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Abstract

The estimation of causal treatment e↵ects
from observational data is a fundamental
problem in causal inference. To avoid bias,
the e↵ect estimator must control for all con-
founders. Hence practitioners often collect
data for as many covariates as possible to
raise the chances of including the relevant
confounders. While this addresses the bias,
this has the side e↵ect of significantly increas-
ing the number of data samples required to
accurately estimate the e↵ect due to the in-
creased dimensionality. In this work, we con-
sider the setting where out of a large num-
ber of covariates X that satisfy strong ignor-
ability, an unknown sparse subset S is suf-
ficient to include to achieve zero bias, i.e.
c-equivalent to X. We propose a common
objective function involving outcomes across
treatment cohorts with nonconvex joint spar-
sity regularization that is guaranteed to re-
cover S with high probability under a linear
outcome model for Y and subgaussian covari-
ates for each of the treatment cohort. This
improves the e↵ect estimation sample com-
plexity so that it scales with the cardinality of
the sparse subset S and log |X|, as opposed to
the cardinality of the full set X. We validate
our approach with experiments on treatment
e↵ect estimation.

1 Introduction

Consider the problem of estimating the treatment ef-
fect of T on a univariate outcome Y in the presence of
(possibly confounding) covariates X, where the treat-
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ment variable can take q possible treatment configura-
tions. We assume only observational data is available.
The causal graph for this setup is shown in Figure 1.

One of the central issues of causal e↵ect estimation
is identifying features that are confounders and con-
trolling for them. Let Yt(X) denote the counter-
factual outcome associated when treatment t is ap-
plied as an intervention given X. We consider the
simpler case when the observed set of covariates X

is admissible or eligible to be used for adjustment.
In other words, for any treatment t, Yt ? T |X,
i.e. the counterfactual outcome associated with any
treatment t is independent of the treatment choice
in the observational data given X. We are inter-
ested in the problem of estimating the average treat-
ment e↵ect between the pair of treatments given by
EX [Yt � Yt0 ]. This is denoted by ATE. If X is admis-
sible this can be estimated from observational data.
Inverse propensity weighing, standardization and dou-
bly robust estimation are standard techniques used
[Guo et al., 2020, Imbens and Wooldridge, 2009].

If X 2 Rp is high dimensional (large p), however, the
number of samples required to estimate the treatment
e↵ects accurately becomes too large to be practical
in many applications. In practice, features in X are
designed to include as many factors as possible to cap-
ture all relevant confounders that are needed to satisfy
the admissibility criterion. [Shpitser and Pearl, 2012]
showed that if we know the semi-Markovian causal
model behind the observational data, then one can
algorithmically identify if a given subset of X is ad-
missible or not (even if X is not admissible).

In our work, we focus on the case when X is admissible
but no detailed causal model is available. We study
su�cient conditions for identifying if a subset S ⇢ X

is admissible given that X is known to be admissible.
A subset S1 is c-equivalent to another subset S2 if
S2 being admissible implies S1 being admissible and
vice versa. In other words, both subsets can be used
for adjustment and will yield the same ATE estimate.
We rely on su�cient conditions for c-equivalence in
[Pearl, 2009] as our main technical tool.
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Figure 1: Causal graph. T is a discrete treatment,
taking up to q values, and Y is a scalar outcome. X

is an observed set of p covariates.

We consider a coarser causal model given in Figure
2, where X has been decomposed into the sets X1,
X2 (confounders), and X3 (predictors) based on their
connections to Y and T . Applying su�cient conditions
for c-equivalence, we show that it is su�cient to use
either of two possible sets to form unbiased treatment
e↵ect estimates: S = X2 [X3 and X1 [X2.1

Prior work on sparse feature selection for treat-
ment e↵ect estimation has focused on the case
where X1[X2 is sparse [Shortreed and Ertefaie, 2017,
Cheng et al., 2020], i.e. the number of confounding
variables plus the number of variables biasing the
treatment is small. In this work, we complete the
picture by considering the companion setting where
instead S = X2 [ X3 is sparse, i.e. the number of
confounding variables plus the number of predictors
is small. In practice, we suggest running both our
method and a method that identifies X1 [ X2 and
choosing the one that yields the lowest variance un-
biased estimate. An added benefit of using S over
X1 [X2 is that S includes the set of predictors, which
serve to reduce the variance of the treatment e↵ect
estimate [Shortreed and Ertefaie, 2017].

Contributions: Given X is admissible and given q

treatment cohorts, under a linear outcome model for Y
given T and X, we show that maximizing least squares
likelihood with a joint sparse non convex regulariza-
tion recovers the subset S of interest. The number of
samples required is O(kq log p) and the error in the pa-

rameter estimates scales as O(
q

log p
n ) where |X| = p

and n is the number of samples (Theorem 1 below).
We demonstrate the e↵ectiveness of our subset identi-
fication step in synthetic experiments as well in combi-
nation with doubly robust ATE estimation procedures
on real datasets.

