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Abstract

The study of first-order optimization al-
gorithms (FOA) typically starts with as-
sumptions on the objective functions, most
commonly smoothness and strong convexity.
These metrics are used to tune the hyperpa-
rameters of FOA. We introduce a class of per-
turbations quantified via a new norm, called
*-norm. We show that adding a small per-
turbation to the objective function has an
equivalently small impact on the behavior of
any FOA, which suggests that it should have
a minor impact on the tuning of the algo-
rithm. However, we show that smoothness
and strong convexity can be heavily impacted
by arbitrarily small perturbations, leading to
excessively conservative tunings and conver-
gence issues. In view of these observations, we
propose a notion of continuity of the metrics,
which is essential for a robust tuning strategy.
Since smoothness and strong convexity are
not continuous, we propose a comprehensive
study of existing alternative metrics which
we prove to be continuous. We describe their
mutual relations and provide their guaranteed
convergence rates for the Gradient Descent al-
gorithm accordingly tuned. Finally we discuss
how our work impacts the theoretical under-
standing of FOA and their performances.

1 Introduction

Optimization of a high-dimensional cost function is at
the core of fitting most machine learning models. In
practice this is almost always performed by gradient-
based first-order optimization algorithms (FOA). The
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analysis of their convergence properties typically as-
sumes that their hyper-parameters are tuned based on
some function properties; for example it is well-known
that if f is p-strongly convex and L-smooth, then gra-

dient descent (GD) with step size a = #J%L achieves a
L
“w
called the condition number (see e.g. Nesterov| (2004))).
The condition number gives an indication of the tight-
ness of the bounds on the curvature of f, and therefore
of the difficulty to optimize it: the bigger the value of

k is, the slowest is the convergence of the algorithm.

global linear convergence rate of 1 — —2— where k = £ is
k41

In [Lessard et al.| (2016, the authors introduce a piece-
wise quadratic function frrp € C1(R), with a smaller
second-order derivative for x € [1,2] than elsewhere.
They show that the Heavy-Ball (HB) algorithm (Polyak
1964)), when tuned using the L of smoothness and the
u of strong convexity of firp, does not converge to the
unique absolute minimizer x = 0 for some initialization
2o > 0. On the other hand, standard GD with step
size a = ;H%L does converge, but at a very low rate
due to the high condition number of firp. Although
tuning the HB algorithm based on the L-smoothness
and p-strong convexity of frrp is arguably a heuristic
strategy (since this optimal tuning rule is only provided
for quadratic functions, see Polyak| (1987))), the example
in|Lessard et al.| (2016 highlights a striking pathological
behaviour: a localized, bounded perturbation of the
Hessian of the objective function yields a disastrous
effect on its condition number and on the trajectory of
the iterates of the FOA.

In this paper we analyze this phenomenon and we pro-
pose a unifying framework to study the convergence
of FOA and design robust tunings of their hyperpa-
rameters. We first introduce a new topology, based
on the definition of a star-norm ||-||, (Section [4.1).
Such a norm will be the fundamental tool that will
be used throughout the paper in order to assess the
"closeness" between objective functions: Theorem
states that two functions whose difference is small in
the || - || «+-norm sense have comparable behaviour under
continuous FOA. Therefore, the tuning strategy for the
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hyperparameters of the optimization algorithm should
account for this similarity. However, the standard tun-
ing based on smoothness and strong convexity fails
to do so (Theorem and it is easy to construct
examples that illustrate this weakness.

Based on such a topology, we then define the notion of
continuity of a condition number (Section , which
in turn reflects the continuity of some properties of
the objective function that we call upper/lower con-
ditions (Section , smoothness and strong convexity
being two examples of them. Having a continuous con-
dition number is essential to the robustness of both
tuning methods and convergence rates of the FOA. Our
approach implies that even when the objective func-
tion verifies some of the strongest conditions (strong
convexity and smoothness), relying on weaker ones to
tune the FOA can lead to better and more consistent
convergence behaviours.

