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Appendix

A Continuity

Proof of Theorem 4.4 We will prove the theorem by induction. Let f ∈ C1(Rd) with a set of global minima
X∗. For h ∈ FX∗ , let g = f + h ∈ f + FX∗ . For n = 0, x0(·,Aθ, x0) ≡ x0 is clearly continuous (in the sense
of ‖·‖∗) for any fixed initial point x0 ∈ Rd; assume that the continuity property is verified up to some n ∈ N:
i.e. ∀ ε > 0 ∀ i = 0, . . . , n, ∃ η = η(ε, i,K) > 0 such that for g ∈ f + FX∗ , if ‖f − g‖∗ < η, then ∀x0 ∈ K,
‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 < ε.

Let ε > 0 and
xn+1(f,Aθ, x0) = Aθ

(
{xi}i=0...n, {f(xi)}i=0...n, {∇f(xi)}i=0...n

)
;

Aθ being a continuous FOA implies that given ε > 0, there exists δ > 0 such that if ∀ i = 0, . . . , n

‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 < δ (7)
‖f(xi(f,Aθ, x0))− g(xi(g,Aθ, x0))‖2 < δ (8)
‖∇f(xi(f,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2 < δ (9)

for f ∈ C1(Rd), g ∈ f + FX∗ , then the claim follows

‖xn+1(f,Aθ, x0)− xn+1(g,Aθ, x0)‖2 < ε.

The idea now is to quantify how "close" f and g need to be (in ‖·‖∗-norm) in order to ensure that the above
inequalities are satisfied.

For equation (7): by recurrence hypothesis (n ∈ N is finite), given δ > 0 there exists η1 = η1(δ) (simply
consider = mini=1,...,n{η(δ, i,K)} > 0) such that ∀ g ∈ f + FX∗ , ‖f − g‖∗ < η1, then ∀x0 ∈ K, ‖xi(f,Aθ, x0)−
xi(g,Aθ, x0)‖2 < δ, ∀ i = 1, . . . , n.

For equation (8):

‖∇f(xi(f,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2
≤ ‖∇f(xi(f,Aθ, x0))−∇f(xi(g,Aθ, x0))‖2 + ‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2 (10)

The first term can be easily estimated: since f ∈ C1(Rd), given δ > 0 there exists ρ = ρ(δ) > 0 such that
∀x, y ∈ Rd with ‖x − y‖2 < ρ, then ‖∇f(x) − ∇f(y)‖2 < δ

2 and ‖f(x) − f(y)‖2 < δ
2 . In particular, for such

a ρ > 0, ∃ η2 = η2(ρ, δ) > 0 such that for ‖f − g‖∗ < min{η1, η2}, then ‖xi(f,Aθ, x0) − xi(g,Aθ, x0)‖2 < ρ
∀ i = 0, . . . , n. Therefore,

‖∇f(xi(f,Aθ, x0))−∇f(xi(g,Aθ, x0))‖2 <
δ

2
∀ i = 0, . . . , n. (11)

Regarding the second term, we first introduce the quantity

Rf,n := max
i=0,...,n

{
sup
x0∈K

d (xi(f,Aθ, x0), X∗)

}
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xi(f,Aθ, ·) is a finite composition of continuous functions and is therefore continuous (in x0). This ensures that
the image of K is a compact and thus that Rf,n is indeed finite.

‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

=
‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

d (xi(g,Aθ, x0), X∗)
d (xi(g,Aθ, x0), X∗) ≤ ‖f − g‖∗Rg,n (12)

We want to claim that if ‖f − g‖∗ is small enough (for g ∈ f +FX∗), then Rg,n < Rf,n+ δ: indeed, if g ∈ f +FX∗

is such that ‖f − g‖∗ < min{η1, η2}, by recurrence hypothesis we have ∀ i = 0, . . . , n

d (xi(g,Aθ, x0), X∗) = inf
x∗∈X∗

‖xi(g,Aθ, x0)− x∗‖2

≤ inf
x∗∈X∗

{‖xi(g,Aθ, x0)− xi(f,Aθ, x0)‖2 + ‖xi(f,Aθ, x0)− x∗‖2}

= ‖xi(g,Aθ, x0)− xi(f,Aθ, x0)‖2 + inf
x∗∈X∗

‖xi(f,Aθ, x0)− x∗‖2

= ‖xi(g,Aθ, x0)− xi(f,Aθ, x0)‖2 + d (xi(f,Aθ, x0), X∗)

< δ +Rf,n. (13)

Then,

‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2 ≤ ‖f − g‖∗(Rf,n + δ) <
δ

2
(14)

as long as ‖f − g‖∗ < min{η1, η2,
δ

2(Rf,n+δ)}.

In conclusion, ∀ i = 0, . . . , n

‖∇f(xi(f,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2
≤ ‖∇f(xi(f,Aθ, x0))−∇f(xi(g,Aθ, x0))‖2 + ‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

≤ δ

2
+
δ

2
= δ (15)

For equation (9): similarly, we have

‖f(xi(f,Aθ, x0))− g(xi(g,Aθ, x0))‖2
≤ ‖f(xi(f,Aθ, x0))− f(xi(g,Aθ, x0))‖2 + ‖f(xi(g,Aθ, x0))− g(xi(g,Aθ, x0))‖2 (16)

The first term is bounded by δ/2 thanks the same argument as in (11). The second term is bounded in the
following way: call x̄ = xi(g,Aθ, x0) and let x̄∗p ∈ X∗ the projection of x̄ on X∗. Note that ∀ t ∈ [0, 1], we have
d
(
x̄∗p + t(x̄− x̄∗p), X∗

)
≤ t
∥∥x̄− x̄∗p∥∥2

since x̄∗p ∈ X∗. It follows that

|f(x̄)− g(x̄)| = |f(x̄)− g(x̄)− (f∗ − g∗)|

=

∣∣∣∣∫ 1

0

〈∇(f − g)(x̄∗p + t(x̄− x̄∗p)), x̄∗p − x̄〉 dt

∣∣∣∣
≤
∫ 1

0

∥∥∇(f − g)(x̄∗p + t(x̄− x̄∗p))
∥∥

2

∥∥x̄∗p − x̄∥∥2
dt

=

∫ 1

0

∥∥∇(f − g)(x̄∗p + t(x̄− x̄∗p))
∥∥

2

d
(
x̄∗p + t(x̄− x̄∗p), X∗

) d
(
x̄∗p + t(x̄− x̄∗p), X∗

) ∥∥x̄∗p − x̄∥∥2
dt

≤
∫ 1

0

∥∥∇(f − g)(x̄∗p + t(x̄− x̄∗p))
∥∥

2

d
(
x̄∗p + t(x̄− x̄∗p), X∗

) t
∥∥x̄∗p − x̄∥∥2

2
dt

≤ ‖f − g‖∗d (x̄, X∗)
2
∫ 1

0

t dt

≤ ‖f − g‖∗
(Rf,n + δ)2

2

<
δ

2
(17)
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as long as ‖f − g‖∗ < min
{
η1, η2,

δ
2(Rf,n+δ) ,

δ
(Rf,n+δ)2

}
.

In conclusion, ∀ i = 0, . . . , n

‖f(xi(f,Aθ, x0))− g(xi(g,Aθ, x0))‖2
≤ ‖f(xi(f,Aθ, x0))− f(xi(g,Aθ, x0))‖2 + ‖f(xi(g,Aθ, x0))− g(xi(g,Aθ, x0))‖2

<
δ

2
+
δ

2
= δ. (18)

Proof of Corollary 4.5 Let NK = supx0∈KNx0
(note that NK < +∞, since K is compact). We will note

g = f + h for h ∈ FX∗ .

For x0 ∈ K, we have

xNx0−1(f,Aθ, x0) /∈ B(X∗, ε) and xNx0 (f,Aθ, x0) ∈ B(X∗, ε)

and thanks to Theorem 4.4, there exists η > 0 such that for any g ∈ f + FX∗ , if ||f − g||∗ ≤ η then ∀ i ≤ NK,
∀x0 ∈ K, ‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 ≤ δ. Therefore,

xNx0−1(g,Aθ, x0) /∈ B(X∗, ε− δ) and xNx0 (g,Aθ, x0) ∈ B(X∗, ε+ δ).

Proof of Proposition 4.6 f is a piecewise quadratic with second derivative f ′′(x) = (2 + 2
ε ) for x ∈ [1, 1 + ε2]

and f ′′(x) = 2 elsewhere. Therefore, the optimal µ of strong convexity is 2 and the optimal L of smoothness is
2 + 2

ε : f ∈ SC−(2) ∩ SC+(2 + 2
ε ).

Consider the gradient descent update rule with step size α = 1
2 :

x− 1

2
f ′(x) =


0 x ≤ 1
x−1
ε 1 ≤ x ≤ 1 + ε2

−ε x ≥ 1 + ε2

It is easy to see that |x− 1
2f
′(x)| ≤ ε|x|, which proves the linear convergence rate of fε with tuning α = 1

2 ; in
fact, for ε ≤ 1, the algorithm can converge to x∗ = 0 in at most two steps.

Let us now assume we use the standard tuning based on strong convexity and smoothness

α =
2

µε + Lε
=

ε

2ε+ 1
.