Prior Work: [Guo et al., 2020,
Imbens and Wooldridge, 2009] provide surveys of
methods that address causal e↵ect estimation with
observational data both from machine learning and

1
Nodes in X that do not have edges to either T or Y

should not be included in either of the two sets. We omit

these from the figure for simplicity.

econometrics perspectives. These surveys review
classic approaches to ATE estimation including
propensity weighing, doubly robust estimation and
matching techniques. We only briefly review a small
subset of these works in what follows.

Perhaps the most relevant to our work is
[Shortreed and Ertefaie, 2017] which also consid-
ered variable selection for causal inference in the
regime stated in Figure 1. In contrast to our approach
that regresses Y on S given a fixed T , they use an out-
come adaptive lasso2 sparse regression on the logistic
transformation of P (T = 1|X), in order to find the
X1[X2 set. This choice limits the approach to binary
treatments, and the associated theory is limited to
asymptotic consistency, with no indication of sample
complexity relative to the sparsity or dimensional-
ity. [Cheng et al., 2020], instead of finding a sparse
subset X1 [ X2, transform the covariates into a low
dimensional space that satisfies conditional indepen-
dence criteria. [Shah and Bühlmann, 2019] considers
variable selection for continuous-valued variable of
interest T , which leads them to seek (generalized)
linear regressions of Y on X and T simultaneously.
Our approach instead uses the discreteness of T to
significantly relax the sparse linearity assumption
to only apply to the regression of Y on only X,
given T . We believe this is a significant advantage in
practice, as very many actions of interest are discrete,
and moreover it allows us to consider cases where
the coe�cients of the regression of Y with respect
to X di↵er with treatment T . [Bradic et al., 2019]
considers variable selection in the setting of discrete
T as we do, but our joint-sparse nonconvex approach
allows us to handle the case when sparsity k is linear
in samples n, while their individual-sparsity based
approach requires k to be “ultra-sparse” o(

p
n/ log p).

Additionally, their approach is limited to ATE, while
ours applies to both ATE and ITE.

A growing body of recent work has been applying
machine learning techniques to the problem of ITE
estimation. [Athey and Imbens, 2015, Kuenzel, 2019]
introduce meta frameworks for applying supervised
learning for ITE estimation. [Hill, 2011] applies
Bayesian techniques to ITE estimation. Inspired
by the rise of deep learning, [Kallus, 2018] used ad-
versarial training to find covariate representations
that match across treatment cohorts. Various re-
cent works apply domain adaptation techniques to
learn deep representations that match the treat-
ment cohorts [Yao et al., 2018, Shalit et al., 2017,
Yoon et al., 2018]. [Louizos et al., 2017] uses varia-
tional autoencoders to find noisy proxies for latent
confounders, and uses the result for ITE estimation.

2
Lasso weighted by the unregularized coe�cients.
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Figure 2: Partition ofX by connections to T and Y . X
is composed of X1 (arrows into T not Y ), X2 (arrows
into both T and S, i.e. confounders), and X3 (arrows
into Y not T , i.e. predictors). The identities of these
sets are not known a priori and must be discovered
from data. S is composed of X2 and X3.

[Wager and Athey, 2018] leverage latest advances in
learning using forests for ITE estimation problems.
When ITE/ATE is not identifiable from data, inter-
val estimates on treatment e↵ects have been obtained
in [Kallus et al., 2019, Yadlowsky et al., 2018].

Notation: For a matrix A 2 Rp⇥q, we define Ai: to
be the ith row of A and A:j to be the jth column of
A. We also define the norm kAka,b for a, b 2 R+ [1
as kAkaa,b =

Pp
i=1 kAi:kab . We denote |||A|||a as the

ath order matrix norm, and kAkF = kAk2,2 as the
Frobenius norm.

2 Treatment E↵ects and Admissible
Sets

In the case of binary treatments, the average treatment
e↵ect is given by

E[Y |do(T = 1)]� E[Y |do(T = 0)],

and the individual treatment e↵ect by

E[Y |X, do(T = 1)]� E[Y |X, do(T = 0)].

For higher cardinality T , similar pairwise di↵erences
involving the E[Y |X, do(T = t)] are in order.

Since we only have observational data, we make use
the following property from [Pearl, 2009]:

Definition 1 (Admissibility). A set X is called ad-
missible if

p(y|do(T = t)) =

Z
p(y|t, x)p(x)dx, (1)

i.e. we can compute the causal e↵ect using observa-
tional probabilities controlling for X.

