A Study of Condition Numbers for First-Order Optimization

Appendix

A Continuity

Proof of Theorem We will prove the theorem by induction. Let f € C*(R?) with a set of global minima
X*. For h € Fx«,letg=f+he€ f+ Fx-. For n =0, zo(-,.Ap, z0) = ¢ is clearly continuous (in the sense
of ||-||,) for any fixed initial point zy € R%; assume that the continuity property is verified up to some n € N:
ie. Ve > 0Vi=0,...,n, 3 = n(ei,K) > 0 such that for g € f + Fx~, if ||f — gll« < n, then Vz, € K,
||-Ti(f7 AQ’ l‘o) - xi(gv -AQ’ xO)”Q < €.

Let € > 0 and
Tnt1(f, Ag, x0) = Ag ({xi}izo...m {f (i) }i=0...ns {Vf(ffi)}izo.,.n);

Ap being a continuous FOA implies that given € > 0, there exists § > 0 such that if Vi =0,...,n

lzi(f, As, z0) — Ti(g, Ag, o)l < & (7)
If(zi(f, As,20)) — g(wi(g, A, z0)) [, <6 (8)
”Vf(xl(fa Aevxo)) - v.g(xi(g>“49’w0))”2 <9 (9>

for f € CY(RY), g € f + Fx-~, then the claim follows

lZnt1(f; Asy 20) — Tnt1(9, As, To) 2 < €.

The idea now is to quantify how "close" f and g need to be (in ||-||,-norm) in order to ensure that the above
inequalities are satisfied.

: by recurrence hypothesis (n € N is finite), given § > 0 there exists 91 = 11(d) (simply
consider = min;—1 . ,{n(d,%,K)} > 0) such that Vg € f + Fx=,||f — gll« < m, then Vo € K, ||z;(f, Ag, o) —
zi(g, Ag,xo)||l2 <6, Vi=1,...,n.

For equation :

IV f(zi(f, Ag,x0)) — Vg(xi(g, As, z0))|l2
<[V f(zi(f, Ap,z0)) — Vf(2i(g, Ao, z0))ll2 + [V f(2i(g, Ag, 70)) — Vg(xi(g, As, 0)) |2 (10)

The first term can be easily estimated: since f € C*(R?), given § > 0 there exists p = p(§) > 0 such that
Vz,y € R with ||z — y|2 < p, then |V f(z) — Vf(y)|l2 < § and || f(z) — f(y)|l2 < . In particular, for such
ap>0,3n = np,0) > 0 such that for ||f — gll« < min{n1,n2}, then ||z;(f, Ag,z0) — x:(g, Ag, xo)|l2 < p
Vi=0,...,n. Therefore,

0

IV f(zi(f, Ag,70)) — Vf(wi(g,Ag,70))2 < 3 Vi=0,...,n. (11)

Regarding the second term, we first introduce the quantity

Ry, = max {sup d(z;(f, Ag,xo),X*)}

1=0,...,n z0€EK
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x;(f, Ag,-) is a finite composition of continuous functions and is therefore continuous (in zg). This ensures that
the image of K is a compact and thus that Ry, is indeed finite.

IVf(2i(g, Ag, 0)) = Vg(xi(g, Ag, x0))ll2
_ ||Vf(’$1(g,./4971’0)) - Vg(xl(g’A97x0))
d(mi(g,Ag,mo),X*)

We want to claim that if || f — g||. is small enough (for g € f + Fx-), then R, ,, < Ry, +9: indeed, if g € f + Fx-
is such that ||f — g||« < min{n1, 72}, by recurrence hypothesis we have Vi =0,...,n

d(l’i(g,Ag,QEo),X*) - w*lgg‘(* ||xi(ga~’40710) - x*”Q
< £*12§(* {||$Z(Q,A07 CCO) - l‘l(fa A07$0)||2 + H‘,I"l(f5 AQ,.TQ) - .’I]*HQ}
= ||zi(g7./49,$0) - zi(fv A9,$0)||2 + x*lg£* xZ(f7 AQVIO) - m*“Q

= [lzi(g, Ag, z0) — zi(f, Ag, zo)2 + d (zi(f, Ag, z0), X7)

2 4 (29, Ao, 20), X*) < I = gll. Ry (12)

<0+ Rfp. (13)
Then,
1)
IV £ (@i(g, A, 20)) = Vg(i(g: Ag, w0))ll2 < If = gll(Rpn +6) < 3 (14)
as long as || — gll. < min{n, m2. s -
In conclusion, Vi =0,...,n
||vf(x’b(f7 Ag,xo)) - Vg(‘rl(g7A07x0))||2
< |V F(@i(f, Ao, o)) = Vf(wi(g, Ao, x0))ll2 + [V f(2i(g, As, 20)) — Vg(i(g, Ag, x0)) |2
6 0
< 5 + 5 =0 (15)
For equation @: similarly, we have
||f(xl(f,A97x0)) _g(mi(gaAG,xO))‘b
< | f(@i(f, A, o)) — f(zi(g, Ao, x0))ll2 + [ f (2i(g, A, 20)) — g(i(g, Ag, z0)) |2 (16)

The first term is bounded by 4/2 thanks the same argument as in . The second term is bounded in the
following way: call Z = (g, Ag, z0) and let T}, € X* the projection of Z on X*. Note that V¢ € [0, 1], we have
d(zp+t(x—x3),X*) <t |z — f;HQ since Z, € X*. It follows that

1£(z) = 9(2)| = [f(2) — 9(z) = (f* = g")]

/0 (V(f —g)(@, +t(z — ), T, —T) dt

1

0
/1 IV (f — g)(@} + t(z — 23 )HQd(fc*H(i_f*) X*) ||zt — 2|, dt
" p p/ p 2
0

< Hf—gu*d(f,x*)?/ ¢ dt
0
Rfp +6)?
5
<3 (17)
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as long as ||f — g/« < min {171,7)2, 2(Rfiz,+5)’ (Rf,f+6)2 }

In conclusion, Vi =0,...,n
I1f(xi(f, Ag,x0)) — g(xi(g, A, 20))| 2
< | f(@i(f, A, o)) — f(zi(g, Ao, x0))ll2 + || f (2i(g, As, x0)) — g(x:i(g, Ag, z0)) |2
§ 9
O

Proof of Corollary Let Nx = sup, cxc Vg, (note that N < +oo, since K is compact). We will note
g=f+hfor he Fx-.

