorems 1-5, as well as a few other claims from our main text. In Section A7.1
we prove all of our results regarding estimation and in Section A7.2 we prove all of our results regarding testing;
in Section A7.3, Lemmas 14 and 15, we provide some useful estimates on a particular pair of sums that appear
repeatedly in our proofs. Throughout, it will be convenient for us to deal with the normalization ρ̃ := ρnrd+2.
We note that in each of our Theorems, the prescribed choice of ρ will always result in ρ̃ ≤ 1.

A7.1 Proof of estimation results

Proof of Theorem 1. We have shown that the inequalities (14) and (15) are satisfied with probability at least
1− δ−C1n exp(−c1nrd), and throughout this proof we take as granted that both of these inequalities hold.

Now, set ρ̃ = M−4/(2+d)n−2/(2+d) as prescribed in Theorem 1, and note that ρ̃−d/2 ≤ n is implied by the
assumption M ≤ n1/d. Therefore from (15) and Lemma 14, it follows that

n∑
k=1

(
1

ρλk + 1

)2

≥ 1 +
1

C2
3

n∑
k=2

(
1

ρ̃k2/d + 1

)2

≥ 1

8C2
3

ρ̃−d/2.

As a result, by Lemma 5 along with (14) and (15), with probability at least 1 − δ − C1n exp(−c1nrd) −
exp(−ρ̃−d/2/8C2

3 ) it holds that,

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

n

n∑
k=2

(
1

c3ρ̃min{k2/d, r−2}+ 1

)2

≤ C2

δ
ρ̃M2 +

10

n
+

10

nc23

n∑
k=2

(
1

ρ̃k2/d + 1

)2

+
10r4

c23ρ̃
2
. (A.51)



The first term on the right hand side of (A.51) is a bias term, while the second, third, and fourth terms each
contribute to the variance. Of these, under our assumptions the third term dominates, as we show momentarily.
First, we use Lemma 14 to get an upper bound on this variance term,

n∑
k=2

(
1

ρ̃k2/d + 1

)2

≤ 4ρ̃−d/2.

Then plugging this upper bound back into (A.51), we have that

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

40ρ̃−d/2

c23n
+

10r4

c23ρ̃
2

=

(
C2

δ
+

40

c23

)
M2d/(2+d)n−2/(2+d) +

10

n
+

10

c23
r4M8/(2+d)n4/(2+d)

≤
(
C2

δ
+

50

c23

)
M2d/(2+d)n−2/(2+d),

with the last inequality following from (R1) and the assumption M ≥ n−1/2. This completes the proof of
Theorem 1.

Proof of Theorem 2. We first establish that f̂ achieves nearly-optimal rates when d = 4, and then establish
the claimed sub-optimal rates when d > 4.

Nearly-optimal rates when d = 4.

Continuing on from (A.51), from Lemma 14 we have that

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nc23ρ̃
2

+
10 log n

nc23ρ̃
2

+
10r4

c23ρ̃
2
.

Setting r = (C0 log(n)/n)1/4, we obtain

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nc23ρ̃
2

+
10 log n

nc23ρ̃
2

+
10C0 log n

nc23ρ̃
2

,

and choosing ρ̃ = M−2/3(log n/n)1/3 yields

‖f̂ − f0‖2n ≤
(
C2

δ
+

20

c23
+

10C0

c23

)
M4/3

(
log n

n

)1/3

+
10

n
.

Suboptimal rates when d > 4.

Once again continuing on from (A.51), from Lemma 14 we have that

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nc23ρ̃
d/2

+
10

n4/dρ̃2c23
+

10r4

ρ̃2c23
.