X will be admissible if there are no hidden con-
founders. Note that the dimensionality of the inte-
gral (1) is large since X is high dimensional. Can

we simplify this expression to involve only the sparse
subset S? We make use of the following definition
[Pearl, 2009].

Definition 2 (c-equivalence). Two subsets S1 and S2

are c-equivalent if
Z

p(y|t, s1)p(s1)ds1 =

Z
p(y|t, s2)p(s2)ds2,

i.e. the causal e↵ect distributions controlling for S1

and S2 are equal.

Definition 2 implies that if S2 is c-equivalent to S1 and
S1 is admissible, then so is S2.

We now show S and X1 [X2 are c-equivalent to X.

Lemma 1. Given the causal graph in Figure 2, both
the subset S and the subset X1[X2 are c-equivalent to
the set X, hence either subset is su�cient as control to
compute an unbiased estimate of the treatment e↵ect.

This result is proved in supplement Section 9, and re-
lies on two su�cient conditions for strong ignorability
and c-equivalence given in Chapter 11 of [Pearl, 2009].

Lemma 1 establishes that there is no additional bias
resulting from controlling for either S only or X1 [X2

only instead of the full X. Assuming that X is an
admissible set, i.e. there are no hidden confounders,
there will be no bias and S will also be an admissible
set. The question then is which of these two sets to
control for.

One might imagine that when X is high dimen-
sional, the sparser of the two admissible subsets S and
X1 [X2 should be used. It has been shown, however
[Witte et al., 2020] that e↵ect estimates with S will al-
ways be lower variance than estimates using X1 [X2

since S includes all predictors X3 of Y . Thus finding
S has a strict advantage (for e↵ect estimation) over
previous works such as [Shortreed and Ertefaie, 2017]
that focused on finding and controlling for X1 [ X2.
In this work we thus propose an estimator for the ad-
missible set S and theoretically prove bounds on its
sample complexity when T is discrete and Y continu-
ous.

Given observational samples ofX,Y, T , our goal is thus
to find the smallest subset S containing all nodes in X

that have an edge pointing towards Y in the graph.3

Since we have assumed that the outcome Y does not
have any edge pointing to X or T , it is su�cient to
use observational data to condition on T = t and find
the set of nodes St in X that have edges connecting

3
Note that if there are nodes in X3 that do not have any

direct connections to X1, they are not needed for admissi-

bility. We choose to include them in S since they reduce

the variance of the treatment e↵ect estimator.
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to Y in the undirected graph, and then take the union
over t as S =

Sq
t=1 St.

3 Oracle ATE/ITE

In this section, we describe treatment e↵ect estimation
in the oracle setting where the support S is known.
Suppose that an oracle gives us the identity of the
optimal S subset. By Lemma 1, we have that

P (Y |T ) =
Z

P (Y |S, T )P (S)dS.

This can be estimated directly from empirical proba-
bilities, although with continuous S the sample com-
plexity is still significant without additional assump-
tions. In this work, we make use of the following as-
sumption of linearity with respect to S (to be relaxed
in future work).

Assumption 1 (Linearity). Assume that Y follows
the following generative model depending on T and S:

Y = ✓
T
:tS + ✏,

where ✓ 2 Rk⇥q is a matrix of linear coe�cients and ✏

is i.i.d. noise.

Suppose a regression estimate ✓̂ 2 Rk⇥q of the coef-
ficient matrix ✓ is available. For binary treatments,
the individual treatment e↵ect (ITE) can then be es-
timated by

[ITE(X) = (✓̂:1 � ✓̂:0)
T
S,

where the ✓̂i are regression coe�cient estimates.

Similarly, we can estimate the average treatment e↵ect
(ATE) as

[ATE = (✓̂:1 � ✓̂:0)
T
µS ,

where µS is the specified mean of S.

We have the following lemma relating treatment e↵ect
estimation error to coe�cient estimation error. The
proof is immediate from norm inequalities.

Lemma 2 (Oracle E↵ect Estimation Error). Given
Assumption 1, we have for binary treatments:

| dITE(S)�ITE(S)|  kSk1·
P1

t=0 k✓̂:t�✓:tk1, |[ATE�
ATE|  kµSk1 ·

P1
t=0 k✓̂:t�✓:tk1. More generally, for

q treatments define ⌧(t) = E[Y |S, do(T = t)] = ✓
T
:tS.

We have for all t that |⌧̂(t)� ⌧(t)|  kSk1k✓̂� ✓k1,1.

Note that the error bounds in Lemma 2 grow linearly
with kSk1, which tends to grow linearly with the car-
dinality |S| = k. This confirms our motivation for
finding sparse solutions to reduce sample complexity.
In this section, we assumed that the sparse admissible
set S was given to us by an oracle. In the next sec-
tion, we consider the real world setting where we must
recover S from the data itself.