For zg € K, we have
waO—l(faA97x0)¢B(X*7€) and LUNZO(f,Ag,‘TO)GB(X*,E)

and thanks to Theorem [£.4] there exists 77 > 0 such that for any g € f + Fx-, if || f — g||« < n then Vi < N,
Vg €K, ||zi(f, Ag, x0) — xi(g, Ag, z0)|ly < 0. Therefore,

l'NIO—l(g7A9,JZO)¢B(X*,€—5) a’nd meO(gaAGamO)EB(X*7€+5)'

O

Proof of Proposition [ is a piecewise quadratic with second derivative f”(z) = (2+ 2) for € [1,1+ €7
and f”(z) = 2 elsewhere. Therefore, the optimal p of strong convexity is 2 and the optimal L of smoothness is
242 feSC(2)NSCH(2+ 2).

Consider the gradient descent update rule with step size o =

1
2

1 0 r<1
x—if’(m): =l 1<z <1+¢€?
— x>1+4¢&2

It is easy to see that |z — § f/(z)| < e|z|, which proves the linear convergence rate of f. with tuning a = 3; in
fact, for ¢ < 1, the algorithm can converge to * = 0 in at most two steps.

Let us now assume we use the standard tuning based on strong convexity and smoothness

2 €
o= = .
pe+ L. 241

‘We then have

e+ <1
r—af(r)=q+% 1<z<l+4é?
—2 2
372€+51 x Z 1 te
which leads to
1—¢2

Ve eR, |z—af(z)]> mlwl

O

Proof of Theorem Let f a L-smooth and fi-strongly convex function with a set of minima X* C R,
Note that strong convexity implies X* = {z*}.
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Let € > 0. We define the function w. € C*(R) by w.(0) = 0 and its derivative:

0 t<1—¢g2
1—t—e? 2

NI 1-e?2<t<1
el 1<t<14¢€?
0 1+e2<t

It is easy to see that |w.()] <e, Vi € R.
Let z € R?\ {z*} and define

P(z) :== el ° c R? (19)
fe(@) = f(2) + we 0 o(x) (20)
Note that w. o ¢(x*) = 0 and
V(f — f)(@) = V (w:09) (2) = H_‘—Hw 0 d(); (21)
for z € R,
if ¢(x) <1~ then [[V(f — fo)(@)[|2 =0 (22)
i 0(a) > 1— <2, then [V(f — f)@)lla <€ < — e — ="l (23)

since ¢(x) > 1 —e? implies ||z — z*|z > 1 — 2. Therefore, f — f. € Fx- and ||f — fo||« < =% — 0 when € — 0.

762
Let L, > 0. We now want to prove that for e sufficiently small, f. is not L-smooth and not u-strong convex.
Consider

z—a*
r=2"+(1-e?)———
S FErT
.y z—zx*
y=a"+
Iz = z*||2
so that we have ¢p(z) =1 —¢%, ¢(y) =1,and y — z = szﬁ. Since f is L¢-smooth, Ve > 0 we have

fe(y) = fe(z) = (Vfe(2),y — )
= f(y) = f(z) = (Vf(2),y — 2) + we 0 ¢(y) — we 0 p(z) — (Vwe 0 p(2),y — )

Ly
< e = yll5 +w(1) — we(1 — %) — 2wl (1~ %)

Lf 2 63 Lf 1 2
= 5 It 5 =5 — 5 - ; 24
Flle—ylB -5 = (5 - 52 ) e —vli3; (24)

therefore, if we pick € such that % > Ly — p, then fc is not p-strong convex.

Similarly, consider

N z—ax*
=" 4+ ————
|z — z*[]2

_x*

="+ (1+e%)

=T

So that we have ¢(x) = 1, ¢(y) = 1 + 2, and y — x = e2 2=~ Since f is py-strong convex, Ve > 0 we have

lz=z*]l2
fey) = fel@) = (VEe(a)y — @)
— J(y) = f(@) = (Vf(),y = ) +we 0 6(y) — we 0 6(z) — (Veoe 0 $(a),y — )
> Hlle =yl + w1+ €%) — we() - (1)
53

K 2 w1 2
= 5 LT =\>5 T 52 - ; 25
L=+ 5 = (4 + 5 ) I - vl (25)
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therefore, if we pick € such that =>L—p f, then f. is not L-smooth.
Finally, for any ¢ < min{_— 0 Lf T ma, L M}} fe is not L-smooth and not u-strong convex, which concludes
the proof. O

B Proof of Theorem [5.5

Note that all lower conditions listed in the theorem are continuous without any additional constraint; on the
other hand, the upper conditions require the assumption of the objective function f to belong to QG™ (u) (for
some g > 0) in order to be continuous.

We stress that this extra condition is a mild adding, since tuning of a FOA usually requires f to satisfy both an
upper and a lower condition (and QG (p) is the weakest among the conditions we proposed). On the other hand,
this is necessary to guarantee that the set of minimizer for the original f and the perturbed f + h, h € Fx«, are
the same.

Continuity of *SC™ and *SC™: Given f € *SCY(L): f* < f(z) + (Vf(x), Ty —x)+ LHJI*IE*HQ, Ve R? (with
xy € X* the corresponding projection point onto X*). Consider g = f + h h € Fx+ with ||f gll« = k]« =

Vf(x)—Vg(x o Vh(z €
% Sup%§§,then

su

g = 1< @)+ (V)25 - )+ 5 e - 23l (26)
where g* is the value of g at each point of X*. Note that Vo € R%\ X*
(Vf(x),z, —x) = (Vf(x) = Vg(x),z; — x) + (Vg(x),z;, —x)
<|IVf(@) = Vg@)lly ||« = 23]], + (Vg(@), a5 — 2)
<N f =gl +(Vy(z), 2, — x)
+(Vy(x), 2, — x) (27)

N

IN

and
1
0=h"=w(x)+ / (Vh(z + t(z), — x)), 2, — =) dt
0

1
Sh(m)—i—/o HVh(sr:—l—t(x;—ac))H2Hx—l‘zuz dt

LIWVh(z +t(z* — o

1
)+ Wil e = o313 [ 1=t = ha) + 51 = il e = 23]
< h() + 2l — 2|3 (28)

where we used d(x + t(z) — x), X*) = (1 — 1)z — x;|2, Vt € [0,1] (indeed any point lying on the line segment
x + t(xy — x) has projection onto X* equal to x3).

