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7 Optimization algorithm

The proximal gradient algorithm for optimizing our objective (2) is shown in Algorithm 1, where we define (for
✓ 2 Rp⇥q)

[Prox�(✓)]i: = ✓i: max

✓
0, 1� �

k✓i:k2

◆
, i = 1, . . . , p,

as the proximal operator for the L-1,2 norm.

Algorithm 1 Proximal gradient descent for (2)

1: Input: matrices �̂(j) =
XT

j Xj

n , �̂(j) =
XT

j yj

n for j = 1, . . . , q, regularizer ⇢� and associated q
0

�(·), backtracking
constant c 2 (0, 1), initial step size ⇣0, norm constraint R, and initial iterate ✓0.

2: ✓  ✓0.
3: while not converged do

4: for j = 1, . . . , q do

5: Compute the jth gradient rL̄n(✓:j) = �̂(j)
✓:j � �̂

(j) �
Pp

i=1 ✓ij
q0�(k✓i:k2)

k✓i:k2
.

6: end for

7: Line search: Let stepsize ⇣t be the largest element of {ct⇣0}t=1,... such that

kProx�(✓ � ⇣trL̄n(✓)))k1,2 < R.

8: ✓  Prox�(✓ � ⇣trL̄n(✓))).
9: end while

10: Return estimate ✓.

8 Additional Experiments

8.1 Synthetic experiments for q = 40

Figure 7 shows results for q = 40 following the setup in the main text.

Figure 8 compares our joint sparse approach to the individual sparsity approach in the case where all t values
share Gaussian coe�cients on each element in S (best for joint sparsity) and in the case where only 1 t value has
nonzero coe�cients in S (best case for individual sparsity). Our joint approach gains approximately

p
q factor

in sample complexity of 0.9 accuracy when each t value has a (standard Normal) nonzero coe�cient for each
entry of S, and even in the extreme case where only one value of t has nonzero coe�cients, we still do not lose
performance relative to the individual sparsity approach.

8.2 Additional real data experiments

Cattaneo2. The main text in Table 1 showed results for regularization parameter chosen via cross validation.
We now consider robustness of the e↵ect estimation to misspecification of �. Table 3 shows results for � chosen
too high (yielding very sparse S with average |S| of 3) and too low (yielding nonsparse S with average |S| of 15).
Both estimates perform somewhat worse than the results in the main text, but still better than the nonsparse
estimate (again shown in the main text), indicating that our approach still tends to select useful covariates.



Kristjan Greenewald, Dmitriy Katz-Rogozhnikov, Karthikeyan Shanmugam

Figure 7: Empirical probability of our joint sparse algorithm (upper) and individual sparsity approach (lower)
correctly recovering the sparse set S as a function of n and p, for q = 40.

IHDP. For the IHDP data, we know that S is sparse (since the datset is semisynthetic), but we aren’t told
about the sparsity of the set X1 [ X2. To answer this question, we used the doubly robust estimator with
covariates selected as those 12 (out of 25) with the largest magnitude coe�cients when regressing treatment T
versus X. The resulting treatment e↵ect estimate was 5.61, with variance 0.623. This is actually not only worse
than our approach, but worse than the nonsparse estimate as well (see main text).

9 Proof of Lemma 1

Proof. Chapter 11 of [Pearl, 2009] gives two su�cient conditions for strong ignorability and c-equivalence. If A
and A

0 are two sets of covariates, then if either of

(a) T ? A
0|A, and Y ? A|T,A0

,

(b) T ? A|A0
, and Y ? A

0|T,A

are satisfied, then A
0 is c-equivalent to A and we can replace A with A

0 in the treatment e↵ect estimation.

Let us use the graph in Figure 2 to check the c-equivalence of S to X, using condition (a).