4 Jointly Sparse Variable Selection

Our goal is to estimate the matrix of linear coe�cients
✓ in Assumption 1 using sparse regression of Y versus
X given fixed T . The classic approach to sparse re-
gression is the lasso objective, which in our setting is

✓̂:,j = arg min
✓2Rp

1

2
✓
T
X

T
j Xj

n
✓ �

y
T
j Xj

n
✓ + �k✓k1,

where Xj , yj are samples from the T = j conditional.4

Since we care about the union of the nonzero supports
of the ✓:j , it is wasteful to force an entry to zero in
the t = 0 graph if we know it is nonzero in t = 1, etc.
Hence, we instead use group sparsity, which couples
the sparsity of the q vectors together.

Traditionally, group sparsity is encouraged via the
L-1,2 norm [Huang et al., 2010, Lounici et al., 2011],
which is an L1 norm of the L2 norms of the rows of
✓. Copying the above, we can write the group-sparsity
based objective as

✓̂ = arg min
✓2Rp⇥q

qX

j=1

"
1

2
✓
T
:j

X
T
j Xj

n
✓:j �

y
T
j Xj

n
✓:j

#
+ �k✓k1,2

This can be solved iteratively as it is a convex problem,
and 2-norm error bounds exist [Huang et al., 2010,
Lounici et al., 2011].

Unfortunately, it is known that L1 based regression,
while successful in estimating coe�cients in terms of
L2 norm error, does not perform well for variable
selection without complex incoherence assumptions
[Loh and Wainwright, 2017]. To avoid these di�cult-
to-interpret assumptions, instead of L1 we will rely on
the following class of nonconvex regularizers that re-
tain the sparsity-promoting properties of the “cusp”
at t = 0, while using a nonconvex shape to not exces-
sively penalize large coe�cients.

Definition 3 ((µ, �)-amenability). A regularization
function ⇢� with parameter � is µ-amenable for some
µ > 0 if the following hold:

• ⇢� is symmetric around 0 and ⇢�(0) = 0.

• ⇢� is nondecreasing on R+.

• the function ⇢�(t)
t is nonincreasing on R+.

• ⇢�(t) is di↵erentiable at all t 6= 0.

• ⇢� + µ
2 t

2 is convex.

• limt!0+ ⇢
0

�(t) = �.

4
For simplicity, throughout the paper we assume n sam-

ples are available from each conditional. The results can

be easily adjusted to the case of imbalanced sample sets.
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If in addition there is some scalar � 2 (0,1) such that
⇢
0

� = 0 for all t � ��, then ⇢� is (µ, �)-amenable.

Two example (µ, �) amenable regularizers
are the SCAD [Fan and Li, 2001] and MCP
[Zhang et al., 2010] penalties. For convenience,
define q�(t) = �|t| � ⇢�(t). If ⇢� is (µ, �) amenable,
then q� is everywhere di↵erentiable.

Applying a (µ, �) regularizer ⇢� on the row 2-norms
we have the following objective function:

✓̂ =arg min
k✓k1,2R

8
<

:

qX

j=1

"
1

2
✓
T
:j

X
T
j Xj

n
✓:j �

y
T
j Xj

n
✓:j

#

+
pX

i=1

⇢� (k✓i:k2)
)
, (2)

For convenience, define the unregularized loss function

Ln(✓) =
qX

j=1

"
1

2
✓
T
:j

X
T
j Xj

n
✓:j �

y
T
j Xj

n
✓:j

#
. (3)

We show below that the objective (2) is a convex prob-
lem when R and µ are chosen appropriately. We thus
optimize the objective 2 using proximal gradient de-
scent. Since the function q�(t) = �|t| � ⇢�(t) is ev-
erywhere di↵erentiable, it can be included in the gra-
dient step computation, leaving the proximal step to
be the proximal operator for the L-1,2 norm. This
proximal operator is simply a soft thresholding on the
norms of the rows of ✓, i.e. setting the rows of ✓ as
max(0, k✓i:k2��) ✓i:

k✓i:k2
. If an optimization step would

go outside the constraint set, we reduce the step size
until the constraint is satisfied. A summary of the
optimization algorithm is in supplement Section 7.

4.1 Theoretical Analysis

For the analysis, we make the additional assumption5

Assumption 2 (Subgaussianity). Assume that con-
ditioned on T = t, X is subgaussian with parameter
bounded from above by �x for all t, and the noise term
✏ given in Asspt. 1 is subgaussian with parameter �✏.

We can then state the following bound.