We then have

x− αf ′(x) =


x

2ε+1 x ≤ 1
2−x
2ε+1 1 ≤ x ≤ 1 + ε2

x−2ε2

2ε+1 x ≥ 1 + ε2

which leads to

∀x ∈ R, |x− αf ′(x)| ≥ 1− ε2

(2ε+ 1)(1 + ε2)
|x|.

Proof of Theorem 4.10 Let f a L̄-smooth and µ̄-strongly convex function with a set of minima X∗ ⊆ Rd.
Note that strong convexity implies X∗ = {x∗}.
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Let ε > 0. We define the function ωε ∈ C1(R) by ωε(0) = 0 and its derivative:

ω′ε(t) =


0 t ≤ 1− ε2

1−t−ε2
ε 1− ε2 ≤ t ≤ 1

t−ε2−1
ε 1 ≤ t ≤ 1 + ε2

0 1 + ε2 ≤ t

It is easy to see that |ω′ε(t)| ≤ ε, ∀ t ∈ R.

Let z ∈ Rd \ {x∗} and define

φ(x) :=
〈x− x∗, z − x∗〉
‖z − x∗‖2

, x ∈ Rd (19)

fε(x) := f(x) + ωε ◦ φ(x) (20)

Note that ωε ◦ φ(x∗) = 0 and

∇(f − fε)(x) = ∇ (ωε ◦ φ) (x) =
z − x∗

‖z − x∗‖2
ω′ε ◦ φ(x); (21)

for x ∈ Rd,

if φ(x) ≤ 1− ε2, then ||∇(f − fε)(x)||2 = 0 (22)

if φ(x) ≥ 1− ε2, then ||∇(f − fε)(x)||2 ≤ ε ≤
ε

1− ε2
||x− x∗||2 (23)

since φ(x) ≥ 1− ε2 implies ‖x− x∗‖2 ≥ 1− ε2. Therefore, f − fε ∈ FX∗ and ‖f − fε‖∗ ≤ ε
1−ε2 → 0 when ε→ 0.

Let L, µ > 0. We now want to prove that for ε sufficiently small, fε is not L-smooth and not µ-strong convex.
Consider

x = x∗ + (1− ε2)
z − x∗

‖z − x∗‖2

y = x∗ +
z − x∗

‖z − x∗‖2
so that we have φ(x) = 1− ε2, φ(y) = 1, and y − x = ε2 z−x∗

‖z−x∗‖2 . Since f is Lf -smooth, ∀ ε > 0 we have

fε(y)− fε(x)− 〈∇fε(x), y − x〉
= f(y)− f(x)− 〈∇f(x), y − x〉+ ωε ◦ φ(y)− ωε ◦ φ(x)− 〈∇ωε ◦ φ(x), y − x〉

≤ Lf
2
||x− y||22 + ωε(1)− ωε(1− ε2)− ε2ω′ε(1− ε2)

=
Lf
2
||x− y||22 −

ε3

2
=

(
Lf
2
− 1

2ε

)
‖x− y‖22; (24)

therefore, if we pick ε such that 1
ε > Lf − µ, then fε is not µ-strong convex.

Similarly, consider

x = x∗ +
z − x∗

‖z − x∗‖2

y = x∗ + (1 + ε2)
z − x∗

‖z − x∗‖2
So that we have φ(x) = 1, φ(y) = 1 + ε2, and y − x = ε2 z−x∗

‖z−x∗‖2 . Since f is µf -strong convex, ∀ ε > 0 we have

fε(y)− fε(x)− 〈∇fε(x), y − x〉
= f(y)− f(x)− 〈∇f(x), y − x〉+ ωε ◦ φ(y)− ωε ◦ φ(x)− 〈∇ωε ◦ φ(x), y − x〉

≥ µf
2
‖x− y‖22 + ωε(1 + ε2)− ωε(1)− ε2ω′ε(1)

=
µf
2
‖x− y‖22 +

ε3

2
=

(
µf
2

+
1

2ε

)
‖x− y‖22; (25)
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therefore, if we pick ε such that 1
ε > L− µf , then fε is not L-smooth.

Finally, for any ε ≤ min{ 1
max{1,Lf−µ} ,

1
max{1,L−µf}}, fε is not L-smooth and not µ-strong convex, which concludes

the proof.

B Proof of Theorem 5.5

Note that all lower conditions listed in the theorem are continuous without any additional constraint; on the
other hand, the upper conditions require the assumption of the objective function f to belong to QG−(µ) (for
some µ > 0) in order to be continuous.

We stress that this extra condition is a mild adding, since tuning of a FOA usually requires f to satisfy both an
upper and a lower condition (and QG−(µ) is the weakest among the conditions we proposed). On the other hand,
this is necessary to guarantee that the set of minimizer for the original f and the perturbed f + h, h ∈ FX∗ , are
the same.

Continuity of ∗SC− and ∗SC+: Given f ∈ ∗SC+(L): f∗ ≤ f(x) + 〈∇f(x), x∗p − x〉+ L
2 ‖x− x

∗
p‖22, ∀x ∈ Rd (with

x∗p ∈ X∗ the corresponding projection point onto X∗). Consider g = f + h, h ∈ FX∗ with ‖f − g‖∗ = ‖h‖∗ =

sup ‖∇f(x)−∇g(x)‖2
d(x,X∗) = sup ‖∇h(x)‖2

d(x,X∗) ≤
ε
3 , then

g∗ = f∗ ≤ f(x) + 〈∇f(x), x∗p − x〉+
L

2
‖x− x∗p‖22, (26)

where g∗ is the value of g at each point of X∗. Note that ∀x ∈ Rd \X∗

〈∇f(x), x∗p − x〉 = 〈∇f(x)−∇g(x), x∗p − x〉+ 〈∇g(x), x∗p − x〉
≤ ‖∇f(x)−∇g(x)‖2

∥∥x− x∗p∥∥2
+ 〈∇g(x), x∗p − x〉

≤ ‖f − g‖∗
∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉

≤ ε

3

∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉 (27)

and

0 = h∗ = ω(x) +

∫ 1

0

〈∇h(x+ t(x∗p − x)), x∗p − x〉 dt

≤ h(x) +

∫ 1

0

∥∥∇h(x+ t(x∗p − x))
∥∥

2
‖x− x∗p‖2 dt

= h(x) +

∫ 1

0

∥∥∇h(x+ t(x∗p − x))
∥∥

2

d(x+ t(x∗p − x), X∗)
d(x+ t(x∗p − x), X∗)‖x− x∗p‖2 dt

≤ h(x) + ‖h‖∗ ‖x− x
∗
p‖22
∫ 1

0

1− tdt = h(x) +
1

2
‖f − g‖∗ ‖x− x

∗
p‖22

≤ h(x) +
ε

6
‖x− x∗‖22 (28)

where we used d(x+ t(x∗p − x), X∗) = (1− t)‖x− x∗p‖2, ∀ t ∈ [0, 1] (indeed any point lying on the line segment
x+ t(x∗p − x) has projection onto X∗ equal to x∗p).

Therefore, ∀x ∈ Rd \X∗

g∗ ≤ f(x) +
[ ε

3
‖x− x∗p‖22 + 〈∇g(x), x∗p − x〉

]
+
L

2
‖x− x∗p‖22

≤ f(x) + h(x) +
ε

6
‖x− x∗p‖22 +

ε

3
‖x− x∗p‖22 + 〈∇g(x), x∗p − x〉+

L

2
‖x− x∗‖22

= g(x) + 〈∇g(x), x∗p − x〉+
L+ ε

2
‖x− x∗p‖22 (29)

(for x = x∗ ∈ X∗ the inequality is trivial), i.e. g ∈ ∗SC(L+ ε).
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Similarly, given f ∈ ∗SC−(µ): f∗ ≥ f(x) + 〈∇f(x), x∗p−x〉+
µ
2 ‖x−x

∗
p‖22, ∀x ∈ Rd. Consider g = f +h, h ∈ FX∗

with ‖f − g‖∗ = ‖h‖∗ = sup ‖∇f(x)−∇g(x)‖2
d(x,X∗) = sup ‖∇h(x)‖2

d(x,X∗) ≤
ε
3 < µ, then

g∗ = f∗ ≥ f(x) + 〈∇f(x), x∗p − x〉+
µ

2
‖x− x∗p‖22. (30)

∀x ∈ Rd \X∗

〈∇f(x), x∗p − x〉 = 〈∇f(x)−∇g(x), x∗p − x〉+ 〈∇g(x), x∗p − x〉
≥ −‖∇f(x)−∇g(x)‖2

∥∥x− x∗p∥∥2
+ 〈∇g(x), x∗p − x

≥ −‖f − g‖∗
∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉 (31)

≥ − ε
3

∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉 (32)

and

0 = h∗ = ω(x) +

∫ 1

0

〈∇h(x+ t(x∗p − x)), x∗p − x〉 dt

≥ h(x)−
∫ 1

0

∥∥∇h(x+ t(x∗p − x))
∥∥

2
‖x− x∗p‖2 dt

≥ h(x)− 1

2
‖f − g‖∗ ‖x− x

∗
p‖22

≥ h(x)− ε

6
‖x− x∗p‖22 (33)

Therefore, ∀x ∈ Rd \X∗, g∗ ≥ g(x) + 〈∇g(x), x∗ − x〉 + µ−ε
2 ‖x − x

∗‖22 and for x = x∗ ∈ X∗ the inequality is
trivial: g ∈ ∗SC(µ− ε).