1. T ? S|X immediately since S is a subset of X.

2. Y ? X|T, S holds since the graph indicates that T, S form a Markov blanket for Y .

We also verify it for X1 [X2, using condition (b):

Joint Sparsity – Gaussian coefficients Individual Sparsity – Gaussian Coefficients Individual Sparsity – Only t=0 nonzeroJoint Sparsity – Only t=0 nonzero

Figure 8: Exact recovery of S (q, k = 10). (a) std Gaussian coe�cients. (b) t = 0 has unit coe�cients, all other
t zero.
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Sparse DR
Estimate
(Ours, too
sparse)

Sparse DR
Estimate
(Ours, less
sparse)

E↵ect of 1 vs. 0 -217.1g(21.2) -152.2g(24.7)
E↵ect of 2 vs. 0 -279.4g(17.4) -195.6g(34.8)
E↵ect of 3 vs. 0 -302.9g(17.5) -197.0g(34.0)
Binary e↵ect(> 0 vs
0)

-269.1g(14.7) -194.7g(31.8)

Table 3: Estimated average treatment e↵ects on Cattaneo2 dataset, showing for larger regularization yielding
sparser S (on average cardinality of 3) and smaller regularization yielding less sparse S (average cardinality of
15). Compare to Table 1 in the main text. Actions – 0: no smoking, 1: 1-5 cigarettes daily, 2: 6-10 daily, and 3:
11 or more. For binary action e↵ect, the empirical estimated interval is known to be (-250g, -200g). Standard
deviations over 20 random data splits are given in parentheses.

1. T ? X|(X1 [X2) holds since the graph indicates that T,X1 [X2 form a Markov blanket for T .

2. Y ? (X1 [X2)|T,X immediately since X1 [X2 is a subset of X.

10 Proof of Lemma 4

We first state the following lemma, which allows us to use the first of the two joint RSC conditions.

Lemma 8. Suppose ✓̂ is a zero subgradient point of the objective (5) supported on S, i.e.

rLn(✓̂S) +r⇢�(✓̂S) = 0. (18)

Let ⌫̃ := ✓̂ � ✓
⇤. Then k⌫̃kF  1.

Lemma 8 implies that k✓̂S � ✓
⇤

SkF  1. Hence the first joint RSC condition (6) applies, so we have

hrL(✓̂S)�rL(✓⇤S), ⌫̃i � ↵1k⌫̃k2F � ⌧1
log k

n
k⌫̃k21,2. (19)

We also have, by the convexity of ⇢�(✓) + µ/2k✓k2F implied by the µ-amenability of ⇢�, that

hr⇢�(✓̂S), ✓⇤S � ✓̂Si  ⇢�(✓
⇤

S)� ⇢�(✓̂S) +
µ

2
k⌫̃k2F . (20)

We know that since ✓̂ is a stationary point, hLn(✓̂S) +r⇢�(✓̂S), ✓S � ✓̂Si � 0 for all feasible ✓. Using this fact
with (19) and (20) yields

(↵1 � µ/2)k⌫̃k2F

 �hrLn(✓
⇤

S), ⌫̃i+ ⇢�(✓
⇤

S)� ⇢�(✓̂S) + ⌧1
log k

n
k⌫̃k21,2

 ⇢�(✓
⇤

S)� ⇢�(✓̂S) +

✓
krLn(✓

⇤

S)k1,2 +R⌧1
log k

n

◆
k⌫̃k1,2, (21)

where we have again applied (24).

Now by (7) and the fact that ⌧1 = q by Lemma 3, we have

krLn(✓
⇤

S)k1,2 +R⌧1
log k

n

 c
0

r
q log p

n
+

r
R2q log k

n

r
q log p

n

 �

2
+

�

2
= �, (22)
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where we have used the assumptions that � � c`

q
q log p

n and n � CR
2
q log p where here we require c` � 2c0 and

C � 1
4c2`

.

Also recall that the definition of (µ, �) amenability states that the function ⇢� +
µt2

2 is convex over the real line,

limt!0+ ⇢
0

�(t) = �, and ⇢� is symmetric about 0. Combining these facts implies that for scalar t, �|t|  ⇢�(t)+
µt2

2 .

This in turn implies by substitution that �k✓k1,2  ⇢�(✓) +
µk✓k2

F
2 .

We use this fact, the subadditivity of ⇢� (implied by the condition that ⇢�(t)
t is nonincreasing on R+), and the

inequality (22) to simplify (21) as

(↵1 � µ/2)k⌫̃k2F  ⇢�(✓
⇤

S)� ⇢�(✓̂S) + �k⌫̃k1,2

 ⇢�(✓
⇤

S)� ⇢�(✓̂S) + �

⇣
⇢�(⌫̃)/�+

µ

2�
k⌫̃k2F

⌘

 ⇢�(✓
⇤

S)� ⇢�(✓̂S) + �

⇣
(⇢�(✓̂S) + ⇢�(✓

⇤

S))/�+
µ

2�
k⌫̃k2F

⌘

= 2⇢�(✓
⇤

S) +
µ

2
k⌫̃k2F ,

hence 0  (↵1 � µ)k⌫̃k2F  2⇢�(✓⇤S)  2�k✓⇤Sk1,2  R�, implying that

k⌫̃kF 

s
R�

↵1 � µ

and thus via a norm inequality

k⌫̃k1,2 

s
Rk�

↵1 � µ
.