Therefore, Vo € R\ X*

. ¢ . ) L §
g° < f@)+ Sl — 3l + (Vg(a), 75 —2)] + 5l — 1
€ * € * * L *
< f(@) +h(@) + 2l = 533 + Slle — 253 + (Vo). o) — 2) + 5l — 21

= gla) + (Vo). zy — z) + 2T

lz — 3113 (29)

(for x = z* € X* the inequality is trivial), i.e. g € *SC(L + ¢).
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Similarly, given f € *SC™(u): f* > f(z)+(V[f(x), 2} —x) + 4llo — 233, Vo € R Consider g = f+h, h € Fx-

. \v4 N—Va(x Vhiz €
with || = gll. = [IA]}. = sup L@ =Nollz — gup IFM@l2 <« < 1 then

g = 1" = f@) + (V@) ay — ) + e — (30)
Vo e R4\ X*
(Vf(@).; =) = (Vf(2) = Vg(a),a} — ) + (Vg(a), ) — )
>~ [|Vf(@) - Vg(@)l, |l = 3, + (Vo(a).} —
> —||f = gl [« = 235 + (Vg(a), 25 — ) (31)
z—§||x—zp|| vg( R (32)
and

0=h"=w(x) —l—/o (Vh(z + t(z), — x)), 2, — x) dt

> h(x) — /0 HVh(m + t(x; — x))H2 ||z — z;||2 dt

1 *
> h(w) ~ 5 1f ~ gll. Iz — 733
€ *
> he) - Sle - o 3 (3)

Therefore, Vo € R?\ X*, g* > g(z) + (Vg(z),2* — z) + L%z — 2*||3 and for = 2* € X* the inequality is
trivial: g € *SC(p — €).

Continuity of RSI™ and RSI': Given f € RSI"(L): V& € RY, (Vf(z),z—x}) <

with h € Fx- such that [|h|[. = sup,cra\ (x+3 Hdv(ib(;)u)z < ¢, then we have Vo € R%\ X*

Ll12 . _
oo Consider g = f+h

(Vg(x),x —xp) = (Vf(z) + Vh(z),x — 2;) = (Vf(2), 2 — 2p) + (Vh(x), v — 7))

< Lz — |2 + IVh@)]l, o — <3,
< Lo —ap|fs +ello— a3, = (L+e) |Jo - (34)

(for x = 2* € X* it is trivial and we have an equality), i.e. g € RSI+(L +e€).

?. consider g=f+h with h € Fx-«,

Similarly, if f € RSI™ (u), i.e. Vo € RY (Vf(x),z —25) > il o

Al = sup,ecpay x- Hv(h(w)*u)"’ < € < ju, then we have Vo € R\ X*

(Vg(z),x —ap) = (Vf(z) + Vh(z),x — 2;) = (Vf(2),r — 2p) + (Vh(x),r — 2))

> pu|z = ap|[s — IVA@)], ||z — =},
> pullo — aplfs — ez — ap|]; = (n— ) ||z — 2|2 (35)

(for © = 2* € X* it is trivial and we have an equality), i.e. g € RSI™ (1 — €).

Continuity of EB~ and EB": Given f € EBT(L): Vz € R%, |Vf(2)|, < Ld(z,X*) = LHJJ—x;HQ, with
x, € X* the unique projection of x on X*; this implies

IV£(=)ly
sup < L. 36
zeR4\ X* d(z, X*) (36)

Given € > 0, consider g € f + Fx-, such that ||f — g|l« < e: then,

sp WYVI@s o V@ = Vi@, o IVI@IL (37)

TERI\ X * d(.’L‘ X* ) TzERI\X* d($7X*) TERI\ X * d(aj X*)
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Additionally, since g € f + Fy+, Vg(z*) = 0 Va* € X*, therefore
IVg(@)lly < (L +e)d(z, X*),  VaeR? (38)

ie. g€ EBY(L+e).

Given f € EB™ (p): Vo € R |V f(2)|l, > pd(z, X*) = pl|z — 22 Fix € > 0 and consider g € f + F,-, such
that ||f — g|l« < € < p; in particular Vo € R4\ X*, ||V f(x) — Vg(z)||l2 < ed(z, X*). Then, Vo € R?\ X*

0<(p—ed(z,X") <[[Vf(2)[l, — ed(z, X™)
<IVF@), = IVF (@) = Vg(a)lly
<[IVF(@) = Vi(z) + Vy()ll, = [Va()ll, (39)

(for © = 2* € X* the inequality is trivial), i.e. g € EB™ (u — ¢).
Continuity of PL~ and PL*:

Let f € PL™ () and € > 0. From Figurewe have f € QG™ (u). Given g € f + Fx- such that || f — g||« < p, for
any x € R? with projection x, onto X* we have:

IVf(x) = Vg()ll2 < |If = gll«d (z, X7) (40)

additionally for ¢ € [0,1], d(zy + t(x — x}), X*) =

since z,, € X~ and

Lﬂw—gun=Lﬂm—gmw—uup—gmpn=LA<v0—gx@+wu—xp»x—wpm
sA|U—gmaﬁ+ax—@xxwm—mmﬂu

1
gnffmmmfxmgétw

Since f € QG (p) and | f — g« < g

g9(x) —g(xp) > f(x) = f* = [f(2) — g(z) = (f(z) — g(z;))]

n—= ”.];79”* d(I,X*)z > 0 (42)

Thus g admits a minimum value ¢* which is attained at any z* € X*. Therefore, V2 € R?

Y

d(z, X*)2. (43)

Since f € PL™ (u), we have

IVg()lz = Vg(z) = Vf(x )||2+||Vf(93)|\2+2<V9( ) = Vf( ) f(x)>
>0+ 2p(f(x) = f*) = 2IVg(x) = VI (2)llav/2u(f
> 2p(g(x) = g%) = 2ulf(x) = g(z) - ( —9)l
—2||f = gl d(z, X*)V/2u(g(x) — g* + |f(x) — g(2) — (f* = g*)]) (44)
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The second term can be easily bounded by and the third term can be bounded as follows
V() = g* +1f(x) = g(x) = (f* = 9] < V(9(@) = g*) + Vf (@) — g(x) = (f* — g")]
< Va@=7)+ U do, xop

<Vlg@) —g) + ¢ M=l o0y~ gy

w=I1f =gl

O ETE —

where we applied again and . Finally we get:

oy alf =gl . 2 TErTER P
'Vg(x)””?[“ e T e T (” u—llf—gl*ﬂ(g() 7
>2(n—€)(g(z) — g%) (46)

provided that ||f — g/« is small enough. Indeed, the quantity

=gl ey 2 ([l ) B 0
R TR u—llf—g||*< * M—||f—9||*>_>’ as 1f ~ gll. 0.

therefore Ve > 0, 3§ > 0 such that for ||f — g||« < J, we have

ulf —gll B 2 1 lf =gl | -
i nr—gl TV g|*\/u||fgll*< +\/u|fg||*> =

In conclusion, g € PL™ (i — ¢€).