Continuity of RSI− and RSI+: Given f ∈ RSI+(L): ∀x ∈ Rd, 〈∇f(x), x−x∗p〉 ≤ L
∥∥x− x∗p∥∥2

2
. Consider g = f+h

with h ∈ FX∗ such that ‖h‖∗ = supx∈Rd\{X∗}
‖∇h(x)‖2
d(x,X∗) ≤ ε, then we have ∀x ∈ Rd \X∗

〈∇g(x), x− x∗p〉 = 〈∇f(x) +∇h(x), x− x∗p〉 = 〈∇f(x), x− x∗p〉+ 〈∇h(x), x− x∗p〉

≤ L
∥∥x− x∗p∥∥2

2
+ ‖∇h(x)‖2

∥∥x− x∗p∥∥2

≤ L
∥∥x− x∗p∥∥2

2
+ ε
∥∥x− x∗p∥∥2

2
= (L+ ε)

∥∥x− x∗p∥∥2

2
(34)

(for x = x∗ ∈ X∗ it is trivial and we have an equality), i.e. g ∈ RSI+(L+ ε).

Similarly, if f ∈ RSI−(µ), i.e. ∀x ∈ Rd, 〈∇f(x), x − x∗p〉 ≥ µ
∥∥x− x∗p∥∥2

2
, consider g = f + h with h ∈ FX∗ ,

‖h‖∗ = supx∈Rd\X∗
‖∇h(x)‖2
d(x,X∗) < ε < µ, then we have ∀x ∈ Rd \X∗

〈∇g(x), x− x∗p〉 = 〈∇f(x) +∇h(x), x− x∗p〉 = 〈∇f(x), x− x∗p〉+ 〈∇h(x), x− x∗p〉

≥ µ
∥∥x− x∗p∥∥2

2
− ‖∇h(x)‖2

∥∥x− x∗p∥∥2

≥ µ
∥∥x− x∗p∥∥2

2
− ε
∥∥x− x∗p∥∥2

2
= (µ− ε)

∥∥x− x∗p∥∥2

2
(35)

(for x = x∗ ∈ X∗ it is trivial and we have an equality), i.e. g ∈ RSI−(µ− ε).

Continuity of EB− and EB+: Given f ∈ EB+(L): ∀x ∈ Rd, ‖∇f(x)‖2 ≤ Ld(x,X∗) = L
∥∥x− x∗p∥∥2

, with
x∗p ∈ X∗ the unique projection of x on X∗; this implies

sup
x∈Rd\X∗

‖∇f(x)‖2
d(x,X∗)

≤ L. (36)

Given ε > 0, consider g ∈ f + FX∗ , such that ‖f − g‖∗ < ε: then,

sup
x∈Rd\X∗

‖∇g(x)‖2
d(x,X∗)

≤ sup
x∈Rd\X∗

‖∇g(x)−∇f(x)‖2
d(x,X∗)

+ sup
x∈Rd\X∗

‖∇f(x)‖2
d(x,X∗)

≤ ε+ L (37)
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Additionally, since g ∈ f + Fx∗ , ∇g(x∗) = 0 ∀x∗ ∈ X∗, therefore

‖∇g(x)‖2 ≤ (L+ ε)d(x,X∗), ∀x ∈ Rd (38)

i.e. g ∈ EB+(L+ ε).

Given f ∈ EB−(µ): ∀x ∈ Rd ‖∇f(x)‖2 ≥ µd(x,X∗) = µ‖x− x∗p‖2. Fix ε > 0 and consider g ∈ f + Fx∗ , such
that ‖f − g‖∗ < ε < µ; in particular ∀x ∈ Rd \X∗, ‖∇f(x)−∇g(x)‖2 < εd(x,X∗). Then, ∀x ∈ Rd \X∗

0 < (µ− ε) d(x,X∗) ≤ ‖∇f(x)‖2 − εd(x,X∗)

≤ ‖∇f(x)‖2 − ‖∇f(x)−∇g(x)‖2
≤ ‖∇f(x)−∇f(x) +∇g(x)‖2 = ‖∇g(x)‖2 (39)

(for x = x∗ ∈ X∗ the inequality is trivial), i.e. g ∈ EB−(µ− ε).

Continuity of PL− and PL+:

Let f ∈ PL−(µ) and ε > 0. From Figure 1 we have f ∈ QG−(µ). Given g ∈ f +FX∗ such that ‖f − g‖∗ < µ, for
any x ∈ Rd with projection x∗p onto X∗ we have:

‖∇f(x)−∇g(x)‖2 ≤ ‖f − g‖∗d (x,X∗) (40)

additionally for t ∈ [0, 1], d(x∗p + t(x− x∗p), X∗) = t
∥∥x− x∗p∥∥2

since x∗p ∈ X∗ and

|f(x)− g(x)| = |f(x)− g(x)− (f(x∗p)− g(x∗p))| =
∣∣∣∣∫ 1

0

〈∇(f − g)(x∗p + t(x− x∗p)), x− x∗p〉dt
∣∣∣∣

≤
∫ 1

0

‖f − g‖∗d(x∗p + t(x− x∗p), X∗)‖x− x∗p‖2 dt

≤ ‖f − g‖∗‖x− x∗p‖22
∫ 1

0

tdt

≤ ‖f − g‖∗
2

d (x,X∗)
2 (41)

Since f ∈ QG−(µ) and ‖f − g‖∗ < µ:

g(x)− g(x∗p) ≥ f(x)− f∗ − |f(x)− g(x)− (f(x∗p)− g(x∗p))|

≥ µ− ‖f − g‖∗
2

d(x,X∗)2 ≥ 0 (42)

Thus g admits a minimum value g∗ which is attained at any x∗ ∈ X∗. Therefore, ∀x ∈ Rd

g(x)− g∗ ≥ µ− ‖f − g‖∗
2

d(x,X∗)2. (43)

Since f ∈ PL−(µ), we have

‖∇g(x)‖22 = ‖∇g(x)−∇f(x)‖22 + ‖∇f(x)‖2 + 2〈∇g(x)−∇f(x),∇f(x)〉

≥ 0 + 2µ(f(x)− f∗)− 2‖∇g(x)−∇f(x)‖2
√

2µ(f(x)− f∗)
≥ 2µ(g(x)− g∗)− 2µ|f(x)− g(x)− (f∗ − g∗)|

− 2‖f − g‖∗ d(x,X∗)
√

2µ(g(x)− g∗ + |f(x)− g(x)− (f∗ − g∗)|) (44)
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The second term can be easily bounded by (41) and 43; the third term can be bounded as follows√
g(x)− g∗ + |f(x)− g(x)− (f∗ − g∗)| ≤

√
(g(x)− g∗) +

√
|f(x)− g(x)− (f∗ − g∗)|

≤
√

(g(x)− g∗) +

√
‖f − g‖∗

2
d(x,X∗)2

≤
√

(g(x)− g∗) +

√
‖f − g‖∗

µ− ‖f − g‖∗
(g(x)− g∗)

=

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)√
(g(x)− g∗) (45)

where we applied again (41) and (43). Finally we get:

‖∇g(x)‖22 ≥ 2

[
µ− µ‖f − g‖∗

µ− ‖f − g‖∗
− ‖f − g‖∗

√
2

µ− ‖f − g‖∗

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)]
(g(x)− g∗)

≥ 2(µ− ε)(g(x)− g∗) (46)

provided that ‖f − g‖∗ is small enough. Indeed, the quantity

0 ≤ µ‖f − g‖∗
µ− ‖f − g‖∗

+ ‖f − g‖∗

√
2

µ− ‖f − g‖∗

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)
→ 0, as ‖f − g‖∗ → 0,

therefore ∀ ε > 0, ∃ δ > 0 such that for ‖f − g‖∗ ≤ δ, we have

µ‖f − g‖∗
µ− ‖f − g‖∗

+ ‖f − g‖∗

√
2

µ− ‖f − g‖∗

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)
≤ ε.

In conclusion, g ∈ PL−(µ− ε).

Let us now consider f ∈ PL+(L) ∩QG−(µ), and g ∈ f + FX∗ such that ||f − g||∗ < µ.