Theorem 1. Suppose p > q and for all j = 1, . . . , q,
yj = (✓⇤:j)

T
Xj + ✏ where X and ✏ are subgaussian,

and all ✓⇤:j have support contained in some unknown
set S with |S| = k where k is unknown. Furthermore,

choose (�, R) such that k✓⇤k1,2 <
R
2 and c`

q
q log p

n 
�  cu

p
q

R , and assume n � Cmax{R2
, k}q log p for

5
We use the definition of subgaussianity from

[Vershynin, 2010].

some constants c`, cu, C described in the proof. Sup-
pose ⇢� is a (µ, �)-amenable regularizer with µ <

1
2 minj �min(⌃

(j)
x ) where ⌃(j)

x = EXj
1
nX

T
j Xj. Finally,

suppose that

✓
⇤

min := min
i2S

k✓⇤i:k2 � �� + c3

r
log p

n
. (4)

Then with probability at least 1 �
c1 exp(�c2 min[k, log p]) the objective (2) has a
unique stationary point ✓̂ with support equal to S and
satisfying

k✓̂ � ✓
⇤k1,1  c3

r
log p

n
.

Remark 1. Note that the key result is the exact recov-
ery of the support S. The infinity norm bound control-
ling the error on the individual coe�cients in the sup-
port S can be combined with the support recovery result
to bound other norms of the error, for instance know-
ing that there are only |S|q coe�cients with nonzero
error implies k✓̂� ✓

⇤kF 
p

|S|qk✓̂� ✓
⇤k1,1, yielding

a tight bound on the Frobenius norm of the error.

Remark 2. This proof technique can also yield
consistency for the L-1,2 norm regularizer with
an appropriate incoherence assumption, see
[Loh and Wainwright, 2017] Proposition 3. Re-
call however that the incoherence assumption is not
interpretable and di�cult to check in practice.

Remark 3. The infinity norm error rate in Theorem 1
is optimal (since it coincides with the estimation error
of the optimal oracle estimator).

Proof of Theorem 1. Various steps in the proof are
outlined below:

0. Define and verify a joint Restricted Strong Con-
vexity condition.

1. Optimize the oracle program where the supports
of ✓̂:j are restricted to the true S:

✓̂ = arg min
✓2S,k✓k1,2R

qX

j=1

"
1

2
✓
T
:j

X
T
j Xj

n
✓:j �

y
T
j Xj

n
✓:j

#

+
X

i2S

⇢� (k✓i:k2) , (5)

and show the solution is in the interior of the con-
straint set. By the restricted strong convexity of
Ln, this implies that the solution is a zero sub-
gradient point.

2. Define the dual variable ẑ where ẑS 2 rk✓̂Sk1,2
and ẑSc satisfying the zero subgradient condition,
and establish strict dual feasibility of ẑSc by show-
ing that kẑSck1,2  1. This implies ✓̂ is a station-
ary point of the full objective (2).
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3. Show that ✓̂ is the unique global minimum of the
full objective (2).

Step 0: First, we verify a restricted strong con-
vexity condition. Adapted from the q = 1 case in
[Loh and Wainwright, 2017], we require the following
property of the loss function:

Definition 4 (Joint Restricted Strong Convexity
(Joint RSC)). We say a loss Ln(✓), ✓ 2 Rp⇥q satisfies
an (↵, ⌧) joint RSC condition if for all � 2 Rp⇥q

hrLn(✓ +�)�rLn(✓),�i (6)

�
(

↵1k�k2F � ⌧1
log p
n k�k21,2 k�kF  1

↵2k�kF � ⌧2

q
log p
n k�k1,2 k�kF � 1.

The following is proven in supplement Section 11.

Lemma 3 (Joint RSC for least squares loss). Assume
that n � O(k log p) and n � 4R2

q log p. With high
probability (at least 1 � qc1 exp(�cn)), Ln is (↵, ⌧)-

joint RSC for ↵1 = ↵2 = 1
2 minj(�min(⌃

(j)
x )) and ⌧1 =

q, ⌧2 =
p
q. Furthermore, the objective (5) is strongly

convex on RS.

We also have that with high probability

krLn(✓
⇤)k1,2  c

0

r
q log p

n
, (7)

by applying a norm inequality (2-norm is  p
q times

infinity norm) to the union bounded bound in the
proof of Corollary 1 in [Loh and Wainwright, 2015]
(the q = 1 case) and using q < p.

Step 1: We recall k✓⇤k1,2  R/2 and use the joint
RSC conditions to bound k⌫̃k1,2, where we set ⌫̃ :=

✓̂ � ✓
⇤. We state the result as a lemma, proven in

supplement Section 10.

Lemma 4. Suppose ✓̂ is a zero subgradient point of
the objective (5) supported on S, i.e.

rLn(✓̂S) +r⇢�(✓̂S) = 0. (8)

Then k⌫̃k1,2 <
R
2 , yielding k✓̂k1,2 < R.