Let us now consider f € PLT(L)NQG™ (i), and g € f + Fx- such that ||f — g||« < p.
IVg(@)l3 = [Va(@) = VI@)Il; + V()3 + 2(Vg(x) - Vf(2), V() (47)
The second term can be estimated thanks to and (43):
IV f(@)l3 < 2L(f(z) — g(x) — (f* — g%)) + 2L(g(x) — g")

IS — gll+ 2) — a*)-
<2L(u—||f—g|*+1> o) =97 1)

and similarly the third term:

(Vy(z) =V [(2),VI(z)) < |[Vy(z) = V(@) V()]

<||f —g|*d(x,X*)\/2L (||f—g||* + 1) (g(x) — g*)

w=I1f = gll«
. iL 1 —olL o
<lif 9'*\/u i G e+ e =) #9)
This finally leads to:
IVg(@)ll5 < 2(L+ K)(g(z) — g*) <2(L+€e)(9(x) — g°) (50)

where

)

=gl LIf =gl i ( ol >
K = — g||« 1
sy ey e R \/u—IIf—gll* =T =gl ©
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provided that || f — g||« is small enough. Following a similar argument as before, we can easily see that K > 0
and K — 0 as ||f — g|l« — 0, therefore Ve > 0, 3§ > 0 such that if ||f — g||« < J, then K < e. Therefore,
g € PLT(L +¢).

Continuity of QG~ and QG™:

Given f € QGY(L): f(z) — f* < L£d(z,X*)?, Vo € R% Consider g = f + h, h € Fx- with [|h]|, =

va(m()xw = sup M < ¢, then Yz € R?, with x, € X* the corresponding projection on X*,

9(@) —g" = f(x) + h(z) = (f* + h") = f(x) = " + h(z) - b*

L * ! * * *

< §d(x,X )2_|_/0 (Vh(z) +t(x —xp)), v — x,)dt
1

< 2—|—/0 HVh(x;—&—t(x—;v;)){EHx—x;Hgdt
=20 o llzk +t(:cfz) X*|| P ? pliz

L 1
< e, X7+ bl o~ a3 [ e

0

L

< T, x7)? (51)

where we used |z +t(z — x;) — X*|l2 < t]|lz — xpl|2, VE € [0,1]; as before, for = 2* € X* the inequality is
trivial. Therefore, g € QGT (L + e).

The proof that g € QG™ (u —€) if f € QG™ (p) for g € f + Fx=, ||f — gll« < € < p, follows the same argument.

C Graph of lower assumptions

SC™(p) = *SC™(p): Immediate by taking y = x}, (the projection of z € R? onto X*) in the definition of strong
convexity.

*SC™ (1) = PL™(n):  Assume f € *SC™(n): f* > f () + (Vf(x),a} — z) + 4 ||a} — «;, Yo € R% Hence,

1 1 1
ff=r@= =y IV f()ll5 + o IV £ (@) +p (2 — )| = “ IV f(@)ll3 (52)
ie. ||Vf(:c)Hg > 2u(f — f*). Therefore, f € PL™ (u).

PL™(u) = QG™ (p): The claim was originally proven in Karimi et al. (2016), following some arguments from
Bolte et al.| (2017) and |Zhang| (2017) and we will report it here for the sake of completeness.

Cousider the gradient flow of g(x) = /f(z) — f*: 2/(t) = —Vg(z(t)). Note the f € PL™(u) implies that
[Vg(z)||3 > & > 0 Va € RY in particular, despite the fact that g attains its minimum on the set X*, Vg may
not be deﬁned on X* and the gradient flow equation ceases to be defined once X* is reached. We then study the
path of a gradient flow of g until it hits X*: Vzq € R?, VT > 0 for which the flow is defined,

T T
a(z0) > g(xo) — gler) = - / (Va(a(t)), ' (£)) dt = / Vg2 dt

T
[ 1
> —dt = =T 53

where the first inequality follows from the fact that g is non-negative and the second inequality follows from the
PL™ (u) property. This proves the existence of T* = T*(xz() such that zp« € X*.
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Therefore, ¥V zy € R?

9(z0) =g(x0) — glar-) = / Vg2 at

2@ / " Ve, at = @ / U o,
2\/5 /OT 2/ (t)dt 2 = \/gﬂxo—xT*
>\ Btro, X (54)

2

and, by squaring on both sides,

ie. feQG (n).

*SC™ (1) and QG™ (u2) — RSI™ (£23£2): For f € *SC™ (1) N QG™ (u2), we have

(Vi@)a—ap) 2 f@) = £+ 5 oy = al; 2 2522 oy — o (56)

ie. f e RSI™ (%) Note that this holds also for non positive p;. In particular, if f € QG™ (u) and f is
*-convex (u1 = 0), then f € RSI™(§).

*SC™ () = RSI™ (u):  This follows directly from the three previous results. Indeed, *SC™(x) C PL™ (u) C
QG™ (p) and *SC™ (1) N QG™ (p) € RSI™ (u).

RSI™ (1) = QG™(p): For every z € R? consider the line segment x(t) = z% + t(x — x3), t € [0,1], with z € X*
the projection of x onto X*. It is clear that V¢ € [0, 1] the projection of z(t) onto X* is still z;;. Since f € RSI™ (u),
Vo cRe

(Vf(zy+tx =)t —zp)) > pllte —zp)]3 = wt?||(z — zp)|3, (57)
therefore
1 1
flz)—f= /0 (Vf(x, +t(x —zp)), v —x,)dt > /0 ut Hx - m;| ; dt = g |z — T, ; , (58)
implying that f € QG™ (p).
RSI™ (u) — EB™ (u): It follows from Cauchy-Schwartz inequality.
PL™ (1) N QG™ (u2) — EB™ (ipz):  Assume f € PL™ (1) N QG™ (p2):
1 * *
SIS = i () 1) 2 P22 e a3 (59)
Le. [Vf(z)ll2 > ppzllr — 2yl
Hence, f € EB™ (y/fi1fiz). Note that PL™ (1) € QG (u), therefore PL™ (1) € EB™ (n) (set pq = pg = p).
EB™(u) NQGT(L) — PL™(u?/L): Given f € EB™(u) N QGT(L), Vo € R?
2 2 * (12 2”’2 *
IVf@)lz =2 pille —aplly > — (f (=) — f7) (60)

L
ie. fePL™(u2/L).
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D Graph of upper assumptions

SC*(L) — PLT(L): Assume f € SC*(L), hence Vx,y € R?

F) < F @)+ (T @)y — ) + 2y~ al

=f(x)—%llvf( )||2+ = IVF(@) + Ly - o)l (61)
In particular, ¥,y € RY
f*éf(y)éf(x)—illvf( )||2+ 7 IVF@) + Ly - o)l (62)
and by choosing y = = — Y1) we have
fr="f) < fi IVf@)ll, e % IVf@)l3 < L(f(x) = f7) (63)

Hence, f € PL*(L).

PL*(L) — *SCT(L): Assume f € PL"(L), hence

1
I = @) < = 57 IVF@)I

< =57 V@I + 57 V4@ + L (= o)l
£ < @)+ (V@) - x> +7] (64)

Hence, f € *SCT(L).