‖∇g(x)‖22 = ‖∇g(x)−∇f(x)‖22 + ‖∇f(x)‖22 + 2〈∇g(x)−∇f(x),∇f(x)〉 (47)

The second term can be estimated thanks to (41) and (43):

‖∇f(x)‖22 ≤ 2L(f(x)− g(x)− (f∗ − g∗)) + 2L(g(x)− g∗)

≤ 2L

(
||f − g||∗

µ− ||f − g||∗
+ 1

)
(g(x)− g∗); (48)

and similarly the third term:

〈∇g(x)−∇f(x),∇f(x)〉 ≤ ‖∇g(x)−∇f(x)‖2 ‖∇f(x)‖2

≤ ||f − g||∗d(x,X∗)

√
2L

(
||f − g||∗

µ− ||f − g||∗
+ 1

)
(g(x)− g∗)

≤ ||f − g||∗

√
4L

µ− ||f − g||∗

(
||f − g||∗

µ− ||f − g||∗
+ 1

)
(g(x)− g∗). (49)

This finally leads to:

‖∇g(x)‖22 ≤ 2(L+K)(g(x)− g∗) ≤ 2(L+ ε)(g(x)− g∗) (50)

where

K =

[
‖f − g‖∗

µ− ‖f − g‖∗
+

L‖f − g‖∗
µ− ‖f − g‖∗

+ ‖f − g‖∗

√
4L

µ− ‖f − g‖∗

(
‖f − g‖∗

µ− ‖f − g‖∗
+ 1

)]
,
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provided that ‖f − g‖∗ is small enough. Following a similar argument as before, we can easily see that K ≥ 0
and K → 0 as ‖f − g‖∗ → 0, therefore ∀ ε > 0, ∃ δ > 0 such that if ‖f − g‖∗ ≤ δ, then K ≤ ε. Therefore,
g ∈ PL+(L+ ε).

Continuity of QG− and QG+:

Given f ∈ QG+(L): f(x) − f∗ ≤ L
2 d(x,X∗)2, ∀x ∈ Rd. Consider g = f + h, h ∈ FX∗ with ‖h‖∗ =

sup ‖∇f(x)−∇g(x)‖2
d(x,X∗) = sup ‖∇h(x)‖2

d(x,X∗) ≤ ε, then ∀x ∈ R
d, with x∗p ∈ X∗ the corresponding projection on X∗,

g(x)− g∗ = f(x) + h(x)− (f∗ + h∗) = f(x)− f∗ + h(x)− h∗

≤ L

2
d(x,X∗)2 +

∫ 1

0

〈∇h(x∗p + t(x− x∗p)), x− x∗p〉dt

≤ L

2
d(x,X∗)2 +

∫ 1

0

∥∥∇h(x∗p + t(x− x∗p))
∥∥

2
‖x− x∗p‖2 dt

≤ L

2
d(x,X∗)2 +

∫ 1

0

∥∥∇h(x∗p + t(x− x∗p))
∥∥

2

‖x∗p + t(x− x∗p)−X∗‖2
‖x∗p + t(x− x∗p)−X∗‖2‖x− x∗p‖2 dt

≤ L

2
d(x,X∗)2 + ‖h‖∗‖x− x∗p‖22

∫ 1

0

tdt

≤ L+ ε

2
d(x,X∗)2 (51)

where we used ‖x∗p + t(x − x∗p) −X∗‖2 ≤ t‖x − x∗p‖2, ∀ t ∈ [0, 1]; as before, for x = x∗ ∈ X∗ the inequality is
trivial. Therefore, g ∈ QG+(L+ ε).

The proof that g ∈ QG−(µ− ε) if f ∈ QG−(µ) for g ∈ f + FX∗ , ‖f − g‖∗ ≤ ε < µ, follows the same argument.

C Graph of lower assumptions

SC−(µ)→ ∗SC−(µ): Immediate by taking y = x∗p (the projection of x ∈ Rd onto X∗) in the definition of strong
convexity.

∗SC−(µ)→ PL−(µ): Assume f ∈ ∗SC−(µ): f∗ ≥ f (x) + 〈∇f(x), x∗p − x〉+ µ
2

∥∥x∗p − x∥∥2

2
, ∀x ∈ Rd. Hence,

f∗ − f (x) ≥ − 1

2µ
‖∇f(x)‖22 +

1

2µ

∥∥∇f(x) + µ
(
x∗p − x

)∥∥2

2
≥ − 1

2µ
‖∇f(x)‖22 (52)

i.e. ‖∇f(x)‖22 ≥ 2µ(f − f∗). Therefore, f ∈ PL−(µ).

PL−(µ)→ QG−(µ): The claim was originally proven in Karimi et al. (2016), following some arguments from
Bolte et al. (2017) and Zhang (2017) and we will report it here for the sake of completeness.

Consider the gradient flow of g(x) =
√
f(x)− f∗: x′(t) = −∇g(x(t)). Note the f ∈ PL−(µ) implies that

‖∇g(x)‖22 ≥
µ
2 > 0 ∀x ∈ Rd; in particular, despite the fact that g attains its minimum on the set X∗, ∇g may

not be defined on X∗ and the gradient flow equation ceases to be defined once X∗ is reached. We then study the
path of a gradient flow of g until it hits X∗: ∀x0 ∈ Rd, ∀T > 0 for which the flow is defined,

g(x0) ≥ g(x0)− g(xT ) = −
∫ T

0

〈∇g(x(t)), x′(t)〉dt =

∫ T

0

‖∇g(x(t))‖22 dt

≥
∫ T

0

µ

2
dt =

µ

2
T, (53)

where the first inequality follows from the fact that g is non-negative and the second inequality follows from the
PL−(µ) property. This proves the existence of T ∗ = T ∗(x0) such that xT∗ ∈ X∗.
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Therefore, ∀x0 ∈ Rd

g(x0) =g(x0)− g(xT∗) =

∫ T∗

0

‖∇g(x(t))‖22 dt

≥
√
µ

2

∫ T∗

0

‖∇g(x(t))‖2 dt =

√
µ

2

∫ T∗

0

‖x′(t)‖2 dt

≥
√
µ

2

∥∥∥∥∥
∫ T∗

0

x′(t) dt

∥∥∥∥∥
2

=

√
µ

2
‖x0 − xT∗‖2

≥
√
µ

2
d(x0, X

∗) (54)

and, by squaring on both sides,
f(x)− f∗ = g(x)2 ≥ µ

2
d(x,X∗)2; (55)

i.e. f ∈ QG−(µ).

∗SC−(µ1) and QG−(µ2)→ RSI−
(
µ1+µ2

2

)
: For f ∈ ∗SC−(µ1) ∩QG−(µ2), we have

〈∇f(x), x− x∗p〉 ≥ f(x)− f∗ +
µ1

2

∥∥x∗p − x∥∥2

2
≥ µ1 + µ2

2

∥∥x∗p − x∥∥2

2
(56)

i.e. f ∈ RSI−
(
µ1+µ2

2

)
. Note that this holds also for non positive µ1. In particular, if f ∈ QG−(µ) and f is

*-convex (µ1 = 0), then f ∈ RSI−(µ2 ).

∗SC−(µ)→ RSI− (µ): This follows directly from the three previous results. Indeed, ∗SC−(µ) ⊆ PL−(µ) ⊆
QG−(µ) and ∗SC−(µ) ∩QG−(µ) ⊆ RSI−(µ).

RSI−(µ)→ QG−(µ): For every x ∈ Rd consider the line segment x(t) = x∗p + t(x− x∗p), t ∈ [0, 1], with x∗p ∈ X∗

the projection of x onto X∗. It is clear that ∀ t ∈ [0, 1] the projection of x(t) onto X∗ is still x∗p. Since f ∈ RSI−(µ),
∀x ∈ Rd

〈∇f(x∗p + t(x− x∗p)), t(x− x∗p)〉 ≥ µ‖t(x− x∗p)‖22 = µt2‖(x− x∗p)‖22, (57)

therefore

f(x)− f∗ =

∫ 1

0

〈∇f(x∗p + t(x− x∗p)), x− x∗p〉dt ≥
∫ 1

0

µt
∥∥x− x∗p∥∥2

2
dt =

µ

2

∥∥x− x∗p∥∥2

2
, (58)

implying that f ∈ QG−(µ).

RSI−(µ)→ EB−(µ): It follows from Cauchy-Schwartz inequality.

PL−(µ1) ∩QG−(µ2)→ EB−
(√
µ1µ2

)
: Assume f ∈ PL−(µ1) ∩QG−(µ2):

1

2
‖∇f(x)‖22 ≥ µ1 (f(x)− f∗) ≥ µ1µ2

2
‖x− x∗p‖22 (59)

i.e. ‖∇f(x)‖2 ≥
√
µ1µ2‖x− x∗p‖2.

Hence, f ∈ EB−
(√
µ1µ2

)
. Note that PL−(µ) ⊆ QG−(µ), therefore PL−(µ) ⊆ EB−(µ) (set µ1 = µ2 = µ).

EB−(µ) ∩QG+(L)→ PL−(µ2/L): Given f ∈ EB−(µ) ∩QG+(L), ∀x ∈ Rd

‖∇f(x)‖22 ≥ µ2‖x− x∗p‖22 ≥
2µ2

L
(f(x)− f∗) (60)

i.e. f ∈ PL−(µ2/L).
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D Graph of upper assumptions

SC+(L)→ PL+(L): Assume f ∈ SC+(L), hence ∀x, y ∈ Rd

f(y) ≤ f (x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22

= f(x)− 1

2L
‖∇f(x)‖22 +

1

2L
‖∇f(x) + L (y − x)‖22 (61)

In particular, ∀x, y ∈ Rd

f∗ ≤ f(y) ≤ f(x)− 1

2L
‖∇f(x)‖22 +

1

2L
‖∇f(x) + L (y − x)‖22 (62)

and by choosing y = x− ∇f(x)
L , we have

f∗ − f(x) ≤ − 1

2L
‖∇f(x)‖22 , i.e.