Setting r = (C0 log n/n)1/d, we obtain

‖f̂ − f0‖2n ≤
C2

δ
ρ̃M2 +

10

n
+

10

nρ̃d/2c23
+

10

n4/dρ̃2c23
+

10C
4/d
0 (log n)4/d

n4/dρ̃2c23
,

and choosing ρ̃ = M−2/3n−4/(3d) yields

‖f̂ − f0‖2n ≤
(
C2

δ
+

10

c23
+

10C
4/d
0

c23

)
M4/3

(
log n

n1/3

)4/d

+
10

c
d/2
3

Md/3n−1/3 +
10

n
.
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Bounds on L2(X ) error under Lipschitz assumption. Let V1, . . . , Vn denote the Voronoi tesselation of X
with respect to X1, . . . , Xn. Extend f̂ over X by taking it piecewise constant over the Voronoi cells, i.e.

f̂(x) :=

n∑
i=1

f̂i · 1{x ∈ Vi}.

Note that we are abusing notation slightly by also using f̂ to refer to this extension.

In Proposition 9, we establish that the out-of-sample error ‖f̂ − f0‖L2(X ) will not be too much larger than the

in-sample error ‖f̂ − f0‖n.

Proposition 9. Suppose f0 satisfies |f0(x′)− f0(x)| ≤M‖x′ − x‖ for all x′, x ∈ X . Then for all n sufficiently
large, with probability at least 1− δ it holds that

‖f̂ − f0‖2L2(X ) ≤ C log(1/δ)

(
log(n) · ‖f̂ − f0‖2n +M2

( log n

n

)2/d
)
.

Note that n−2/d � n−2/(2+d). Therefore Proposition 9 together with Theorem 1 implies that with high
probability, f̂ achieves the nearly-optimal (up to a factor of log n) estimation rates out-of-sample error—that is,

‖f̂ − f0‖2L2(X ) ≤ C log(n)M2d/(2+d)n−2/(2+d)—as long as M ≤ Cn1/d.

Proof of Proposition 9. Suppose x ∈ Vi, so that we can upper bound the pointwise squared error |f̂(x)−f(x)|2
using the triangle inequality:(

f̂(x)− f0(x)
)2

=
(
f̂(Xi)− f0(x)

)2 ≤ 2
(
f̂(Xi)− f0(Xi)

)2
+ 2
(
f0(Xi)− f0(x)

)2
.

Integrating both sides of the inequality, we have∫
X

(
f̂(x)− f0(x)

)2
dx ≤ 2

n∑
i=1

∫
Vi

(
f̂(Xi)− f0(Xi)

)2

dx+ 2

n∑
i=1

∫
Vi

(
f0(Xi)− f0(x)

)2

dx

= 2

n∑
i=1

vol(Vi)
(
f̂(Xi)− f0(Xi)

)2

+ 2

n∑
i=1

∫
Vi

(
f0(Xi)− f0(x)

)2

dx,

and so by invoking the Lipschitz property of f0, we obtain

‖f̂ − f‖2L2(X ) ≤ 2

n∑
i=1

vol(Vi)
(
f̂(Xi)− f0(Xi)

)2

+ 2M2
n∑
i=1

(
diam(Vi)

)2

. (A.52)

Here we have written diam(V ) for the diameter of a set V .

Now we will use some results of Chaudhuri and Dasgupta [2010] regarding uniform concentration of empirical
counts, to upper bound diam(Vi) Set

εn :=

(
2Co log(1/δ)d log n

νdpmina3n

)1/d

,

where Co is a constant given in Lemma 16 of Chaudhuri and Dasgupta [2010]. Note that for n sufficiently large,
εn ≤ c0, and therefore by (A.35) we have that for every x ∈ X , P (B(x, εn)) ≥ 2Co log(1/δ)d logn

n . Consequently,
by Lemma 16 of Chaudhuri and Dasgupta [2010] it holds that with probability at least 1− δ,

for all x ∈ X , B(x, εn) ∩ {X1, . . . , Xn} 6= ∅. (A.53)

But if (A.53) is true, it must also be true that for each i = 1, . . . , n and for every x ∈ Vi, the distance ‖x−Xi‖ ≤ εn.
Thus by the triangle inequality, maxi=1,...,n diam(Vi) ≤ 2εn. Plugging back in to (A.52), and using the upper

bound volume vol(Vi) ≤ νd
(
diam(Vi)

)d
, we obtain the desired upper bound on ‖f̂ − f‖2L2(X ).