PLY(L) — QGT(L): Assume f € PLT(L) and consider the function g(x) = \/f(z) — f*: since f € PLT(L), we

have ||[Vg(z)|3 < £, Vo € RY. Then,

o) =g(z) — g(a) = / (Valas + e — 25)),a — o) dt
/ IVt + @ - ap), 1@ — a3, dt

. L .
<0¢2w—%mw<¢2w—%m 5

Therefore, by squaring on both sides,
* L * (12
f@) =7 < Sllz =zl (66)

Note: this result is not explicit in the graph as it can be recover by following the existing edges. However we
needed to prove it here for the following result.

PL"(L) — EB"(L): Assume f € PLT(L;) N QG (Ly), then

IVf(@)]3 < 2L1(f(2) = f*) < LiLalz — 2|13, (67)

hence f € EBT(v/L1Ls). In particular, from the previous result we have that if f € PL(L), then f € QGT (L),
hence f € EBT(L) (take Ly = Ly = L).



Guille-Escuret, Goujaud, Girotti, Mitliagkas

EB*(L) — RSI*(L): Given f € EBT(L),

(V@) 2 —ap) < [[VF(@)ll2 - [lz — 2pll2 < Lllw — 253, (68)
therefore f € RSIT(L).
*SC*(L) = QG*(L): For each z € RY, with x}; € X* its projection onto X*, define

Lit(z — )12 = (f(z* r—2xr))— f*
g(t): 2||t( p)||2 (f(tp+t( p)) f )’ te (0,_’_00)

We verify that

Ltz — 2 - x’ r—x)),r—x’ z* rx—x))— f*
gty - e el Oty e oo (e i) ) Ly

since f € *SCT(L). Therefore, g is monotonically increasing on (0, +occ). Additionally, g can be continuously
extended in ¢ = 0 by I’'Hopital’s rule:

: 1 k12 * ok L G
Jim g(t) = Jim Lt (@~ 25) 8 — (VS (z) + ta — 7)), — ) = 0.

Therefore, .
9(1) = S llw = a3llz = (F(z) = ) 2 9(0) = 0

ie. f(z) = f* < glle — 2|3 £ € QGT(L).

*SCT(L) = RSIT(L): Let f € *SCT (L) NQGT(Ly):

2 L1+ L "
2S 12 2“1‘—.%'p|

(Vi) —a3) <)~ f* + 2 o~y (70)

therefore f € RSIT(£14£2). In particular, since *SC* (L) C QG™ (L), then *SC™ (L) C RSIT(L).

RSIT(L) — *SC*(2L): For f € RSIT(L), we have

(Vf(@),e—al) <Lz —as|s < fle)— f* + Lz — 3|

(71)
ie. fe *SCt(2L).

RSIT(L) — QGT(L): For every z € R? consider the line segment z(t) = zy +t(z — ), t € [0,1]; recall that
Vt € [0,1] the projection of x(t) onto X* is still x;. Since f € RSIt(L), Vo € R?

(Vf(zp +t(x —ap)), t(x — ap)) < Lt — ap)|3 = Lt*||lz — 2513, (72)

Therefore, f € QGT(L):

1 1
L
flz)—f*= /0 (VI(@@" +t(x —zp)),r —x,)dt < /0 Lt Hm -z, 2 dt = 5 Hx - x;| 3 (73)
SC~(u) and QG*(L) — EB* (L +VI(L - u))= Assume f € SC™ (1) N QG* (L), with u < L, and y can be

non positive (we recall that f € SC™(0) is convex). The case y > L is trivial as it implies f(z) — f* = Lz — z||?
Vz e RY.

We have by definition: Vz,y € R¢

* M 5C~ *QG+L * |2 L *
f@) =+ (V@ -a+ Sy =ol} < fw -1 < Slv-uli <5 lv-

2.
27

(74)
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in particular,

L
f@) =+ (V@ y—a) + Sy ==l < 5 v -3 (75)

Lzy—pz+V f(x)

= we have

and by choosing y =
Lyl = 23 ||; + IV F@)II3 + 2L(V (@), 25 — 2) < 2(L = ) - (f* = f(x)) (76)

The RHS is non positive, then by removing it and factoring the LHS

IV (@) + Lz} — 2)|[; < LL = ) ||o — 255 (77)

finally, by triangle inequality,
IV f@)lly = Loy = l|, < VL = ) |l = a5, (78)
IV @y < (L+VIT =) ||z -z, (79)

Hence, f € EBT (L + v/ L(L— u)) Note that for u = 0 (i.e. f is convex), we have QGT (L) — EB™(2L).

SC™(u) and *SCT(L) = EB™ (L + 2max{—pu,0}): Assume f € SC~(u) N *SCT(L). In particular f €
QG (L), then all the previous results still hold. From we have

S+ V@) +2L(V f (), 2} — ) < 2L —p) - (f* — f(x))

<AL ) [(Vhhy = a) 4 5 ol (50)

Lo

thanks to f € *SCT(L), i.e.

IV £ @13+ 20(V f (@), 2 — ) < L(L—2p) [Ja = |5 -

After rearranging the terms, we obtain ||V f(z) + p(y — x)”i < (L—p)? |z — x;H; and by triangle inequality

IV f(@)lly — |l |2 — 2|, < (L — ) ||Jo — )], (81)

ie.
IV f(@)lly < (L + 2max{—p,0}) ||z -z}, .

Finally f € EB' (L + 2max{—,0}). In particular, under convex assumption (u = 0), *SC*(L) — EB'(L).

QG (u) and EBT(L) — PL* (%) Let f € QG (1) NEB(L), we have:

2 1 5,2 L?
x = —

<51 AUCEIS! (52)

1 2 1 2 *
SIVI@IE < 527 e -

therefore, f € PL* (%2)

E Rates of convergence

Under SC™(u) and SCT(L) This is a known result and we refer to the proof in Section 3.4.2 in Bubeck! (2015).
Let’s assume f € SC™ () NSCT (L) with L > p (the other case is trivial): Vx,y, 2 € R?

SC™ (p) scH(r)
L e 1O B { O NI o { ORI N I - S )
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ie. Va,y,z € R?

L Iz
) = f@) + (VIE),2 = 2) = (VI@),e —y) + 5 o= 2l5 = 5 eyl > 0. (84)
By minimizing the left hand side of the above expression with respect to the variable z, we find that for

oo L2y +Viy) — Vi(z)
- Lo

the inequality becomes

fw) = f(2) < L%M (=~ WV () ~ IV F) ~ 5 IV )~ VIS~ 2y - 2} (86)

Vy,z € R By swapping the roles of y and z, summing, and rearranging terms, we obtain the well-known
inequality (see, e.g. Nesterov (2004)): Yy, z € R?