1

2
‖∇f(x)‖22 ≤ L (f(x)− f∗) (63)

Hence, f ∈ PL+(L).

PL+(L)→ ∗SC+(L): Assume f ∈ PL+(L), hence

f∗ − f(x) ≤ − 1

2L
‖∇f(x)‖22

≤ − 1

2L
‖∇f(x)‖22 +

1

2L

∥∥∇f(x) + L
(
x∗p − x

)∥∥2

2

f∗ ≤ f (x) + 〈∇f(x), x∗p − x〉+
L

2

∥∥x∗p − x∥∥2

2
(64)

Hence, f ∈ ∗SC+(L).

PL+(L)→ QG+(L): Assume f ∈ PL+(L) and consider the function g(x) =
√
f(x)− f∗: since f ∈ PL+(L), we

have ‖∇g(x)‖22 ≤ L
2 , ∀x ∈ R

d. Then,

g(x) =g(x)− g(x∗p) =

∫ 1

0

〈∇g(x∗p + t(x− x∗p)), x− x∗p〉dt

≤
∫ 1

0

∥∥∇g(x∗p + t(x− x∗p))
∥∥

2

∥∥(x− x∗p)
∥∥

2
dt

≤
∫ 1

0

√
L

2

∥∥x− x∗p∥∥2
dt ≤

√
L

2

∥∥x− x∗p∥∥2
(65)

Therefore, by squaring on both sides,

f(x)− f∗ ≤ L

2
‖x− x∗p‖22. (66)

Note: this result is not explicit in the graph as it can be recover by following the existing edges. However we
needed to prove it here for the following result.

PL+(L)→ EB+(L): Assume f ∈ PL+(L1) ∩QG+(L2), then

‖∇f(x)‖22 ≤ 2L1(f(x)− f∗) ≤ L1L2‖x− x∗p‖22, (67)

hence f ∈ EB+(
√
L1L2). In particular, from the previous result we have that if f ∈ PL+(L), then f ∈ QG+(L),

hence f ∈ EB+(L) (take L1 = L2 = L).
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EB+(L)→ RSI+(L): Given f ∈ EB+(L),

〈∇f(x), x− x∗p〉 ≤ ‖∇f(x)‖2 · ‖x− x∗p‖2 ≤ L‖x− x∗p‖22, (68)

therefore f ∈ RSI+(L).

∗SC+(L)→ QG+(L): For each x ∈ Rd, with x∗p ∈ X∗ its projection onto X∗, define

g(t) =
L
2 ‖t(x− x

∗
p)‖22 −

(
f(x∗p + t(x− x∗p))− f∗

)
t

, t ∈ (0,+∞).

We verify that

g′(t) =
L
2

∥∥t(x− x∗p)∥∥2

2
− 〈∇f(x∗p + t(x− x∗p)), x− x∗p〉+

(
f(x∗ + t(x− x∗p))− f∗

)
t2

≥ 0 (69)

since f ∈ ∗SC+(L). Therefore, g is monotonically increasing on (0,+∞). Additionally, g can be continuously
extended in t = 0 by l’Hôpital’s rule:

lim
t→0+

g(t) = lim
t→0+

Lt‖(x− x∗p)‖22 − 〈∇f(x∗p + t(x− x∗p)), x− x∗p〉 = 0.

Therefore,

g(1) =
L

2
‖x− x∗p‖22 − (f(x)− f∗) ≥ g(0) = 0

i.e. f(x)− f∗ ≤ L
2 ‖x− x

∗
p‖22: f ∈ QG+(L).

∗SC+(L)→ RSI+(L): Let f ∈ ∗SC+(L1) ∩QG+(L2):

〈∇f(x), x− x∗p〉 ≤f(x)− f∗ +
L1

2

∥∥x− x∗p∥∥2

2
≤ L1 + L2

2

∥∥x− x∗p∥∥2

2
, (70)

therefore f ∈ RSI+(L1+L2

2 ). In particular, since ∗SC+(L) ⊆ QG+(L), then ∗SC+(L) ⊆ RSI+(L).

RSI+(L)→ ∗SC+(2L): For f ∈ RSI+(L), we have

〈∇f(x), x− x∗p〉 ≤ L
∥∥x− x∗p∥∥2

2
≤ f(x)− f∗ + L

∥∥x− x∗p∥∥2

2
(71)

i.e. f ∈ ∗SC+(2L).

RSI+(L)→ QG+(L): For every x ∈ Rd consider the line segment x(t) = x∗p + t(x− x∗p), t ∈ [0, 1]; recall that
∀ t ∈ [0, 1] the projection of x(t) onto X∗ is still x∗p. Since f ∈ RSI+(L), ∀x ∈ Rd

〈∇f(x∗p + t(x− x∗p)), t(x− x∗p)〉 ≤ L‖t(x− x∗p)‖22 = Lt2‖x− x∗p‖22, (72)

Therefore, f ∈ QG+(L):

f(x)− f∗ =

∫ 1

0

〈∇f(x∗ + t(x− x∗p)), x− x∗p〉dt ≤
∫ 1

0

Lt
∥∥x− x∗p∥∥2

2
dt =

L

2

∥∥x− x∗p∥∥2

2
. (73)

SC−(µ) and QG+(L)→ EB+
(
L+

√
L(L− µ)

)
: Assume f ∈ SC−(µ) ∩ QG+(L), with µ < L, and µ can be

non positive (we recall that f ∈ SC−(0) is convex). The case µ ≥ L is trivial as it implies f(x)− f∗ = L
2 ‖x−x

∗
p‖2

∀x ∈ Rd.

We have by definition: ∀x, y ∈ Rd

f(x)− f∗ + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22

SC−

≤ f(y)− f∗
QG+

≤ L

2

∥∥y − y∗p∥∥2

2
≤ L

2

∥∥y − x∗p∥∥2

2
; (74)
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in particular,

f(x)− f∗ + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22 ≤

L

2

∥∥y − x∗p∥∥2

2
(75)

and by choosing y =
Lx∗

p−µx+∇f(x)

L−µ we have

Lµ
∥∥x− x∗p∥∥2

2
+ ‖∇f(x)‖22 + 2L〈∇f(x), x∗p − x〉 ≤ 2(L− µ) · (f∗ − f(x)) (76)

The RHS is non positive, then by removing it and factoring the LHS∥∥∇f(x) + L(x∗p − x)
∥∥2

2
≤ L(L− µ)

∥∥x− x∗p∥∥2

2
; (77)

finally, by triangle inequality,

‖∇f(x)‖2 − L
∥∥x∗p − x∥∥2

≤
√
L(L− µ)

∥∥x− x∗p∥∥2
(78)

‖∇f(x)‖2 ≤
(
L+

√
L(L− µ)

)∥∥x− x∗p∥∥2
(79)

Hence, f ∈ EB+
(
L+

√
L(L− µ)

)
. Note that for µ = 0 (i.e. f is convex), we have QG+(L)→ EB+(2L).

SC−(µ) and ∗SC+(L)→ EB+ (L+ 2 max{−µ, 0}): Assume f ∈ SC−(µ) ∩ ∗SC+(L). In particular f ∈
QG+(L), then all the previous results still hold. From (76) we have

Lµ
∥∥x− x∗p∥∥2

2
+ ‖∇f(x)‖22 + 2L〈∇f(x), x∗p − x〉 ≤ 2(L− µ) · (f∗ − f(x))

≤ 2(L− µ) ·
[
〈∇f(x), x∗p − x〉+

L

2
‖x− x∗2‖

2
2

]
(80)

thanks to f ∈ ∗SC+(L), i.e.

‖∇f(x)‖22 + 2µ〈∇f(x), x∗p − x〉 ≤ L(L− 2µ)
∥∥x− x∗p∥∥2

2
.

After rearranging the terms, we obtain
∥∥∇f(x) + µ(x∗p − x)

∥∥2

2
≤ (L− µ)2

∥∥x− x∗p∥∥2

2
and by triangle inequality

‖∇f(x)‖2 − |µ|
∥∥x∗p − x∥∥2

≤ (L− µ)
∥∥x− x∗p∥∥2

, (81)

i.e.
‖∇f(x)‖2 ≤ (L+ 2 max{−µ, 0})

∥∥x− x∗p∥∥2
.

Finally f ∈ EB+ (L+ 2 max{−µ, 0}). In particular, under convex assumption (µ = 0), ∗SC+(L)→ EB+(L).

QG−(µ) and EB+(L)→ PL+
(
L2

µ

)
: Let f ∈ QG−(µ) ∩ EB+(L), we have:

1

2
‖∇f(x)‖22 ≤

1

2
L2
∥∥x− x∗p∥∥2

2
≤ 1

2
L2 2

µ
(f(x)− f∗) =

L2

µ
(f(x)− f∗), (82)

therefore, f ∈ PL+
(
L2

µ

)
.