By the triangle inequality we then have

k✓̂Sk1,2  k✓⇤k1,2 + k✓̂S � ✓
⇤

Sk1,2 
R

2
+

s
Rk�

↵1 � µ
< R.

where the last inequality follows by the fact that R >
4k�

↵1�µ under our assumptions.

11 Proof of Lemma 3

By the proof of Corollary 1 in [Loh and Wainwright, 2015] and using the fact that our loss function (3) decouples
across columns, we have that with probability at least 1� qc1 exp(�cn) and n � O(k log p),

hrL(✓ +�)�rL(✓),�i � 1

2
min
j

(�min(⌃j))k�k2F �
log p

n

X

j

k�:jk21.

We require the following lemma.

Lemma 9. For A 2 Rp⇥q, kAk1,2 � 1
p
qkA

T k2,1.

Proof. We have kAk1,2 =
P

i kAi:k2 and kAT k2,1 =
qP

j kA:jk21. Note that

kAk2,1 
p
qkAkF 

p
qkAk1,2.

Applying Lemma 9, we have

hrL(✓ +�)�rL(✓),�i � 1

2
min
j

(�min(⌃j))k�k2F �
q log p

n
k�k21,2,
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as desired for the k�kF  1 case.

If k�kF � 1, then by the constraint k�k1,2  R and assumption n � 4R2
q log p we have

1

2
min
j

(�min(⌃j))k�k2F �
q log p

n
k�k21,2 �

1

2
min
j

(�min(⌃j))k�kF �
r

q log p

n
k�k1,2.

Moving onto the second part of the lemma, we have (since Ln is the least squares loss) that

r2Ln(✓) = diag

0

@
(
X

T
j Xj

n

)q

j=1

1

A ,

where diag indicates the block diagonal matrix formed with the given blocks. Now since the Xj are subgaussian

with covariance ⌃(j)
x , we have that (Proposition 2.1 of [Vershynin, 2012])

|||((1/n)[XT
j Xj ]SS)� ([⌃(j)

x ]SS)|||2  |||⌃(j)
x |||2

r
k log p

n

with probability at least 1 � c1 exp(�c2 log p). Since we have assumed that �min([⌃
(j)
x ]SS) > 2µ, we therefore

have
�min(([X

T
j Xj ]SS/n) � 2µ� µ > µ

for n >
k log p|||⌃(j)

x |||
2
2

µ2 .

With the union bound we thus have that the function Ln(✓S) � µ
2 k✓Sk

2
F is strictly convex with probability at

least 1� c1q exp(�c2 log p). By the definition of (µ, �) amenability, we known that ⇢�� µ
2 t

2 is convex. Since the
addition of a strictly convex function and a convex function is strictly convex, the lemma results.

12 Proof of Lemma 8

Suppose k⌫̃kF > 1. Then by joint RSC (6) we have

hrL(✓̂)�rL(✓⇤), ⌫̃i � ↵2k⌫̃kF � ⌧2

r
log p

n
k⌫̃k1,2.

Since ✓̂ is a stationary point, rL(✓̂) +r⇢�(✓̂) = 0 and we thus have

h�r⇢�(✓̂)�rL(✓⇤), ⌫̃i � ↵2k⌫̃kF � ⌧2

r
log p

n
k⌫̃k1,2. (23)

Recall that for equal sized matrices A,B

hA,Bi =
X

i

hAi:, Bi:i


X

i

kAi:k2kBi:k2


⇣
max

i
kAi:k2

⌘ X

i

kBi:k2

!