(= 9.V1C) = 1w > = (IV10) = VI + Ly — =I°). (87)

Note that f € SC™(u) implies that X* = {z*}. In conclusion,

|01 —2*|f3 = |lzn — 2" — aV f(za)l3

|20 — 2* |12 = 20(V f(20), Tn — 2*) + 2 ||V f () I3

2aLp )12 2 2
< (1= 2 oy -+ (0 ) 197l

_ 2
for a = T

Under PL™ () and SCT(L) Let’s assume f € PL™ () NSCT(L). Then,

Foner) = 1" < flon) = 1 —a (1= 50} 19118

(1-%) (@ - 1)
= (1-2) (@ - 1) (9)

IA
=
8
g
\
~

*
\
N
=
Q

for o = %
Under *SC™ (u) and PLT(L) Assume f € *SC™ (u) NPLT(L). ¥ n €N, let z;, , be the projection of z,, on
X*. Then,

A(@ns1, X*)? < ||znsr — 2b )5 = on — b |ls — 20w — a5, V() + a2 |V f(a)l3
< Jlow =@l = 20 (F@a) = £+ 5 flan = 23, [3)
+20%L (f(x,) — [7)
= (1 ) |Jzn — |2 — 2a(1 — La)(f(2n) — ) (90)
1 *
= (1—/{) d(xn, X )2 fora:%.

Note this proof is quite similar to the proof of Theorem 3.1 in |Gower et al. (2019) applied directly to the
deterministic case.

Next, we show a similar proof that follows the same idea but doesn’t require *SC™ ().
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Under *SC™(0), RSI” (u) and PLT(L) Assume f € *SC~(0) NRSI™ () NPL*(L). From star convexity, we
have (Vf(z),z—z,) > f(x) — f*, and from restricted secant inequality (V f(z),z —z,) > pljx —xp||*>. Combining
the two, we obtain

(Vi) —ap) > 3 (F(@) = 1)+ Bl =, .

2

With similar argument as above, denote 7, , the projection of z,, on X*, Vn € N. Then,

s X < s — = [ — 2 = 2000 — 25, Vo) + 02 [V
1
< flow =i = 20 (3 7w = 74 & oo = 22, )

+20°L (f(2n) — f*)
(1 — pa) ||z, — 25| — a(l — 2La)(f(z,) — )]

_ (1 _ 21“) d(n, X*)? (91)

_ 1
for a = 5.

Under RSI™ (1) and EB'(L) Assume f € RSI™(u) NEB(L), and for some n € N, z;, denotes the projection
of x,, on X*. Then

0 — 23| — 20(20 — @5,V f(20)) + o2 |V (2a) 13

2 — 3 |1* = 2001l — 23|, + @222l — 23

(@1, X*)? < ||20s —

IN

= (1-2pa+ L*®) ||z, — ), |§ (92)
1
= (1 — ,%2) d(gjn,X*)2 for o = £5.

Under SC™ (y) and QGT(L) Assume f € SC™(u) N QGT (L) with some L > p > 0. Note that this implies
that f has a unique minimum z*.

Define g(z) = 1|z —2*|3— £ (f(z) — f*); then, g € C*(RY) and g(z) > 0 = g*, since f € QGT (L), with g(z*) = 0.
Let X™ be the set of all minima of g, including the f minimizer z*.
g €SC* (1— 1) with k = £: indeed, Vz,y € R?
9(y) —g(x) = (Vg(z),y — )
= 2ly =2l — T() ~ )~ Sla— B+ £ @)~ 1)~ (o~ 2) = 7V F(z)y — )
=gly ="l = 2 (fy sllz ="l + 7 (f(z r—a") = 7Vf(z)y -

H 1 * * *
—oplle=vls+ 5 (ly =27l =l = 275 = 2(2 — 2%,y — 7))

4 1 . . X
——lz—yl3+ 5 (ly — 2*3 + llz — 2*|3 — 2(z — 2*,y — z))
2L 2

= (15 Jo -l (93)

2
since f € SC™ (). This implies g € EBT (1 — %)
o 1 1 * 1 .
IVg(@)llz = ||(z —2%) = 7V f(z))| < (1-—)dz,X")<{1-—)]z—a"|
5 K K
Therefore, in the GD algorithm with step size o = %, we get

1

[Zny1 — 2%z = |20 — 2" — va(fn)

1
< (1 - ) n — s (04)
9 K

Hence the linear rate (1 — %)2
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Rates of convergence for any pair of upper and lower condition. We collected all the above results in
Table [2| For any pair of upper and lower condition f € C*(L) NC~(u), we define xk = % We will justify here all
the enfries.

The rates in the first column (f € SC™ (1)) follows from the fact that if f € SC*(L), we recover the classical
convergence rate for L-smooth and p-strongly convex functions, while for any other upper condition C* (L), we
use the fact that C*(L) C QGT(L) and we have convergence rate of (1 — 1)2.

In the first row (f € SC*(L)), the rate of convergence 1 — L holds for f € PL™(u) (as proven) and f € *SC™ ()
(since *SC™ (1) C PL™ (p1)); the rate of convergence 1— % instead holds for f € EB™ (u) (since EB™ (1)NSC™ (L) C

PL_(”—;)) and consequently also for f € RSI™ () (since RSI™ (u) C EB™ (p)).

We proved that for f € RSI” (1) N EBT(L) the GD algorithm converges with rate 1 — ; the same rate of
convergence is also valid for f € *SC™(u) C RSI™ () and/or f € PLT(L) c EBT(L). This justifies entries (2,4),
(3,2) and (3,4) in Table 2]

For entry (2,2), we proved a convergence rate of 1 — L under assumption f € *SC™ () N PL*(L). We also
completed the entry (2,4) under star convexity. Since SCT (L) C PL*(L), this rate also holds in (1,4).

Similarly, under the additional assumption of star convexity, we have that f € QG™ (1) N *SC(0) C RSI™ (%),
therefore if f € QG™ (1)N *SC(0)NEB™ (L), GD converges with linear rate 1 — ;1. Following the same argument,
for f € QG () N *SC(0) and upper conditions f € PL*(L) or f € SC*(L), GD converges with linear rate
2
1— L. Entries (2,3), (2,5), (3,3) and (3,5) follows from PL™ (1) C QG (u) and EB™ (1) N QG™ (L) C PL™ (&),

If we assume f to be convex, the rates of convergence on the fourth line (f € *SCT (L)) follow from the fact that
*SCT(L)NSC™(0) € EB1(L). The rates on the last line (f € QG1(L)) follow from QG (L)NSC~(0) € EBT(2L);
similarly on the fifth line (RSIT(L) ¢ QG (L)).