E Rates of convergence

Under SC−(µ) and SC+(L) This is a known result and we refer to the proof in Section 3.4.2 in Bubeck (2015).
Let’s assume f ∈ SC−(µ) ∩ SC+(L) with L > µ (the other case is trivial): ∀x, y, z ∈ Rd

f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖22

SC−(µ)

≤ f(x)
SC+(L)

≤ f(z) + 〈∇f(z), x− z〉+
L

2
‖x− z‖22 (83)
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i.e. ∀x, y, z ∈ Rd

f(z)− f(y) + 〈∇f(z), x− z〉 − 〈∇f(y), x− y〉+
L

2
‖x− z‖22 −

µ

2
‖x− y‖22 ≥ 0. (84)

By minimizing the left hand side of the above expression with respect to the variable x, we find that for

x =
Lz − µy +∇f(y)−∇f(z)

L− µ
(85)

the inequality becomes

f(y)− f(z) ≤ 1

L− µ

[
〈z − y, µ∇f(z)− L∇f(y)〉 − 1

2
‖∇f(y)−∇f(z)‖22 −

Lµ

2
‖y − z‖22

]
(86)

∀ y, z ∈ Rd. By swapping the roles of y and z, summing, and rearranging terms, we obtain the well-known
inequality (see, e.g. Nesterov (2004)): ∀ y, z ∈ Rd

〈z − y,∇f(z)−∇f(y)〉 ≥ 1

L+ µ

(
‖∇f(y)−∇f(z)‖2 + Lµ ‖y − z‖2

)
. (87)

Note that f ∈ SC−(µ) implies that X∗ = {x∗}. In conclusion,

‖xn+1 − x∗‖22 = ‖xn − x∗ − α∇f(xn)‖22
‖xn − x∗‖22 − 2α〈∇f(xn), xn − x∗〉+ α2 ‖∇f(xn)‖22

≤
(

1− 2αLµ

L+ µ

)
‖xn − x∗‖22 + α

(
α− 2

L+ µ

)
‖∇f(xn)‖22

=

(
κ− 1

κ+ 1

)2

‖xn − x∗‖22 (88)

for α = 2
L+µ .

Under PL−(µ) and SC+(L) Let’s assume f ∈ PL−(µ) ∩ SC+(L). Then,

f(xn+1)− f∗ ≤ f(xn)− f∗ − α
(

1− Lα

2

)
‖∇f(xn)‖22

≤ f(xn)− f∗ − 2µα

(
1− Lα

2

)
(f(xn)− f∗)

=

(
1− 1

κ

)
(f(xn)− f∗) (89)

for α = 1
L .

Under ∗SC−(µ) and PL+(L) Assume f ∈ ∗SC−(µ) ∩ PL+(L). ∀ n ∈ N, let x∗n,p be the projection of xn on
X∗. Then,

d(xn+1, X
∗)2 ≤

∥∥xn+1 − x∗n,p
∥∥2

2
=
∥∥xn − x∗n,p∥∥2

2
− 2α〈xn − x∗n,p,∇f(xn)〉+ α2 ‖∇f(xn)‖22

≤
∥∥xn − x∗n,p∥∥2 − 2α

(
f(xn)− f∗ +

µ

2

∥∥xn − x∗n,p∥∥2

2

)
+ 2α2L (f(xn)− f∗)

= (1− µα)
∥∥xn − x∗n,p∥∥2

2
− 2α(1− Lα)(f(xn)− f∗) (90)

=

(
1− 1

κ

)
d(xn, X

∗)2 for α = 1
L .

Note this proof is quite similar to the proof of Theorem 3.1 in Gower et al. (2019) applied directly to the
deterministic case.

Next, we show a similar proof that follows the same idea but doesn’t require ∗SC−(µ).
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Under ∗SC−(0), RSI−(µ) and PL+(L) Assume f ∈ ∗SC−(0) ∩ RSI−(µ) ∩ PL+(L). From star convexity, we
have 〈∇f(x), x−xp〉 ≥ f(x)−f∗, and from restricted secant inequality 〈∇f(x), x−xp〉 ≥ µ‖x−xp‖2. Combining
the two, we obtain

〈∇f(x), x− xp〉 ≥
1

2
(f(x)− f∗) +

µ

2
‖x− xp‖2.

With similar argument as above, denote x∗n,p the projection of xn on X∗, ∀n ∈ N. Then,

d(xn+1, X
∗)2 ≤

∥∥xn+1 − x∗n,p
∥∥2

2
=
∥∥xn − x∗n,p∥∥2

2
− 2α〈xn − x∗n,p,∇f(xn)〉+ α2 ‖∇f(xn)‖22

≤
∥∥xn − x∗n,p∥∥2 − 2α

(
1

2
(f(xn)− f∗) +

µ

2

∥∥xn − x∗n,p∥∥2

2

)
+ 2α2L (f(xn)− f∗)

= (1− µα)
∥∥xn − x∗n,p∥∥2

2
− α(1− 2Lα)(f(xn)− f∗)]

=

(
1− 1

2κ

)
d(xn, X

∗)2 (91)

for α = 1
2L .

Under RSI−(µ) and EB+(L) Assume f ∈ RSI−(µ) ∩ EB+(L), and for some n ∈ N, x∗p denotes the projection
of xn on X∗. Then

d(xn+1, X
∗)2 ≤

∥∥xn+1 − x∗p
∥∥2

2
=
∥∥xn − x∗p∥∥2

2
− 2α〈xn − x∗p,∇f(xn)〉+ α2 ‖∇f(xn)‖22

≤
∥∥xn − x∗p∥∥2 − 2αµ

∥∥xn − x∗p∥∥2

2
+ α2L2

∥∥xn − x∗p∥∥2

2

=
(
1− 2µα+ L2α2

) ∥∥xn − x∗p∥∥2

2
(92)

=

(
1− 1

κ2

)
d(xn, X

∗)2 for α = µ
L2 .

Under SC−(µ) and QG+(L) Assume f ∈ SC−(µ) ∩ QG+(L) with some L ≥ µ > 0. Note that this implies
that f has a unique minimum x∗.

Define g(x) = 1
2‖x−x

∗‖22− 1
L (f(x)−f∗); then, g ∈ C1(Rd) and g(x) ≥ 0 = g∗, since f ∈ QG+(L), with g(x∗) = 0.

Let X∗ be the set of all minima of g, including the f minimizer x∗.

g ∈ SC+
(
1− 1

κ

)
with κ = µ

L : indeed, ∀x, y ∈ R
d

g(y)− g(x)− 〈∇g(x), y − x〉

=
1

2
‖y − x∗‖22 −

1

L
(f(y)− f∗)− 1

2
‖x− x∗‖22 +

1

L
(f(x)− f∗)− 〈(x− x∗)− 1

L
∇f(x), y − x〉

≤ − µ

2L
‖x− y‖22 +

1

2

(
‖y − x∗‖22 − ‖x− x∗‖22 − 2〈x− x∗, y − x〉

)
≤ − µ

2L
‖x− y‖22 +

1

2

(
‖y − x∗‖22 + ‖x− x∗‖22 − 2〈x− x∗, y − x〉

)
=

1

2

(
1− µ

L

)
‖x− y‖22 (93)

since f ∈ SC−(µ). This implies g ∈ EB+
(
1− 1

κ

)
:

‖∇g(x)‖2 =

∥∥∥∥(x− x∗)− 1

L
∇f(x)

∥∥∥∥
2

≤
(

1− 1

κ

)
d(x,X∗) ≤

(
1− 1

κ

)
‖x− x∗‖2

Therefore, in the GD algorithm with step size α = 1
L , we get

‖xn+1 − x∗‖2 =

∥∥∥∥xn − x∗ − 1

L
∇f(xn)

∥∥∥∥
2

≤
(

1− 1

κ

)
‖xn − x∗‖2 (94)

Hence the linear rate
(
1− 1

κ

)2.
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Rates of convergence for any pair of upper and lower condition. We collected all the above results in
Table 2. For any pair of upper and lower condition f ∈ C+(L) ∩ C−(µ), we define κ = L

µ . We will justify here all
the entries.

The rates in the first column (f ∈ SC−(µ)) follows from the fact that if f ∈ SC+(L), we recover the classical
convergence rate for L-smooth and µ-strongly convex functions, while for any other upper condition C+(L), we
use the fact that C+(L) ⊆ QG+(L) and we have convergence rate of (1− 1

κ )2.

In the first row (f ∈ SC+(L)), the rate of convergence 1− 1
κ holds for f ∈ PL−(µ) (as proven) and f ∈ ∗SC−(µ)

(since ∗SC−(µ) ⊂ PL−(µ)); the rate of convergence 1− 1
κ2 instead holds for f ∈ EB−(µ) (since EB−(µ)∩SC+(L) ⊂

PL−(µ
2

L )) and consequently also for f ∈ RSI−(µ) (since RSI−(µ) ⊂ EB−(µ)).

We proved that for f ∈ RSI−(µ) ∩ EB+(L) the GD algorithm converges with rate 1 − 1
κ2 ; the same rate of

convergence is also valid for f ∈ ∗SC−(µ) ⊂ RSI−(µ) and/or f ∈ PL+(L) ⊂ EB+(L). This justifies entries (2, 4),
(3, 2) and (3, 4) in Table 2.

For entry (2, 2), we proved a convergence rate of 1 − 1
κ under assumption f ∈ ∗SC−(µ) ∩ PL+(L). We also

completed the entry (2, 4) under star convexity. Since SC+(L) ⊂ PL+(L), this rate also holds in (1, 4).