Since k✓̂k1,2 is strictly less than R, ✓̂ is in the interior
of the constraint set, and thus has zero subgradient.

Step 2: Denote �̂(j) =
XT

j Xj

n , �̂
(j) =

XT
j yj

n . Then
taking the gradients of (5) yields for all j

rLn(✓:j) = �̂(j)
✓:j � �̂

(j)
, r2Ln(✓:j) = �̂(j)

. (9)

Consider the estimator ✓̂O formed by solving (5) with
� = 0. We then can write

�̂(j)(✓̂O:j � ✓
⇤

:j) = rLn(✓̂
O

:j )�rLn(✓
⇤

:j), 8j,

yielding (since �̂(j)
SS is invertible since n � k by as-

sumption)

✓̂
O

Sj � ✓
⇤

Sj = (�̂(j)
SS)

�1(�(�̂(j)
SS✓

⇤

Sj � �̂
(j)
S ). (10)

Appendix D.1.1 of [Loh and Wainwright, 2017]
showed that

���(�̂(j)
SS)

�1(�̂(j)
SS✓

⇤

Sj � �̂
(j)
S )

���
1

 �
1/2
max(⌃

(j)
x )�✏

r
2 log p

n
,

(11)
with probability at least 1� c

00
1 exp(�c

00
2 min(k, log p)).

Hence we obtain via the union bound that

k✓̂O�✓
⇤k1,1  c3

r
log p

n
, k✓̂O�✓

⇤k1,2  c3

r
q log p

n

(12)
with probability at least 1 � c1 exp(�c2 min(k, log p))
(since k > log q and p > q) where c1, c2, c3 are con-
stants.

Now we have the following result, proved in supple-
ment Section 13.

Lemma 5. Suppose ⇢� is (µ, �) amenable and

✓
⇤

min = min
i2S

k✓⇤i:k2 � �� + c3

r
log p

n
.

Then with probability at least 1 �
c1 exp(�c2 min(k, log p))

�ẑi: �rq�(k✓̂i:k2) = 0 8i 2 S.

Lemma 5 implies that if ✓⇤min satisfies the given condi-
tion, then r✓S⇢�(✓̂S:) = 0, implying that ✓̂O is a zero
subgradient point of (5) and hence ✓̂ = ✓̂

O. Hence the
bound (12) also applies to ✓̂ as in the theorem state-
ment.

Now, define the shifted objective function as

L̄n(✓) = Ln(✓)�
Xp

i=1
q�(k✓i:k2). (13)

Making ✓̂ = (✓̂S , 0), the zero subgradient condition
becomes

rL̄n(✓̂) + �ẑ = 0, (14)

where ẑ 2 @k✓̂k1,2. Note that where rows of ✓̂ are
zero, the corresponding rows of ẑ can be any vector
in the unit 2-sphere. Where the rows are nonzero, it
is a unit vector parallel to the row. Hence we have
the strict dual feasibility condition kẑck1,2  1� � for
some delta we choose later.

We expand the zero subgradient condition (14) as
⇣
rLn(✓̂i:)�rLn(✓

⇤

i:)
⌘

(15)

+
⇣
rLn(✓

⇤

i:)�rq�(k✓̂i:k2)
⌘
+ �ẑi: = 0, 8i.
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Note that by the selection property, for all i /2 S,
rq�(k✓̂i:k2) = rq�(0) = 0. Additionally, by Lemma 5
combined with (12) and the assumption (4) we know
that �ẑi: �rq�(k✓̂i:k2) = 0 for all i 2 S.

Using (9) we can then simplify the condition (15) as

�̂(j)(✓̂:j�✓
⇤

:j)+�̂(j)
✓
⇤

:j��̂
(j) +


0

(ẑSc):j

�
= 0, 8j. (16)

Since furthermore we have ✓̂Sc = ✓
⇤

Sc = 0, this allows
us to solve for each [ẑSc ]:j separately:

[ẑSc ]:j =
1

�

h
�̂
(j)
Sc � �̂(j)

ScS [�̂
(j)
S S]�1

�̂
(j)
S

i

where we have partitioned �̂(j) =


�̂(j)
SS �̂(j)

SSc

�̂(j)
ScS �̂(j)

ScSc

�
.

This quantity was analyzed by
[Loh and Wainwright, 2017] Appendix D.1.1. With
probability at least 1� c exp(�c

0 log p),

k�̂(j)
Sc � �̂(j)

ScS [�̂
(j)
SS ]

�1
�̂
(j)
S k1  C

r
log p

n
,

assuming n � O(k log p). Using the union bound and
definition of 1, 2 norm, we then have that with prob-
ability at least 1� c exp(log q � c

0 log p)

kẑSck1,2  C

r
q log p

n
. (17)

Strict dual feasibility follows whenever � > C

q
q log p

n .