2 Related Work

Because strong convexity and smoothness are strong re-
quirements that are not verified by some classic machine
learning models such as logistic regression (which veri-
fies convexity but not strong convexity), several works
have already explored substitute assumptions. Alter-
natives to strong convexity, which we will call lower
conditions have been the most thoroughly studied, un-
der some overlapping names. These include local-quasi-
convexity (Hazan et al.l [2015), weak quasi-convezity
(Hardt et al.l [2018]), restricted secant inequality RSI
(Zhang and Yinl 2013), error bounds EB (Luo and
Tseng, [1993)), quadratic growth QG (Anitescul, (1999,
Polyak-t.ojasiewicz PL (Polyakl [1963), further general-
ized as Kurdyka-Lojasiewicz KL (Kurdykal 1998} [Bolte
et al.l [2008]). The scattering of these notions in the
literature has led to some confusing names. For exam-
ple, optimal strong convezity OSC (Liu and Wrightl,
2015|) is also called semi-strong convexity (Gong and
Yel [2014) and weak strong convezity (Ma et al.l 2016),
despite being a different notion from the weak strong
converity of Karimi et al.| (2016), which was formerly
called quasi-strong converity QSC in Necoara et al.
(2019). Similarly, the restricted strong-convezity from
Agarwal et al| (2012) is a different notion from the
restricted strong convezity of Zhang and Yin| (2013)).
To avoid further confusion, we will use the name star-
strong convezity *SC for the notion of WSC/QSC of
Karimi et al.| (2016).

Alternatives to smoothness, which we will call upper
conditions, have also been proposed, though more spo-
radically, such as local smoothness (Hazan et al., |2015]),
restricted smoothness (Agarwal et al., [2012), relative
smoothness (Lu et al., [2018; [Hanzely et al., |2018; [Zhou

et al., [2019)), restricted Lipschitz-continuous gradient
RLG (Zhang and Yin, [2013).

Most lower conditions can naturally be translated into
an equivalent upper condition, by shifting the inequality
from a lower bound to an upper bound. For example,
smoothness is an upper condition equivalent to strong
convexity, and weak-smoothness (Hardt et al., 2018)
is an upper condition equivalent of the PL condition,
which is further generalized to the stochastic case as
expected smoothness in (Gower et al.|(2019). Similarly,
RSI, WSC, EB, and QG all have natural equivalent
upper conditions. In an attempt to reduce the number
of similar names and their associated confusion, we will
for instance refer to the PL condition as PL™ (u) and
to its equivalent upper condition as PLT(L).

In Karimi et al.| (2016) the authors propose a study
of the implications between some lower conditions, al-
though under the assumption of global smoothness,
and omitting the constant conversion induced by the
implications. To the best of our knowledge, a study of
the implications between upper conditions is missing
from the literature. We collect all the relations between
upper and lower conditions in two implication graphs
(Figure , together with the constant conversions. We
also study upper bounds on the convergence rates of
gradient descent assuming that the objective function
satisfies each pair of upper/lower conditions (Table .

While alternative conditions have been extensively re-
searched, the main goal of the works mentioned above
has always been to extend convergence results to a
larger class of functions. On the other hand, our work
aims at introducing a new approach for tackling the
optimization task and at bringing a deeper understand-
ing on the convergence of FOA and its connection with
properties of the objective function itself.

3 Setup and notation

In this paper, we focus on minimizing an objective
function f : R? — R using first-order algorithms (FOA).
The objective function is assumed to be continously
differentiable f € C'(R?), with a convex set of global
minima X* C R?; we denote f* = mingcga f(x). For
z € R?, we denote the distance between z and X* as
d(z, X*) = infyrex» || — 2*|]2. We recall that since
X* is convex, for every x € RY there exists a unique
element z; € X* (called the projection of x onto X*)
such that ||z — 2} (|2 = d(z, X*).