= kAk1,2kBk1,2, (24)

where for both inequalities we have applied Holder’s inequality. We can then write

h�r⇢�(✓̂)�rL(✓⇤), ⌫̃i 
⇣
kr⇢�(✓̂)k1,2 + krL(✓⇤)k1,2

⌘
k⌫̃k1,2  (�+ �/2) k⌫̃k1,2, (25)

where the last inequality follows from the definition of ⇢� and applying (7) in the main text that yields
krL(✓⇤)k1,2  �/2 when c` � 2c0.
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Combining (25) with (23) yields

↵2k⌫̃kF � ⌧2

r
log p

n
k⌫̃k1,2  1.5�k⌫̃k1,2,

k⌫̃kF 
k⌫̃k1,2
↵2

 
1.5�+ ⌧2

r
log p

n

!

 2R

↵2

 
1.5�+ ⌧2

r
log p

n

!

 2R

↵2

 
1.5

cu

R
+ ⌧2

r
log p

n

!
.

Note that the right hand side is  1 when cu is chosen satisfying cu � ↵2
6 and n � 16

↵2
2
R

2
⌧
2
2 log p (since ⌧2 =

p
q, corresponds to having C � 16

↵2
2
in the statement of Theorem 1), yielding a contradiction with our earlier

assumption.

13 Proof of Lemma 5

We have for all i 2 S

k✓̂i:k2 � k✓⇤i:k2 � |h✓̂i: � ✓
⇤

i:, ✓
⇤

i:/k✓⇤i:k2i|.

Now by an easy extension of the argument in Appendix D.1.1 of [Loh and Wainwright, 2017], we have that

max
i

|h✓̂i: � ✓
⇤

i:, ✓
⇤

i:/k✓⇤i:k2i|  c3

r
log p

n

with probability at least 1� c1 exp(�c2 min(k, log p)). We then have

k✓̂i:k2 � �� + c3

r
log p

n
� c3

r
log p

n
= ��.

Recall that by Definition 3 of (µ, �) amenability, we have that ⇢0�(t) = 0 for all t � ��.

14 Proof of Lemma 6

Define ⌫̃ = ✓̃ � ✓̂, where recall ✓̂ is the oracle estimate (5). We will show that k⌫̃kF  1. By contradiction,
suppose that k⌫̃kF > 1. Then by the RSC condition (6)

hrLn(✓̃)�rLn(✓̂)i � ↵2k⌫̃kF � ⌧2

r
log p

n
k⌫̃k1,2.

Since both ✓̂ and ✓̃ are stationary points and ✓̂ is an interior local minimum (by Step 2), we have

hrLn(✓̃) +r⇢�(✓̃), ✓̂ � ✓̃i � 0

rLn(✓̂) +r⇢�(✓̂) = 0.

Combining inequalities yields

↵2k⌫̃kF � ⌧2

r
log p

n
k⌫̃k1,2  h�rLn(✓̂) +r⇢�(✓̃), ⌫̃i

= hr⇢�(✓̂) +r⇢�(✓̃), ⌫̃i
 (kr⇢�(✓̂)k1,2 + kr⇢�(✓̃)k1,2)k⌫̃k1,2,
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where we have applied the norm inequality (24). Recall that by (µ, �)-amenability (see Lemma 8 of
[Loh and Wainwright, 2017]) kr⇢�(✓)k1,2  � for any ✓. Hence we can rearrange and obtain

k⌫̃kF 
k⌫̃k1,2
↵2

 
2�+ ⌧2

r
log p

n

!
 2R

↵2

 
2�+ ⌧2

r
log p

n

!

due to the norm constraint on the objective (2). Since we have assumed �  ↵2
8R and n � 16

↵2
2
R

2
⌧
2
2 log p, k⌫̃kF  1

as desired.

We can then apply the appropriate RSC condition from (6) yielding

hrLn(�̃)�rLn(�̂), ⌫̃i � ↵1k⌫̃k22 � ⌧1
log p

n
k⌫̃k21,2,

and (recalling the definition of L̄n from (13))

hrL̄n(�̃)�rL̄n(�̂), ⌫̃i � (↵1 � µ)k⌫̃k22 � ⌧1
log p

n
k⌫̃k21,2. (26)