Proof of Theorem 4. The proof of Theorem 4 follows exactly the same steps as the proof of Theorem 1,
replacing the references to Lemma 1 and 2 by references to Proposition 6 and (A.50), and the ambient dimension
d by the intrinsic dimension m.

A7.2 Proofs of testing results

Proof of Theorem 3. Let δ = 1/b. Recall that we have shown that the inequalities (14) and (15) are satisfied
with probability at least 1− 1/b− C1n exp(−c1nrd), and throughout this proof we take as granted that both of
these inequalities hold.

Now, we would like to invoke Lemma 6, and in order to do so, we must show that the inequality (A.14) is
satisfied with respect to G = Gn,r. First, we upper bound the right hand side of this inequality. Setting
ρ̃ = M−8/(4+d)n−4/(4+d) as prescribed by Theorem 3, it follows from (14) and (15) that

2ρ

n

(
f>0 Lf0

)
+

2
√

2/α+ 2b

n

( n∑
k=1

1

(ρλk + 1)4

)1/2

≤ C2bρ̃M
2 +

2
√

2/α+ 2b

n

[
1 +

1

c23

( n∑
k=2

1

(ρ̃k2/d + 1)4

)1/2

+
r4n1/2

c23ρ̃
2

]

≤ C2bρ̃M
2 +

2
√

2/α+ 2b

n

(
1 +

√
2

c23
ρ̃−d/4 +

r4n1/2

c23ρ̃
2

)
≤
(
C2 + 2 +

2
√

2

c23
+

2

c23

)
·
(√ 2

α
+ b
)
·M2d/(4+d)n−4/(4+d).

The second inequality in the above is justified by Lemma 15, keeping in mind that M ≤Mmax(d) implies that
ρ̃−d/2 ≤ n. The third inequality follows from the upper bound on r assumed in (R2) as well as the fact that
M ≥ n−1/2.

Next we lower bound the left hand side of the inequality (A.14)—i.e. we lower bound the empirical norm
‖f0‖2n—using Lemma 13. Recall that by assumption, M ≤Mmax(d). Therefore, taking C ≥ C6 in (11) implies
that the lower bound on ‖f‖L2(X ) in (A.47) is satisfied. As a result, it follows from (A.48) that

‖f‖2n ≥
E[‖f‖2n]

b
≥ pmin

b
‖f‖2L2(X ) ≥ C

(√ 1

α
+ b
)
M2d/(4+d)n−4/(4+d),

with probability at least 1− 5/b. Taking C ≥ C2 + 2 + (2
√

2)/c23 + 2/c23 in (11) thus implies (A.14), and we may
therefore use Lemma 6 to upper bound the type II error the Laplacian smoothing test ϕ̂. Observe that by (15)
and the lower bound in Lemma 15,

n∑
k=1

(
1

ρλk + 1

)4

≥ 1 +
1

C4
3

n∑
k=2

(
1

ρ̃k2/d + 1

)4

≥ 1

32C4
3

ρ̃−d/2.

We conclude that

Pf0
(
T̂ ≤ t̂α

)
≤ 6

b
+

1

b2
+

16

b

(
n∑
k=1

1

(ρλk + 1)4

)−1/2

+ C1n exp(−c1nrd)

≤ 7

b
+

64
√

2

b
C2

3 ρ̃
d/4 + C1n exp(−c1nrd),

establishing the claim of Theorem 3.

Proof of Theorem 5. The proof of Theorem 5 follows exactly the same steps as the proof of Theorem 3,
replacing the references to Lemma 1 and 2 by references to Propositions 6 and (A.50), and the ambient dimension
d by the intrinsic dimension m.