For our analysis we will consider the following class of
deterministic FOA:

Definition 3.1 (Continuous FOA). A first-order
algorithm Ay, possibly depending on a set of hyperpa-
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rameters 6, is continuous if Vn € N the (n + 1)-iterate

Tpg1 = Ag ({xi}izo...m {f(zi)}izo..ns {Vf(-fi)}i:O.“n>7
(1)

is continuous with respect to all of its arguments.

Trivially, any algorithm that can be expressed as a finite
composition of continuous operations is continuous.
This class of FOA includes all the major algorithms
like GD and Heavy Ball (HB) methods with step size
and momentum hyperparameters not depending on
the local values of f. However, some methods like
Polyak step size (Polyak, 1987 are not guaranteed to
be continuous without additional assumptions on the
objective function.

We denote B(X*,r) = {y € R4 d(y, X*) < r} to be
the set of points in R? whose distance from set X* is
smaller than r and, for a set of functions F, we denote
f + F the set of functions g such that g — f € F.

Unless stated otherwise, rates of convergence refer to
the convergence of f(z,) — f*, not d(z,, X*).

4 Continuity of first-order algorithms
and condition numbers

In this section we introduce the theoretical framework
to analyze the behaviour of FOA for objective functions
that are "close". The first necessary component is a
norm || - || that will induce the right kind of topology
to evaluate the similarity between objective functions.
Proofs of all key results are collected in Appendix [A]

4.1 Star norm and stability of FOA behaviors

Consider an objective function f € C'(R?). The pur-
pose of the || - ||«-norm will be to evaluate the impact
of a perturbation of f on the convergence properties
of FOA. In particular, if two functions f and ¢ are
such that ||f — g||. is small, it is desirable for the FOA
to behave similarly on them. Since we are focussing
on optimization algorithms that depend on the first
derivatives of the function, we require the || - ||«-norm to
give some control over the amplitude of the gradient of
the perturbation of f. Additionally, notice that as the
iterates approach the minima of the objective function,
the updates typically become finer, so that even a small
perturbation of the function gradient can greatly affect
the convergence behaviour. This supports the intuition
that the same perturbation of the gradient will have
more impact close to the set of minima X*, and less
impact far away.

In view of the above discussion, we introduce the fol-
lowing definition of the || - ||-norm, which measures

the maximal perturbation of the gradient weighted by
the inverse of the distance to X*.

Definition 4.1 (Star norm). Let X* C R? and
Fx-=1{h € C'(R?) |Va* € X*, h(z*) = 0 and
JLeR: || Vh(2)|2 < L d(z, X*),Va € R},
We define the star norm, ||-||,, on Fx~« as

R AL )
z€RI\ X * d((E,X )
Example 4.2. Consider the function h(z) =
vVx2 4+ 1 — 1, which can be thought as a differentiable
version of the absolute value function; then, h € Fq,

with ||h|. = 1.

Remark 4.3. We emphasize that neither X* nor Fx«
depend of the objective function f, which does not need
to be in Fx- itself. Requiring h(z*) = 0 ensures that
the || - ||«-norm is indeed a norm on Fx«. Equivalently,

VheFx-,

we could have considered the quotient space Fx */[C],

where [c] is the set of constant functions, equipped
with || - ||«; however, this would have introduced too
many technicalities along the paper, therefore we did
not proceed in this direction.

Let x;(f, Ag, o) denote the i-th iterate obtained by
applying a prescribed algorithm Ay to f starting in x.
We now argue that two functions that are close in the
sense of the star norm will have similar behaviors for
continuous FOA.

Theorem 4.4. Let f € CY(R?) with a set of global
minimizers X* and ||-||, the corresponding star norm.
Let Ag be a continuous first-order algorithm and K C
R? a compact set. Then, the following result holds:

Ve>0, VieN,In=n(ei,K) >0 such that
Vhe Fx«, if |hll« <n, then
VZL'() ceK: ||(Ei(f,./40,$0) — ZL’z(f + h,Ag,fL'o)HQ < €.

The following corollary proves that for a target neigh-
borhood of X* and any § > 0, if h is sufficiently small
in the sense of ||-||,, then Yo € K, applying Ay to
f -+ h starting in x¢ will attain the target neighborhood
in exactly the same number of steps as for f, up to a
distance tolerance of §.