Table 2: Linear rates for the GD algorithm for each pair of conditions, as function of x = % Rates marked with
* hold under the additional assumption of star-convexity, while rates marked with T hold under the additional
assumption of convexity. Rates are colored in green if corresponding to a continuous pair of conditions and red

otherwise.

Rates of cv \ SC™(u) | *SC™(u) | PL™(w) RSI™ () EB™ (u) QG ()
2
serw) | () | 1ok | or-d e aogt) 1ok 1o
PLAp) ) [ -y [ gt Jiog gt gyt g
EBY(L) | (=) | 1=z |1-gs" — [l il I B v
GO (A T 0 I S B S e
RSﬁ(L) (1 _ %)2 1- 43;2 fl1- lﬁlh‘.z ' 1- 43;2 ' 1- 16154 fli- 1()% '
QG™(L) (1*%) 1*4:;2T 1*ﬁT 1*4;2T 1716154T 1*ﬁT

As a last remark, we show that the additional assumption of f being convex (or star convex) is fundamental in
some cases in order to obtain convergence of the GD algorithm. We will show here that the sole pair of conditions
SCT(L) N QG™ (i) doesn’t guarantee convergence of gradient descent.

Let €, > 0. Consider the following function f € C*(R):

%x2 <1
1,..2 1+¢ 1+¢
—5-xf 4+ = — 5= 1<z<1l+e
flz) =14 % ‘ % N (95)

5 l+e<ae<l4+e+n
2 (t+et+m? | 14e
¥ —(l+e+nz+—F5"=+3° l+e+tn<w

N[

By inspecting its second derivative (where defined) we can conclude that f € SC*(1)nSC~ (f%)

A . . . — 2 . T
Furthermore, %(f) reaches its minimum at z = (1+8117’E)+:1+8, with 2];(;6) = (1+E_~_1$§+1+E > 0, therefore
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— 1+
7€ Q6™ (i)
On the other hand, f'(z) =0 on [1 +¢,1+ ¢+ 7], therefore if one of the iterates z; of the GD algorithm falls into
this interval, then z € [1 +¢,1+ ¢+ n] Vk > j and the algorithm fails to converge.

In the following, we will see sublinear convergence analysis under only upper conditions.
Under *SC™(0) and SCT(L) This proof is a very classical one (Bansal and Gupta, 2017), and it is based on

studying the monotonic properties of the Lyapunov function V,, = n (f(z,) — f*) + 5= d(zn, X*)?. Vn € N, let
zy, , be the projection of x, onto X*.

* 1 *
Vn+1 = (n + 1) (f(xn+l) - f ) + %”xn—i-l - xn,p||2

sctH(L)

<y () - 1o (Fe2 - a ) ISl

1 . .
o (llon = 512 = 2(V flwn), 20 = 25,) + 0 [V F (20)])

2a
=Vt (o) = £+ (040 (F02 = a) 4 5 ) IVF @I = (T, - 3,
"SC(0) L
<"k (0 (Fer-a) + ) IVS@IP
<V, for a = %
Therefore, V,, is decreasing and in particular
* L *\2
A(f(en) = 7)< Vo < Vo < (20, X7) (96)
Leading to the desired rate
* L *\2
flen) = £ < (o, X°) (o7)
n
Under *SC™(0) and PLT(L) Vn €N, let z;, , be the projection of x,, onto X*.
d(@ni1, X < Nwnin = a5 |7 = ll2n — a5, |17 = 20(Vf (@n), 20 — 7, ) + 02 |V f (@)
< ey — @5, |17 = 2a(f(zn) = f5) + a® x 2L(f(a) — ) (98)
therefore,
2a(1 — La)(f(zn) = ) < d(2n, X*)? = d(zp41, X7)%. (99)
By summing the inequality above for k = 0,...,n, we have
= * *\2 *\ 2 *\2
2a(1 = La) 3 (f(xx) = £) < d(@o, X*)? = (w1, X*)? < d(zo, X*) (100)
k=0
and taking a = i,
1< 2L
)< d(zo, X*)? 101
1 2 () = ) < Zpd(a, X7) (101)
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we can conclude

2L

i - < d(zo, X*)? 102

(i (flew) = ) < 2md(wo, X7) (102)
If additionally f € SC™(0) (convex), we have the stronger result
1 & 2L

— [ < —d(z, X*)% 103

f(nﬂkz_%xk) fr < gl X) (103)

F Adaptive step size and application to logistic regression

Let f € C'(R?) be a function to optimize, and let g € C* ([f*, +00)) be an increasing function. It is easy to see
that finding the minimum of g o f is equivalent to finding the minimum of f, and a GD algorithm with constant
step size on g o f leads to a GD algorithm on f with adaptive step size:

Tpt1 =Tp —aV(go f)(zn) & Ty =20 —ag (f(z)) V(@) (104)

We briefly recall here the definition of the © notation, because it will be occasionally used in the following
proposition and proof in order to preserve their readability.

Definition F.1 (© notation). Given two functions f,g € C°(R), g > 0, we say that
f(z) € ©(g9(x)) as & — xo
if 36, m, M > 0 such that Vz with 0 < |z — o] < ¢:
mg(x) < |f(z)] < M g(x). (105)

Similarly, we say that
f(z) € ©(g9(x)) as T — 400

if 3K, m, M > 0 such that Vx > K:
mg(x) < |f(z)] < M g(x). (106)
Proposition F.2. Given f € C! (Rd) assume that

f(x) = fr €0 (dxX")?) as d(z, X*) = 0, (107)
fz )—f € O (d(z, X*)7) as d(z, X*) — oo, (108)
for some B,y € (0,00). Consider the functions
g:(fcv+oo)4)R+ h[fﬂ#’OO)‘)R.;.U{O}

o (ute)? tes (t— )3 (109)

where ¢ > 0 is an arbitrary positive constant. Then, goho f € QG™ (1) N QGT (L) for some pu, L > 0.

In the case g o f is convex, we obtain a linear rate convergence from Table 1. This is easily satisfied when f is
convex and 3,7 € (0,2].