Proof of (12). When ρ = 0, the Laplacian smoother f̂ = Y, the test statistic T̂ = 1
n‖Y‖

2
2, and the threshold

t̂α = 1 + n−1/2
√

2/α. The expectation of T̂ is

E
[
T̂
]

= E
[
f2

0 (X)
]

+ 1 ≥ pmin‖f0‖2L2(X ) + 1.
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When f0 ∈ L4(X ,M), the variance can be upper bounded

Var
[
T̂
]
≤ 1

n

(
3 + pmaxM

4 + pmax‖f0‖2L2(X )

)
.

Now, let us assume that

‖f0‖2L2(X) ≥
2
√

2/α+ 2b

pmin
n−1/2,

so that E[T̂ ]− t̂α ≥ E[f2
0 (X)]/2. Hence, by Chebyshev’s inequality

Pf0
(
T̂ ≤ t̂α

)
≤ 4

Varf0
[
T̂
]

E[f2
0 (X)]2

≤ 4

n
·

3 + pmax

(
M4 + ‖f0‖2L2(X )

)
p2

min‖f0‖4L2(X )

≤ 1

b2

(
3 +

4bpmax

pminn1/2
+ pmaxM

4
)
.

A7.3 Two convenient estimates

The following Lemmas provides convenient upper and lower bounds on our estimation variance term (Lemma 14)
and testing variance term (Lemma 15).

Lemma 14. For any t > 0 such that 1 ≤ t−d/2 ≤ n,

1

8
t−d/2 − 1 ≤

n∑
k=2

(
1

tk2/d + 1

)2

≤ t−d/2 +


3t−d/2, if d < 4
1
t2 log n, if d = 4

1
t2n

1−4/d, if d > 4.

Lemma 15. Suppose d ≤ 4. Then for any t > 0 such that 1 ≤ t−d/2 ≤ n,

1

32
t−d/2 − 1 ≤

n∑
k=2

(
1

tk2/d + 1

)4

≤ 2t−d/2.

Proof of Lemma 14. We begin by proving the upper bounds. Treating the sum over k as a Riemann sum of
a non-increasing function, we have that

n∑
k=2

(
1

tk2/d + 1

)2

≤
∫ n

1

(
1

tx2/d + 1

)2

dx ≤ t−d/2 +

∫ n

t−d/2

(
1

tx2/d + 1

)2

dx ≤ t−d/2 +
1

t2

∫ n

t−d/2

x−4/d dx.

The various upper bounds (for d < 4, d = 4, and d > 4) then follow upon computing the integral.

For the lower bound, we simply recognize that for each k = 2, . . . , n such that k ≤
⌊
t−d/2

⌋
, it holds that

1/(tk2/d + 1)2 ≥ 1/4, and there are at least min
{⌊
t−d/2

⌋
− 1, n− 1

}
> 1

2 t
−d/2 − 1 such values of k.

Proof of Lemma 15. The upper bound follows similarly to that of Lemma 14:

n∑
k=1

(
1

tk2/d + 1

)4

≤ t−d/2 +
1

t4

n∑
k=t−d/2+1

1

k8/d
≤ t−d/2 +

1

t4

∫ n

t−d/2

x−8/d dx ≤ 2t−d/2.

The lower bound follows from the same logic as we used to derive the lower bound in Lemma 14.



A8 Concentration inequalities

Lemma 16. Let ξ1, . . . , ξN be independent N(0, 1) random variables, and let U :=
∑N
k=1 ak(ξ2

k − 1). Then for
any t > 0,

P
[
U ≥ 2‖a‖2

√
t+ 2‖a‖∞t

]
≤ exp(−t).

In particular if ak = 1 for each k = 1, . . . , N , then

P
[
U ≥ 2

√
Nt+ 2t

]
≤ exp(−t).

The proof of Lemma 13 relies on (a variant of) the Paley-Zygmund Inequality.