Corollary 4.5. Under the same hypotheses as Theo-
rem[4.4) let e >0 and B(X*,¢) a target neighborhood
of X*. Let us assume that Ag applied to f converges to
X* andVzo € K, let Ny, € N the smallest number of
iterations such that xn, (f, A, x0) € B(X™,€). Then,
Vd >0,3n >0 st forany h € Fx«, if |hll« <n,
then Vo € IC,

TN,,-1(f + h, Ag,0) & B(X™, e —0)
SCNmO(f‘F h, Ag,xz0) € B(X*, e+ ).

and
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Theorem [4.4] and Corollary [4.5] show that if & is suffi-
ciently small in the sense of the norm ||.|«, then the
behaviour of a continuous FOA on f and f + h will be
similar, and thus it is natural to assume that the tuning
of hyperparameters 6 should also be similar. However,
as the next section shows, this is not always the case.

4.2 Standard tuning fails continuity test

Consider the family of piecewise quadratic functions

{fe}ez0 C CHR):

22 r <1

2 1,.2 2 1 2
P4t -2 42 1<x<14e (3)
22+ 2 —2—& x>14 2

fe(z) =

We can view each function f. as a perturbation of
the quadratic fo(z) = 2, which is 2-smooth and 2-
strongly convex: Ve > 0, f.(z) = fo(z) + he(x) with
he € Fx+—qoy- It is also easy to see that [|h.[|. — 0 as
e — 0.

The following properties hold:

Proposition 4.6. For any € > 0, the function f.
S pe-strong convexr and L.-smooth, with u. = 2 and
L.=2+ %; moreover, these constants are optimal: i.e.
fe is not p-strongly convex for > 2 and not L-smooth
Jor L<2+2.

: : _ 2 _1
Furthermore, GD tuned with step size o = e T 2

applied to fo (Ve > 0) converges with linear rate &;
however, if GD is tuned with o = it does

2 —
pe+Le
not converge with linear rate q for any q < (25+1

£

2e+1’

)(14e2)
If we tune GD according to the values of smoothness
and strong convexity of fy and optimize f., the linear
rate tends to 0 as € — 0 (in fact, we obtain convergence
in at most two steps). On the other hand, if we tune GD
based on the tightest strong convexity and smoothness
constants u. and L. of f., the linear rate tends to 1
as € = 0. Notice that the condition number % of fe
diverges as € — 0, thus leading to a very conservative

tuning and increasingly slow convergence rate, while
the tuning of fy leads to superlinear convergence.

The above example suggests that a sane tuning strategy
for the hyperparameters of a FOA should be robust
(continuous) with respect to || - ||«-small perturbations
of a given function. It also shows that the standard
tuning based on L-smoothness and pu-strong convexity
lacks this property.

4.3 Continuity of condition numbers

We now formally introduce the notions of upper and
lower conditions which represent generalizations of

smoothness and strong convexity, and the notion of
continuity of a condition.

Definition 4.7 (Upper conditions). We use the
term upper condition to describe a generalization of
smoothness and we formalize it as a family of sets of
functions, C* (L) C C*(R%), which satisfies C* (L) C
C+(L2) for all L1 S LQ.

Definition 4.8 (Lower conditions). We use the
term lower condition to describe a generalization of
strong convexity. We formalize it as a family of
sets of functions, C~(u) C CY(R?), which satisfies
C (1) 2 C (u2) for all pu; < po.

In Definition 5.1 and Definition [5.3] we list some known
upper and lower conditions extensively studied in the
literature .

Definition 4.9 (Continuity of a condition). We
say that CT is continuous in f € (J,.,C" (L) with
convex set of global minima X* if for any L > 0 s.t.
feCT(L),Ve>0,3n>0st. YVh € Fx«,if ||h]l« <n,
then f+h e CH(L+e).