Step 3: Since by Step 2 ✓̂ is a zero subgradient point
of the full objective (2), it is also a local optima of the
full objective (2). Furthermore, Lemma 6, proven in
supplement Section 14 shows all local optima of (2)
must be supported on S.

Lemma 6. Suppose that ✓̃ is a stationary point of
(2) with kẑSck1,2  1/2 and the conditions of The-

orem 1 hold with cu = ↵2
8 and c` =

p
q�1⌧1↵2,

and n � max{ 16
↵2

2
R

2
⌧
2
2 ,

200⌧1
↵1�µk} log p. Then for all j,

supp(✓̃:j) ✓ S.

Recall that in Step 2 (17) we showed that the condition

of Lemma 6 is satisfied when C

q
q log p

n  1/2, i.e.

whenever n � 4C2
q log p. Hence by strict convexity

on the RS space (Lemma 3), ✓̂S is the unique global
optimum of the full objective (2).

4.2 Implication for E↵ect Estimation

Since we recover the support S with high probability
(Theorem 1), we can plug in the bound for the oracle
estimate and obtain the following bounds for the linear
estimates.

Lemma 7 (E↵ect Estimation Error). Given the as-
sumptions of Theorem 1, with high probability the
following hold for our estimator. For binary treat-
ments (C is a constant): | dITE(S) � ITE(S)| 
2CkSk1

q
log p
n , |[ATE � ATE|  2CkµSk1

q
log p
n .

More generally, for q possible treatments define ⌧(t) =
E[Y |S, do(T = t)] = ✓

T
:tS. We have for all t |⌧̂(t) �

⌧(t)|  C
0kSk1

q
q log p

n .

Remark 4 (Comparisons). Note we only lose a log
factor relative to the oracle estimator. The compari-
son to a nonsparse estimator (one that sets S = X)
depends on kSk1, but for di↵use X such that sub-
sets S typically have kSk1 = Op(|S|), our estimator
improves on the nonsparse estimator by a factor of
|S|

p
log p
p which is significant for sparse S.

Remark 5 (Application to nonlinear settings). We
note that our S recovery algorithm is not limited to
being used in conjunction with linear e↵ect estimation.
Our approach can be used to find a sparse S, and then
any desired e↵ect estimator can be applied to the data,
controlling only for the set S.

5 Experimental Results

5.1 Synthetic Data

We use synthetic data generated as follows. X is gen-
erated from an isotropic Gaussian distribution. T is
generated by sampling from a multinomial distribu-
tion with probabilities given by softmax(�T

X), where
� 2 Rp⇥q has i.i.d. Gaussian elements. The out-
put Y is then generated according to the linear model
in Assumption 1, where the k nonzero rows of ✓

have been sampled from an i.i.d Gaussian distribu-
tion. We choose k = 10, and use the MCP penalty
[Zhang et al., 2010] as our nonconvex regularizer ⇢.
For binary treatments, i.e. q = 2, Figure 8 shows
the probability of correctly recovering the set S (with
cardinality 10) as the total size p of X and the num-
ber of samples n are varied. Note that the number of
samples required for consistent recovery of S depends
approximately logarithmically on p, as predicted. We
next verify the benefits of using joint sparsity over a
simple taking of the union of sparse subsets recovered
independently for each value of T . Figure 4 compares
our approach with the independent sparsity approach
(also using nonconvex regularization) for q = 10. Note
that our algorithm significantly outperforms the in-
dependent sparsity approach. Figure 7 in the sup-
plement shows results for q = 40, showing that as q

increases, the number of samples required in fact de-
creases slightly (since in our experimental setup k✓k1,2
grows in expectation as

p
q). Additionally, Figure 8

in the supplement compares results when the the co-
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Figure 3: Empirical probability of our algorithm cor-
rectly recovering the sparse set S as a function of n
and p, for binary actions (q = 2).

Figure 4: Empirical probability of our joint sparse al-
gorithm (upper) and independent sparsity approach
(lower) correctly recovering the sparse set S as a func-
tion of n and p, for q = 10.

e�cients in S are i.i.d. Gaussian for all t values, and
when only t = 0 has nonzero coe�cients in S. This
latter setting would be the most amenable to the indi-
vidual sparsity approach, yet our method still matches
the performance of individual sparsity in this regime.

Figure 5: Empirical RMSE of estimating the causal
ATE of the second action over the first action (true
e↵ect 1.0) for our joint sparse algorithm (upper) and
the full-cardinality estimate with no variable selection
(lower), for q = 10. The sparse approach uses the same
regularization as Figure 4. Note that variable selection
results in a estimate that converges faster to the true
value, particularly for higher p.