By the first order optimality conditions we have

hrL̄n(✓̃), ✓̂ � ✓̃i+ �hz̃, ✓̂ � ✓̃i = 0,

hrL̄n(✓̂), ✓̃ � ✓̂i+ �hẑ, ✓̃ � ✓̂i = 0,

where z̃ 2 @k✓̃k1,2. Combining these and using the definition of subgradient yields

hrL̄n(✓̂)�rL̄n(✓̃), ✓̃ � ✓̂i+ �hẑ, ✓̃i � �k✓̂k1,2 + �hz̃, ✓̂i � �k✓̃k1,2 � 0,

�k✓̃k1,2 � �hẑ, ✓̃i  hrL̄n(✓̂)�rL̄n(✓̃), ✓̃ � ✓̂i+ �kz̃k1,2k✓̂k1,2 � �k✓̂k1,2,
�k✓̃k1,2 � �hẑ, ✓̃i  hrL̄n(✓̂)�rL̄n(✓̃), ✓̃ � ✓̂i,

�k✓̃k1,2 � �hẑ, ✓̃i  ⌧1
log p

n
k⌫̃k21,2 � (↵1 � µ)k⌫̃k2F , (27)

where we have used the fact that kz̃k1,2  1 since ✓̃ is feasible and applied the bound (26).

We also have the following result.

Lemma 10. If � � 4R⌧1q log p
�n and kẑSck1,2  1� �, then

k⌫̃k1,2 
✓
4

�
+ 2

◆p
kk⌫̃kF .

Proof. Applying (26) to (27) yields

�hẑ, ✓̃i+ �hz̃, ✓̂i � �k✓̃k1,2 � hrL̄n(✓̃)�rL̄n(✓̂), ⌫̃i � (↵1 � µ)k⌫̃k22 � ⌧1
log p

n
k⌫̃k21,2. (28)

Recalling that �̂ is supported on S and kz̃k1,2  1, we can also write

�hz̃, ✓̂i � �k✓̃k1,2  �(k✓̂k1,2 � k✓̃Sk1,2 � k✓̃Sck1,2)  �(k⌫̃Sk1,2 � k⌫̃Sck1,2). (29)

Additionally we can use the norm inequality (24) to bound

�hẑ, ⌫̃i = �hẑS , ⌫̃Si+ �hẑSc , ⌫̃Sci
 �(kẑSk1,2k⌫̃Sk1,2 + kẑSck1,2k⌫̃Sck1,2)
 �(k⌫̃Sk1,2 + (1� �)k⌫̃Sck1,2) (30)

where we have used the assumption kẑSck1,2  1� � from the lemma statement.
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Combining (28), (29), and (30) yields

�⌧1
log p

n
k⌫̃k21,2  (↵1 � µ)k⌫̃k22 � ⌧1

log p

n
k⌫̃k21,2  �(2k⌫̃Sk1,2 � �k⌫̃Sck1,2).

Our assumption on � implies that ⌧1
log p
n k⌫̃k1,2  2R⌧1

log p
n  �

2�, yielding

��

2
�k⌫̃k1,2  �(2k⌫̃Sk1,2 � �k⌫̃Sck1,2)

or equivalently
�

2
k⌫̃Sck1,2 

✓
2 +

�

2

◆
k⌫̃Sk1,2.

We can then write (using a norm inequality)

k⌫̃k1,2 = k⌫̃Sk1,2 + k⌫̃Sck1,2  k⌫̃Sk1,2
✓
1 +

4

�
+ 1

◆

✓
2 +

4

�

◆p
kk⌫̃kF .

Recall we have assumed
cu

p
q

R � � � c`

q
q log p

n , implying for our choices of � = 1/2 and c`, cu

� � c`

r
q log p

n

= c`

r
q log p

n

R

cu
p
q

cu
p
q

R

� Rc
2
`

cu
p
q

q log p

n

=
4R⌧1

p
q log p

�n
.

Thus we can apply Lemma 10 to (27), and have

�k✓̃k1,2 � �hẑ, ✓̃i  ⌧1
k log p

n

✓
4

�
+ 2

◆2

k⌫̃k2F � (↵1 � µ)k⌫̃k22.

If n � 2⌧1
↵1�µ

�
4
� + 2

�2
k log p, �k✓̃k1,2 � �hẑ, ✓̃i  0. But we know by (24) that hẑ, ✓̃i  kẑk1,2k✓̃k1,2  k✓̃k1,2

which implies �k✓̃k1,2 � �hẑ, ✓̃i � 0. Hence we have �k✓̃k1,2 � �hẑ, ✓̃i = 0 which implies hẑ, ✓̃i = k✓̃k1,2. Our
assumption that kẑSck1,2 < 1 (strictly less than 1) implies ✓̃Sc = 0, hence ✓̃ is supported on S.