Similarly, C~ is continuous in f € (J,,.oC™ (1) with set
of global minima X* if for any u > 0 s.t. f € C™(u),
Ve > 0,3n > 0 s.t. Vh € Fx-,if ||h]l« < n, then
f+helC (u—e).

We say that C* is continuous if it is continuous in all
f € Up-oCt(L) that admits a convex set of global
minima, and C~ is continuous if it is continuous in all
f € U,s0C™ (p) that admits a convex set of global
minima.

Note that this definition is independent from the stan-
dard notion of continuity, as we only allow f to be
approximated by functions in f + Fx«.

Based on the observations of Theorem[f.4]and Corollary
[47F] if we tune a continuous FOA based on a condition
C*, it is desirable for C* to be continuous in the sense
we just introduced. However, the standard properties of
smoothness and strong convexity fail to be continuous:

Theorem 4.10. For any f [i-strongly convex and L-

smooth with a set of global minima X* C RY, there

ezists a family {he}eso in Fx~ such that lir%HhEH* =0
e—

and VL, > 0, there is e, such that Ve < er,,
fe = f+ he is not L-smooth and not u-strongly convet.

Not only smoothness and strong convexity are continu-
ous nowhere, but also the discontinuity is not bounded:
given any objective function f, it is possible to approx-
imate it by a family of perturbed functions {f:}c>0
with arbitrarily bad conditioning. In particular, the
explicitly construction of {f.}.~o is given in the proof.
Therefore, the main consequence of Theorem is
that tunings that rely on smoothness and strong con-
vexity lack robustness.
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i "

if *SC™ (1)
o ;H»Z;L\

if QGT(L)
pw—2u—L

Figure 1: Graph of implications between upper and lower conditions. Red arrows only hold under *SC™ (u) or
SC™ (i) where u can be negative. Green arrows only hold under QG™ or QG™.

5 Alternative conditioning

Motivated by the weakness of strong convexity and
smoothness detailed in Subsection and in Theorem
we propose here known alternative conditions that
could be used to tune FOA.

Let f € C! (Rd) with convex set of minimizer X*.
We recall that any € R? has an unique projection
Ty € X* on X*: |z — w2 = d(x, X¥).

Definition 5.1 (Lower conditions). Let u > 0. We
define:

o (Strong convezity) f € SC™ (p) iff f(y) > f(z) +
(Vi(@),y— )+ 5 lly - all3, Va,y € RY.

"SCT(p) i [T >

z, Ve R

o (Star strong convezity) f €
@)+ (Vf(@), 25— 2) + § |

*
zp — x|

(Lower restricted secant inequality) f € RSI™ (u)
iff (Vf(z),z—ap) > pllz— =} ;, Ve RY.

(Lower error bound) f € EB™ (u) iff |V f(x)|, >
L H:z: — x;’;HQ, Ve R

(Lower Polyak-Lojasiewicz) f € PL™(u) iff
IV > n(f@) - f), Vo eRY

(Lower quadratic growth) f € QG™ (u) iff f(x) —
=>4 Hx—x; ;,VxeRd.

Remark 5.2. A function in SC™(0) is called convex
and a function in *SC™(0) is called star-conver. Addi-
tionally, if the inequality in the definition of SC™(0) is
strict, then f is strictly convex.

Definition 5.3 (Upper conditions). Let L > 0. We
define:

e (Smoothness) f € SCT(L) iff f(y) < f(z) +
(Vf(x),y —z)+ % lly — x||§, Va,y € R%

e (Star smoothness) f € *SCT(L) iff f* < f(x) +
(Vf(@),as —a)+ L e — 2|5, Yo e RE

o (Upper restricted secant inequality) f € RSIT(L)
iff (Vf(z),z—z3) <L |z — x;Hi, Vz € RY.

e (Upper error bound) f € EBT (L) iff |V f(z)|, <
LHx—x; o Vo e R4

o (Upper P(Q)lyak—Lojasiewicz) f € PLT(L) iff
s IVF@); < L(f(x) = f*), Vo e R

e (Upper quadratic growth) f € QGT(L) iff f(x) —

< % Hx — m;Hz, Ve R
Remark 5.4. The proposed upper and lower condi-
tions all coincide on quadratics, with optimal L and
1 equal to the highest and lowest eigenvalues of the
Hessian, respectively.