Similarly, under the additional assumption of star convexity, we have that f ∈ QG−(µ) ∩ ∗SC(0) ⊂ RSI−(µ2 ),
therefore if f ∈ QG−(µ)∩ ∗SC(0)∩EB+(L), GD converges with linear rate 1− 1

4κ2 . Following the same argument,
for f ∈ QG−(µ) ∩ ∗SC(0) and upper conditions f ∈ PL+(L) or f ∈ SC+(L), GD converges with linear rate
1− 1

4κ . Entries (2, 3), (2, 5), (3, 3) and (3, 5) follows from PL−(µ) ⊂ QG−(µ) and EB−(µ) ∩QG+(L) ⊂ PL−(µ
2

L ).

If we assume f to be convex, the rates of convergence on the fourth line (f ∈ ∗SC+(L)) follow from the fact that
∗SC+(L)∩SC−(0) ⊂ EB+(L). The rates on the last line (f ∈ QG+(L)) follow from QG+(L)∩SC−(0) ⊂ EB+(2L);
similarly on the fifth line (RSI+(L) ⊂ QG+(L)).

Table 2: Linear rates for the GD algorithm for each pair of conditions, as function of κ = L
µ . Rates marked with

∗ hold under the additional assumption of star-convexity, while rates marked with † hold under the additional
assumption of convexity. Rates are colored in green if corresponding to a continuous pair of conditions and red
otherwise.

Rates of cv SC−(µ) ∗SC−(µ) PL−(µ) RSI−(µ) EB−(µ) QG−(µ)

SC+(L)
(
κ−1
κ+1

)2

1− 1
κ 1− 1

κ 1− 1
κ2 / 1− 1

2κ * 1− 1
κ2 1− 1

4κ *

PL+(L)
(
1− 1

κ

)2
1− 1

κ 1− 1
4κ * 1− 1

κ2 / 1− 1
2κ * 1− 1

4κ2 * 1− 1
4κ *

EB+(L)
(
1− 1

κ

)2
1− 1

κ2 1− 1
4κ2 * 1− 1

κ2 1− 1
4κ4 * 1− 1

4κ2 *
∗SC+(L)

(
1− 1

κ

)2
1− 1

κ2
† 1− 1

4κ2
† 1− 1

κ2
† 1− 1

4κ4
† 1− 1

4κ2
†

RSI+(L)
(
1− 1

κ

)2
1− 1

4κ2
† 1− 1

16κ2
† 1− 1

4κ2
† 1− 1

16κ4
† 1− 1

16κ2
†

QG+(L)
(
1− 1

κ

)2
1− 1

4κ2
† 1− 1

16κ2
† 1− 1

4κ2
† 1− 1

16κ4
† 1− 1

16κ2
†

As a last remark, we show that the additional assumption of f being convex (or star convex) is fundamental in
some cases in order to obtain convergence of the GD algorithm. We will show here that the sole pair of conditions
SC+(L) ∩QG−(µ) doesn’t guarantee convergence of gradient descent.

Let ε, η > 0. Consider the following function f ∈ C1(R):

f(x) =


1
2x

2 x < 1

− 1
2εx

2 + 1+ε
ε x− 1+ε

2ε 1 ≤ x < 1 + ε
1+ε

2 1 + ε ≤ x < 1 + ε+ η
1
2x

2 − (1 + ε+ η)x+ (1+ε+η)2

2 + 1+ε
2 1 + ε+ η ≤ x

(95)

By inspecting its second derivative (where defined) we can conclude that f ∈ SC+(1) ∩ SC−
(
− 1
ε

)
.

Furthermore, 2f(x)
x2 reaches its minimum at x̄ = (1+ε+η)2+1+ε

1+ε+η , with 2f(x̄)
x̄2 = 1+ε

(1+ε+η)2+1+ε
> 0, therefore
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f ∈ QG−
(

1+ε
(1+ε+η)2+1+ε

)
.

On the other hand, f ′(x) = 0 on [1 + ε, 1 + ε+ η], therefore if one of the iterates xj of the GD algorithm falls into
this interval, then xk ∈ [1 + ε, 1 + ε+ η] ∀ k ≥ j and the algorithm fails to converge.

In the following, we will see sublinear convergence analysis under only upper conditions.

Under ∗SC−(0) and SC+(L) This proof is a very classical one (Bansal and Gupta, 2017), and it is based on
studying the monotonic properties of the Lyapunov function Vn = n (f(xn)− f∗) + 1

2αd(xn, X
∗)2. ∀n ∈ N, let

x∗n,p be the projection of xn onto X∗.

Vn+1 = (n+ 1) (f(xn+1)− f∗) +
1

2α
‖xn+1 − x∗n,p‖2

SC+(L)

≤ (n+ 1)

(
f(xn)− f∗ +

(
L

2
α2 − α

)
‖∇f(xn)‖2

)
+

1

2α

(
‖xn − x∗n,p‖2 − 2α〈∇f(xn), xn − x∗n,p〉+ α2 ‖∇f(xn)‖2

)
= Vn + (f(xn)− f∗) +

(
(n+ 1)

(
L

2
α2 − α

)
+
α

2

)
‖∇f(xn)‖2 − 〈∇f(xn), xn − x∗n,p〉

∗SC−(0)

≤ Vn +

(
(n+ 1)

(
L

2
α2 − α

)
+
α

2

)
‖∇f(xn)‖2

≤ Vn for α = 1
L

Therefore, Vn is decreasing and in particular

n(f(xn)− f∗) ≤ Vn ≤ V0 ≤
L

2
d(x0, X

∗)2 (96)

Leading to the desired rate

f(xn)− f∗ ≤ L

2n
d(x0, X

∗)2 (97)

Under ∗SC−(0) and PL+(L) ∀n ∈ N, let x∗n,p be the projection of xn onto X∗.

d(xn+1, X
∗)2 ≤ ‖xn+1 − x∗n,p‖2 = ‖xn − x∗n,p‖2 − 2α〈∇f(xn), xn − x∗n,p〉+ α2 ‖∇f(xn)‖2

≤ ‖xn − x∗n,p‖2 − 2α(f(xn)− f∗) + α2 × 2L(f(xn)− f∗) (98)

therefore,

2α(1− Lα)(f(xn)− f∗) ≤ d(xn, X
∗)2 − d(xn+1, X

∗)2. (99)

By summing the inequality above for k = 0, . . . , n, we have

2α(1− Lα)

n∑
k=0

(f(xk)− f∗) ≤ d(x0, X
∗)2 − d(xn+1, X

∗)2 ≤ d(x0, X
∗)2 (100)

and taking α = 1
2L ,

1

n+ 1

n∑
k=0

(f(xk)− f∗) ≤ 2L

n+ 1
d(x0, X

∗)2 (101)
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we can conclude

min
k∈[|0,n|]

(f(xk)− f∗) ≤ 2L

n+ 1
d(x0, X

∗)2 (102)

If additionally f ∈ SC−(0) (convex), we have the stronger result

f

(
1

n+ 1

n∑
k=0

xk

)
− f∗ ≤ 2L

n+ 1
d(x0, X

∗)2. (103)

F Adaptive step size and application to logistic regression

Let f ∈ C1(Rd) be a function to optimize, and let g ∈ C1 ([f∗,+∞)) be an increasing function. It is easy to see
that finding the minimum of g ◦ f is equivalent to finding the minimum of f , and a GD algorithm with constant
step size on g ◦ f leads to a GD algorithm on f with adaptive step size:

xn+1 = xn − α∇ (g ◦ f) (xn) ⇔ xn+1 = xn − αg′(f(xn))∇f(xn). (104)

We briefly recall here the definition of the Θ notation, because it will be occasionally used in the following
proposition and proof in order to preserve their readability.
Definition F.1 (Θ notation). Given two functions f, g ∈ C0(R), g ≥ 0, we say that

f(x) ∈ Θ (g(x)) as x→ x0

if ∃ δ,m,M > 0 such that ∀x with 0 < |x− x0| < δ:

mg(x) ≤ |f(x)| ≤M g(x). (105)

Similarly, we say that
f(x) ∈ Θ (g(x)) as x→ +∞

if ∃K,m,M > 0 such that ∀x > K:

mg(x) ≤ |f(x)| ≤M g(x). (106)

Proposition F.2. Given f ∈ C1
(
Rd
)
, assume that

f(x)− f∗ ∈ Θ
(
d(x,X∗)β

)
as d(x,X∗)→ 0, (107)

f(x)− f∗ ∈ Θ (d(x,X∗)γ) as d(x,X∗)→∞, (108)

for some β, γ ∈ (0,∞). Consider the functions

g : (−c,+∞)→ R+ h : [f∗,+∞)→ R+ ∪ {0}
u 7→ (u+ c)

β
γ t 7→ (t− f∗)

2
β

(109)

where c > 0 is an arbitrary positive constant. Then, g ◦ h ◦ f ∈ QG−(µ) ∩QG+(L) for some µ,L > 0.