Lemma 17. Let f satisfy the following moment inequality for some b ≥ 1:

E
[
‖f‖4n

]
≤
(

1 +
1

b2

)
·
(
E
[
‖f‖2n

])2

. (A.54)

Then,

P
[
‖f‖2n ≥

1

b
E
[
‖f‖2n

]]
≥ 1− 5

b
. (A.55)

Proof. Let Z be a non-negative random variable such that E(Zq) <∞. The Paley-Zygmund inequality says that
for all 0 ≤ λ ≤ 1,

P(Z > λE(Zp)) ≥
[
(1− λp) E(Zp)

(E(Zq))p/q

] q
q−p

. (A.56)

Applying (A.56) with Z = ‖f‖2n, p = 1, q = 2 and λ = 1
b , by assumption (A.54) we have

P
(
‖f‖2n >

1

b
E[‖f‖2n]

)
≥
(

1− 1

b

)2

·
(
E[‖f‖2n]

)2
E[‖f‖4n]

≥

(
1− 2

b

)
(

1 + 1
b2

) ≥ 1− 5

b
.

Let Z1, . . . , Zn be independently distributed and bounded random variables, such that E[Zi] = µi. Let Sn =
Z1 + . . .+ Zn and µ = µ1 + . . .+ µn. The multiplicative form of Hoeffding’s inequality gives sharp bounds when
µ� 1.

Lemma 18 (Hoeffding’s Inequality, multiplicative form). Suppose Zi are independent random variables, which
satisfy Zi ∈ [0, B] for i = 1, . . . , n. For any 0 < δ < 1, it holds that

P
(∣∣∣Sn − µ∣∣∣ ≥ δµ) ≤ 2 exp

(
− δ

2µ

3B2

)
.

We use Lemma 18, along with properties of the kernel K and density p, to upper bound the maximum degree in
our neighborhood graph, which we denote by Dmax(Gn,r) := maxi=1,...,nDii.

Lemma 19. Under the conditions of Lemma 2,

Dmax(Gn,r) ≤ 2pmaxnr
d,

with probability at least 1− 2n exp
(
−nrda3pmin/(3[K(0)]2)

)
.
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Proof of Lemma 19. Fix x ∈ X , and set

Dn,r(x) :=

n∑
i=1

K

(
‖Xi − x‖

r

)
;

note that Dn,r(Xi) is just the degree of Xi in Gn,r. By Hoeffding’s inequality

P
(∣∣∣Dn,r(x)− E

[
Dn,r(x)

]∣∣∣ ≥ δE[Dn,r(x)
])
≤ 2 exp

(
−
δ2E

[
Dn,r(x)

]
3[K(0)]2

)
. (A.57)

Now we lower bound E[Dn,r(x)] using the boundedness of the density p, and the fact that X has Lipschitz
boundary:

E
[
Dn,r(x)

]
= n

∫
X
K

(
‖x′ − x‖

r

)
p(x) dx

≥ npmin

∫
X
K

(
‖x′ − x‖

r

)
dx

≥ npmina3

∫
X
K

(
‖x′ − x‖

r

)
dx

≥ nrdpmin,

with the second inequality following from (A.35), and the final inequality from the normalization
∫
Rd K(‖z‖) dz = 1.

Similar derivations yield the upper bound

E
[
Dn,r(x)

]
≤ nrdpmax,

and plugging these bounds in to (A.57), we determine that

P
(
Dn,r(x) ≥ (1 + δ)nrdpmax

)
≤ 2 exp

(
−δ

2nrda0pmin

3[K(0)]2

)
.

Applying a union bound, we get that

P
(

max
i=1,...,n

Dn,r(Xi) ≥ (1 + δ)nrdpmax

)
≤ 2n exp

(
−δ

2nrda0pmin

3[K(0)]2

)
,

and taking δ = 1 gives the claimed upper bound.
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