The upper and lower conditions above are related ac-
cording to the graphs in Figure [I| (see proofs in Appen-
dices |C| and E[) If an implication changes the value of
the constant, it is specified on the corresponding arrow.
Some of the implications only hold under extended
notions of *SC™ (x) and SC™ (i), where p is allowed to
be negative (red arrows in Figure. These notions are
weaker than star convexity and convexity, respectively.
Finally some implications are made under an additional
QG™ or QG assumption (green arrows in Figure [1)).

In Karimi et al.| (2016), the authors already presented
connections between the lower conditions, but under
the assumption of global smoothness (SC* (L)) and
without giving the conversion of constants. To the best
of our knowledge, there is no study of the implications
between upper conditions in the literature.

Theorem showed smoothness and strong convexity
are not continuous in the sense of Definition .9 On
the other hand, the above alternatives are continuous
conditions, therefore they are robust to the type of
perturbations introduced in Section .1}

Theorem 5.5. The lower conditions *SC~, RSI™,
EB™, QG™, PL™ are continuous. The upper condi-
tions *SCT, RSIT, EB™, QG™, PL™ are continuous in
all functions f € QG™ (u), for some p > 0.

Proof. See Appendix [B]

Note that since SC™ (i), *SC™ (u), PL™ (i), RSI™ (p),
EB~ (1) C QG (£) (see Figurell), *SC*, RSI*, EB*,
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Table 1: Linear rates for the GD algorithm for each pair of conditions, as function of x = £. Rates marked with

T

* hold under the additional assumption of star-convexity, while rates marked with T hold under the additional
assumption of convexity. Rates are colored in green if corresponding to a continuous pair of conditions and red

otherwise.
Rates of CV\ SC™(u) | *SC™(p) | PL™ () RST™ () EB™ (n) QG ()
2

ORI e I I N et S Rt Sl It N
+ 1\2 1 1 1 1 1 1

PLAYL) (=) | 1oy | 1o [l /gy | loge [ T

EBY(L) || (1—y) | 1—- | 1-g5* — vl I Sl v

*SCH(L) (1—%)2 1-Li [ 1- L 1- L1 e —
T 1 T 7 17 Tt 1 1

RSI (L) (1*E)2 1*4ﬁ2' 1*16@2| I*W' 1716K4T I*W
T 1 17 17 1t 1 1

QG(L) | (A—g) J1-gm |15 - - 15

QG™, PL* are continuous in any function that verifies
one of the proposed lower conditions.

6 Gradient descent convergence

To give some insights on the strengths of the listed
conditions, we collected in Table[I]the guaranteed linear
convergence rates of f(x,) — f* of the GD algorithm
with constant step size and proper tuning, obtained
for each pair of upper/lower conditions f € CT(L) N
C~(u), as function of the condition number x = £.
The conditions are ordered from the strongest to the
weakest, when applicable. The rates that are marked
with an asterisk or a T symbol are only guaranteed
under an additional assumption of convexity or star
convexity, respectively. Many of these rates do not
exist in the literature to the best of our knowledge. In
particular, the rates under QG* (L) N SC™ (), and all
the rates inherited from the known ones, as in Figure[T]
are novel. The rate under PL* N*SC™ (u) is a particular
case of Theorem 3.1 in (Gower et al.| (2019) applied to
the deterministic case. For the sake of completeness, we
reported rates under additional convexity assumption,
although convexity suffers from the same continuity
issue as strong convexity and smoothness.

We refer to Appendix [E] for the proofs; the exact value
of the step size for the convergence of GD under each
pair of upper/lower conditions is also given.