Figures 5 and 6 show the RMSE for estimating the
average treatment e↵ect (ATE) and the average error
of estimating the individual treatment e↵ect (ITE) re-
spectively, averaged over 400 random trials. The ITE
error is the error averaged over predicting the ITE for
each value ofX,T in the synthetic dataset. Notice that
as expected, our variable selectin approach results in
faster convergence of the estimate, and the approach
not using variable selection is more unstable and con-
verges more slowly.

5.2 Real Datasets

Cattaneo2: e↵ect of smoking on birth weight.

This dataset6 [Abadie and Imbens, 2006] studies the
e↵ect of maternal smoking on babies’ birth weight in
grams, and consists of 4642 singleton births in Penn-
sylvania, US. Actions are 0: no smoking (3778 sam-
ples), 1: 1-5 cigarettes daily (200 samples), 2: 6-10
cigarettes daily (337 samples), and 3: 11 or more
cigarettes daily (327 samples). 20 covariates are in-

6
http://www.stata-press.com/data/r13/cattaneo2.dta
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Figure 6: Average empirical RMSE of estimating the
causal ITE of the second action over the first action
for our joint sparse algorithm (upper) and the full-
cardinality estimate with no variable selection (lower),
for q = 10. Note that variable selection results in a
estimate that converges faster to the true value, par-
ticularly for higher p.

cluded. Results comparing (nonsparse) doubly robust
e↵ect estimates [Shimoni et al., 2019] and the e↵ect es-
timates obtained by using the doubly robust estimator
on the sparse set S obtained by our method are shown
in Table 1. We randomly split the data to have 20%
used for the S estimation and 80% used for the e↵ect
estimation. Our sparse approach is tuned via cross
validation and on average yields a sparse S of cardi-
nality 10.9 (out of |X| = 20). Note that the sparse
approach, unlike the full approach, yields a binary ef-
fect estimate consistent within the known empirical
estimated interval [Abadie and Imbens, 2006]. For ad-
ditional method comparisons for the binary e↵ect, see
Figure 5 in [Cheng et al., 2020] - only the dimensional-
ity reduction method of [Cheng et al., 2020] provides
an estimate in the empirical interval as we do.

IHDP: E↵ects of high-intensity care on low

birth rate and premature infants. This semi-
synthetic dataset7 [Hill, 2011] consists of data on 25
covariates and an assigned treatment variable indicat-
ing whether the child was assigned to high-intensity

7
https://github.com/vdorie/npci

Nonsparse

Doubly Ro-

bust Estimate

Sparse DR

Estimate

(Ours)

E↵ect of 1 vs. 0 -151.4g(21.3) -195.0g(28.6)

E↵ect of 2 vs. 0 -161.9g(16.6) -264.0g(34.2)

E↵ect of 3 vs. 0 -189.2g(21.1) -236.0g(26.6)

Binary e↵ect(> 0 vs 0) -162.4g(8.5) -239.3g(10.8)

Table 1: Estimated average treatment e↵ects on Cat-
taneo2 dataset. Actions – 0: no smoking, 1: 1-5
cigarettes daily, 2: 6-10 daily, and 3: 11 or more. For
binary action e↵ect, the empirical estimated interval is
known to be (-250g, -200g). Standard deviations over
20 random data splits are given in parentheses.

care. Following the procedure in [Hill, 2011], the
treated and non-treated populations are biased and
a response variable is generated according to the “A”
scheme therein (which is designed to have sparse edges
from X to Y ). Since the response is generated syn-
thetically, the true ATE is known to be 4.36. Results
for the non-sparse doubly robust estimator and the
doubly robust estimator applied to the sparse S re-
covered by our approach are shown in Table 2. Both
methods work reasonably well, with our sparse ver-
sion outperforming (selecting on average |S| = 6.4).
The sparse performance is on par with the well-
performing methods with results shown in Figure 2
of [Cheng et al., 2020].

Nonsparse Doubly

Robust Estimate

Sparse DR Estimate

(Ours)

ATE 4.76(.51) 4.49(.57)

Table 2: Estimated average treatment e↵ects on semi-
synthetic IHDP dataset, with standard deviations over
20 random trials in parentheses. The true ATE is 4.36.

Additional details and real data experiments are in the
supplement.

6 Conclusion

We considered using sparse regression to reduce the
sample complexity of estimating causal e↵ects in the
presence of large numbers of covariates. We presented
an algorithm based on joint-sparsity promoting non-
convex regularization, proved that it correctly recov-
ers the sparse support S with high probability, and
tested it experimentally. In future work, we plan to
use the power of the joint RSC concept to generalize
our sparse estimator to more flexible nonlinear settings
and to losses for categorical outcomes.
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