In the case g ◦ f is convex, we obtain a linear rate convergence from Table 1. This is easily satisfied when f is
convex and β, γ ∈ (0, 2].
Remark F.3. This property leads to an adaptive step size α̃n = αg′(f(xn)) for the adaptive GD algorithm
which requires the knowledge of the precise value of f∗. However, in the particular case where β = 2 and f∗ > 0,
we can take c = f∗ and obtain a step size α̃n = α 2

γ f(xn)
2
γ−1.

Proof. g ∈ C1((−c,+∞))) and g(u) > 0 on its domain. It is easy to see that

g(u)− c
β
γ ∈ Θ (u) as u→ 0 (110)

g(u)− c
β
γ ∈ Θ

(
u
β
γ

)
as u→ +∞ (111)
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Consider the function h(f(x)) = (f(x) − f∗)
2
β : clearly, h ◦ f is continuous on Rd (f is continuous) and

h(f(x)) = 0⇔ x ∈ X∗. By continuity of all the functions involved, ∃ δ,m0,M0 > 0 such that

m0 ≤
g(h(f(x)))− g(h(f∗))

h(f(x))
=

(
(f(x)− f∗)

2
β + c

) β
γ − c

β
γ

(f(x)− f∗)
2
β

≤M0 for 0 < d(x,X∗) < δ (112)

and using the fact that f(x)− f∗ ∈ Θ
(
d(x,X∗)β

)
as d(x,X∗)→ 0

m̃0 ≤

(
(f(x)− f∗)

2
β + c

) β
γ − c

β
γ

d(x,X∗)2
≤ M̃0 for 0 < d(x,X∗) < δ (113)

i.e. g(h(f(x)))− g(h(f∗)) ∈ Θ
(
d(x,X∗)2

)
.

Similarly, ∃K,m∞,M∞ > 0 such that

m∞ ≤
g(h(f(x)))− g(h(f∗))

h(f(x))
β
γ

=

(
(f(x)− f∗)

2
β + c

) β
γ − c

β
γ

(f(x)− f∗)
2
γ

≤M∞ for d(x,X∗) > K (114)

and using the fact that f(x)− f∗ ∈ Θ (d(x,X∗)γ) as d(x,X∗)→∞

m̃∞ ≤

(
(f(x)− f∗)

2
β + c

) β
γ − c

β
γ

d(x,X∗)2
≤ M̃∞ for d(x,X∗) > K (115)

i.e. g(h(f(x)))− g(h(f∗)) ∈ Θ
(
d(x,X∗)2

)
.

In conclusion, ∃R > 0, ∃µ1, µ2, L1, L2 > 0 such that

µ1 ≤
g(h(f(x)))− g(h(f∗))

d(x,X∗)2
≤ L1 for 0 < d(x,X∗) ≤ R (116)

µ2 ≤
g(h(f(x)))− g(h(f∗))

d(x,X∗)2
≤ L2 for d(x,X∗) > R (117)

By setting µ = min{µ1, µ2} and L = max{L1, L2}, we have g ◦ h ◦ f ∈ QG−(µ) ∩QG+(L).

Logistic regression: settings and notations Logistic regression is a common ML tool that is well studied
and documented (see e.g. Bach (2013) and Bach and Moulines (2013)).

Given a distribution of data X ∼ D, and their class Y ∈ {−1, 1}, logistic regression aims at finding the maximum
likelihood of the parametrized set of distributions verifying that ln P[Y=1|X]

1−P[Y=1|X] is linear in X. We call ω the
associated coefficient.

ln
P [Y = 1|X]

1− P [Y = 1|X]
= 〈ω,X〉 (118)

Note the bias can be included in ω by adding an additional dimension to X whose coordinate would always be 1.
Eq.(118) is equivalent to

P [Y = 1|X] = σ (〈ω,X〉) (119)

with σ(x) = 1
1+e−x .

Then the likelihood of Y |X is P [Y = 1|X]
1Y=1 P [Y = −1|X]

1Y=−1 . We aim at maximizing the log-likelihood
(equivalently minimizing its opposite)

f(ω) = − E [1Y=1 lnσ (〈ω,X〉) + 1Y=−1 lnσ (−〈ω,X〉)]
= − E [lnσ (Y 〈ω,X〉)]
= − EZ∼Y X [lnσ (〈ω,Z〉)] . (120)
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The function f(ω) satisfies:

f(ω) = E [− lnσ (〈ω,Z〉)] (121)
∇f(ω) = E [−(1− σ) (〈ω,Z〉)Z] (122)

∇2f(ω) = E
[
σ(1− σ) (〈ω,Z〉)ZZ>

]
(123)

Proposition F.4. Under the following assumptions:

P [〈ω,Z〉 > 0] > 0, ∀ω 6= 0 (124)

E
[
‖Z‖22

]
<∞ (125)

the logistic regression function f is positive, smooth and (strictly) convex on Rd; automatically, as described in
Karimi et al. (2016), it is strongly convex on any compact K ⊂ Rd. Additionally, f grows linearly at infinity.

Note that the the hypothesis (125) is verified for discrete measure as in practice. The hypothesis (124) ensures
there is enough disparity in the data.

Proof. By construction, f(ω) is the expectation of a positive variable, therefore f(ω) > 0 ∀ω ∈ Rd.

Let r ∈ Rd be a unit vector (‖r‖2 = 1), then ∀ω ∈ Rd

r>∇2f(ω)r = E
[
σ(1− σ) (〈ω,Z〉) 〈Z, r〉2

]
≤ E

[
σ(1− σ) (〈ω,Z〉) ‖Z‖22

]
≤ E

[
‖Z‖22

]
<∞ (126)

thanks to (125). Therefore, ∃M > 0 such that M Id −∇2f(ω) is positive semi-definite, i.e. f is smooth.

Additionally, ∀ r ∈ Rd unit vector, ∀ω ∈ Rd

r>∇2f(ω)r = E
[
σ(1− σ) (〈ω,Z〉) 〈Z, r〉2

]
> 0 (127)

thanks to (124), i.e. f is strictly convex. Furthermore, for any K ⊂ Rd compact, f is strongly convex on K.

On the other hand, it is not strongly convex on the full space Rd and f /∈ QG−(µ) for any µ ≥ 0, as it grows
linearly in infinity: f(ω) ∈ Θ(‖ω‖2), as ‖ω‖2 → +∞.

Indeed, ∀ t ∈ R

lnσ(t) = ln
(
1 + e−t

)
∈ [max{0,−t}, ln(2) + max{0,−t}] ,

therefore, ∀ω ∈ Rd, E [max{0,−〈ω,Z〉}] ≤ f(ω) ≤ ln(2) + E [max{0,−〈ω,Z〉}].

On the one hand,

f(ω) ≤ ln(2) + E [max{0,−〈ω,Z〉}] ≤ ln(2) + E [‖ω‖2‖Z‖2]

≤ ln(2) + ‖ω‖2
√
E [‖Z‖22] ≤ ln(2) +K1‖ω‖2 (128)

for some K1 > 0, thanks to (125). On the other hand,

f(ω) ≥ E [max{0,−〈ω,Z〉}] ≥ K2‖ω‖2 (129)

where K2 = min
‖ω‖2=1

E [max{0,−〈ω,Z〉}].

It remains to prove that K2 > 0. Note that the sphere Sd−1 ∈ Rd is a compact set. Hence any continuous function
defined on the sphere reaches its minimum and it is clear that ω 7→ E [max{0,−〈ω,Z〉}] is Lipschitz continuous
hence continuous. Then we only need to show that for any ω with norm 1, we have E [max{0,−〈ω,Z〉}] > 0.

We prove the latest by contradiction. Assume ‖ω‖2 = 1 and E [max{0,−〈ω,Z〉}] = 0. Since the integrand is
non negative, and the integral is 0, the integrand has to be 0 almost surely (i.e. with probability 1). We have
P [−〈ω,Z〉 ≤ 0] = 1, or again P [−〈ω,Z〉 > 0] = 0, which contradicts (124).
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We conclude that the logistic regression is strongly convex and smooth on every compact set; therefore for any
compact set K ⊂ Rd and for any x0 ∈ K, one can fine-tune the GD algorithm starting in x0 such that it converges
linearly. However, the logistic regression is not strongly convex on the full space Rd, and global uniform tuning
of GD for linear convergence rate is not provided by classical studies of GD algorithm on strongly convex and
smooth functions.

On the other hand, f(ω) verifies all the assumptions of Proposition F.2 with β = 2 and γ = 1 and f is convex.
Therefore, we can have linear rate of convergence of GD algorithm on the function g ◦ f where g(t) = (t− f∗+ c)2,
for any c > 0. In particular, since f is positive, we choose c = f∗: then, thanks to Proposition F.2, we have linear
convergence rate of GD on the function f2(ω) ∈ QG−(µ) ∩ QG−(L) for some µ,L > 0 (see Table 1), and the
exact knowledge of f∗ is not required.

In summary, classical studies of GD with constant step size don’t allow to find an optimal global (i.e. independent
on the initialization x0) step size α so that GD algorithm (linearly) converges on f . However, from the study
above, we showed that a linear rate convergence can be achieved with an adaptive step size α̃n = αf(xn) for well
tuned α (according to the upper and lower properties of f), regardless of the initialization x0.
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