Remark F.3. This property leads to an adaptive step size &, = ag’(f(x,)) for the adaptive GD algorithm
which requires the knowledge of the precise value of f*. However, in the particular case where § = 2 and f* > 0,
we can take ¢ = f* and obtain a step size &, = a= f(acn)f_1

Proof. g € C*((—¢,+o0))) and g(u) > 0 on its domain. It is easy to see that

g(u) — 5 ed (u) asu—0 (110)
g(u) — v eo (ug) as u — 400 (111)
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Consider the function h(f(z)) = (f(z) — f*)%: clearly, h o f is continuous on R? (f is continuous) and
h(f(z)) =0« z € X*. By continuity of all the functions involved, 34, mq, My > 0 such that

B

o(h(f@) — gth(s)) _ (@ =03 +e)” - or :
oS h(f(x)) - (f(z) — f)? <M, for0<d(z,X*)<$ (112)

and using the fact that f(z) — f* € © (d(z, X*)?) as d(z, X*

v

Y

—0

~—

2@

(F@) - )F+e) =7
( d(x,X*)2> < M, for 0 < d(z,X™) < ¢ (113)

ie. g(h(f(x))) = g(h(f*)) € © (d(z, X*)?).
Similarly, 3 K, mso, Moo > 0 such that

mg <

REEA I
ey < U @) —ghl1) (F@ - 1% + ) T M. fordwX)>K (114
h(f(x))~ (f(z) = f*)~
and using the fact that f(z) — f* € © (d(z, X*)") as d(z, X*) — o
(@ =) = *
Moo < Az X2 < My for d(z, X*) > K (115)
ie. g(h(f(2))) — g(h(f*)) € © (d(z, X*)?).
In conclusion, 3R > 0, 3y, po, Ly, Lo > 0 such that
1= g(h(f(j()sz));*g)gh(f*)) <L for 0 <d(z,X*)<R (116)
p2 < g(h(f(;(?xfigh(f*)) <Ly ford(z,X*)>R (117)
By setting p = min{u, u2} and L = max{Ly, Ly}, we have goho f € QG™ () N QGT(L). O

Logistic regression: settings and notations Logistic regression is a common ML tool that is well studied
and documented (see e.g. [Bach| (2013) and Bach and Moulines (2013))).

Given a distribution of data X ~ D, and their class Y € {—1, 1}, logistic regression aims at finding the maximum

likelihood of the parametrized set of distributions verifying that In % is linear in X. We call w the

associated coefficient.

PlY =1]X]
lnm = (w, X) (118)

Note the bias can be included in w by adding an additional dimension to X whose coordinate would always be 1.

Eq.(118) is equivalent to

P[Y =1|X] = o ({w, X)) (119)

with o(z) = H%

Then the likelihood of Y|X is P[Y = 1|X]""='P[Y = —1|X]"Y="". We aim at maximizing the log-likelihood
(equivalently minimizing its opposite)
flw)= —Ely—1Ino ({(w, X)) + 1y—_1Ino (—{w, X))]
= —E[no (Y (w, X))]
= —Ezoyx[Ino({w, 2))]. (120)
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The function f(w) satisfies:

fw)=E[-Ino ((w,2))] (121)
Vfw) =E[-(1-0)((w,2)) Z] (122)
V2f(w) = E[o(1 - 0) ((«. 2)) 227] (123)
Proposition F.4. Under the following assumptions:
P[(w,Z) > 0] >0, Yw#0 (124)
E[IIZ3] < o0 (125)

the logistic regression function f is positive, smooth and (strictly) convexr on RY; automatically, as described in
Karimi et al.| (2016), it is strongly convex on any compact K C R?. Additionally, f grows linearly at infinity.

Note that the the hypothesis (125) is verified for discrete measure as in practice. The hypothesis (124) ensures
there is enough disparity in the data.

Proof. By construction, f(w) is the expectation of a positive variable, therefore f(w) >0 Vw € R%.

Let r € R? be a unit vector (||r|2 = 1), then Vw € R?

TR fw)r = B [o(1 - 0) (v, 2)) (Z,1)?] <E (1 - 0) (w, 2)) | Z1]3)
<E[l1Z]3] < o0 (126)
thanks to . Therefore, 3M > 0 such that M I; — V2 f(w) is positive semi-definite, i.e. f is smooth.
Additionally, V7 € R? unit vector, Vw € R?
r'V2f(w)r =E[o(l —0) ((w, Z)) (Z,7)*] >0 (127)
thanks to , i.e. f is strictly convex. Furthermore, for any K C R? compact, f is strongly convex on K.

On the other hand, it is not strongly convex on the full space R? and f ¢ QG (u) for any u > 0, as it grows
linearly in infinity: f(w) € O(|jwl|,), as |lw|l2 = +o0.

Indeed, Vt € R
Ino(t) =In (14 e ") € [max{0, —t}, In(2) + max{0, —t}],
therefore, Vw € R, E [max{0, —(w, Z)}] < f(w) < 1n(2) + E [max{0, —(w, Z)}].
On the one hand,
f(w) < In(2) + E [max{0, —(w, Z)}] <In(2) + E[[|w][2[|Z]l2]
<In(2) + wll2/E [ Z]|5] < In(2) + Ki[wll2 (128)
for some K; > 0, thanks to (125). On the other hand,
f(w) = E [max{0, —(w, Z2)}] = Ka[lw|2 (129)

where Ky = Hnﬁin E [max{0, —{w, Z)}].

w 2:1
It remains to prove that K5 > 0. Note that the sphere S%~1 € R? is a compact set. Hence any continuous function
defined on the sphere reaches its minimum and it is clear that w — E [max{0, —(w, Z)}] is Lipschitz continuous
hence continuous. Then we only need to show that for any w with norm 1, we have E [max{0, —(w, Z)}] > 0.

We prove the latest by contradiction. Assume ||w|l2 = 1 and E [max{0, —(w, Z)}] = 0. Since the integrand is
non negative, and the integral is 0, the integrand has to be 0 almost surely (i.e. with probability 1). We have
P[—(w, Z) < 0] =1, or again P[—{(w, Z) > 0] = 0, which contradicts (124]).

O
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We conclude that the logistic regression is strongly convex and smooth on every compact set; therefore for any
compact set I C R? and for any x¢ € K, one can fine-tune the GD algorithm starting in x such that it converges
linearly. However, the logistic regression is not strongly convex on the full space R¢, and global uniform tuning
of GD for linear convergence rate is not provided by classical studies of GD algorithm on strongly convex and
smooth functions.

On the other hand, f(w) verifies all the assumptions of Proposition with 6 =2 and v =1 and f is convex.
Therefore, we can have linear rate of convergence of GD algorithm on the function go f where g(t) = (t — f* +¢)?,
for any ¢ > 0. In particular, since f is positive, we choose ¢ = f*: then, thanks to Proposition [F.2] we have linear
convergence rate of GD on the function f2(w) € QG™(u) N QG™ (L) for some u, L > 0 (see Table , and the
exact knowledge of f* is not required.

In summary, classical studies of GD with constant step size don’t allow to find an optimal global (i.e. independent
on the initialization x() step size a so that GD algorithm (linearly) converges on f. However, from the study
above, we showed that a linear rate convergence can be achieved with an adaptive step size &, = af(x,,) for well
tuned « (according to the upper and lower properties of f), regardless of the initialization xg.
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