Some care needs to be taken when comparing the
k’s from different entries of the table, as the quan-
tities involved (L and p) differ according to the up-
per/lower conditions considered. Notice that the con-
dition PL* (L) paired with any lower condition shows
a convergence rate with the same dependence in x as
SCT (L), with the added bonus that PL* (L) is contin-
uous. Additionally, the pair EBT(L) N RSI™ (1) has
a linear rate that depends quadratically in k, how-
ever, this pair of conditions is weaker than other pairs

(PL*(L), PL™(p), *SC~(p)), therefore the condition
number x for this case might be drastically smaller and
it may yield a better convergence rate. Thus, these
two pairs PL1(L)NC~(x) and EBT(L)NRSI™ (1) look
particularly promising for effectively tuning the step
size of the GD algorithm.

L—l) ?
Kk+1

for the convergence rate for GD with fixed step size.
Since all the conditions listed in this paper coincide on
quadratics, such a lower bound applies to any pair of
upper/lower conditions. However, it may be not tight
for some pairs of conditions.

We recall that quadratics give a lower bound <

Finally, we complete Table [1| by mentioning the sublin-
ear convergence speed we have under any upper condi-
tion and convexity or star-convexity (C*(L) N SC™(0)
or CT(L) N *SC~(0)). While it is known that GD
has a rate of convergence of order O (%) if f €
SCT(L)NSC™(0) (see e.g. Bansal and Gupta (2017)),
the same rate can be achieved under PL™(L)N *SC™(0)
for the best iterate (or the average under convexity).
For a complete proof, we refer to Appendix [E]

In |Ghadimi et al|(2015), the authors prove the same
rate of convergence under convexity and QG (L) for
the average iterate. They also obtain the same rate
under those very weak conditions for the last iterate
using an extra momentum term (following the heavy
ball procedure).

7 Discussion

In this section we discuss how the use of alternative
conditions impacts our understanding of the behavior
of Polyak’s Heavy-Ball method (Polyak, [1964):

(4)

where the step size @ and the momentum 3 are the
hyperparameters. It is well known that the optimal

Tp4l = Tp — an($n> + ﬂ(xn - -Tnfl)
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hyperparameters of HB on a strongly convex quadratic
function with minimum eigenvalue ¢ and maximum
eigenvalue L of the Hessian are:

e (D) o

with x = % This tuning yields a linear convergence

2
ﬁ;i) , which approaches

the lower bound for L-smooth and p-strongly convex
functions (Bubeckl 2015]).

In [Lessard et al. (2016) the authors introduced the
following piecewise quadratic function: firp € C*(R)
with derivative

rate for f(x,)— f* equal to (

25x r<l1
T+ 24 1<z<2
25 —24 x> 2

(6)

firp(®) =

The authors showed that for the initial value zg = 3.3
and using the same tuning rule but with the L of
smoothness and the p of strong convexity, HB does not
converge.

While applying the tuning rule (5) to non-quadratic
functions itself is arbitrary, the choice of smoothness
and strong convexity values as generalizations of the
maximum and minimum eigenvalues is particularly
problematic: all conditions introduced in Section [5] co-
incide on quadratic functions and there is no strong
evidence to prefer SC™ (1) and SCT(L) as tuning con-
ditions.

Since this function has been used as an example of
inconsistent behavior from HB, it is natural to question
how using continuous conditions as generalizations of
the biggest and smallest eigenvalues of a quadratic
function may affect the convergence.

All the upper conditions on fyrp give the same param-

eter L = 25, while the lower conditions give pugc- =1,
pesc- = T, figsi- = ppp- = 13, pp- = & and
/LQG— =19.

In Figure [2] we present the linear convergence rates
experimentally obtained for 200,000 values of («, 3).
We also indicate the hyperparameters corresponding to
tuning rule using different lower conditions. We im-
mediately observe that while the generalization based
on strong convexity falls into the black region (no lin-
ear convergence), other conditions all offer excellent
convergence properties. This might suggest that the
divergent behavior is caused by relying on strong con-
vexity for tuning rather than by the algorithm itself,
and highlights how weaker conditions are essential to
understand FOA behaviors, even on functions that
verify smoothness and strong convexity.
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Figure 2: Convergence rate of HB on fi,grp with starting
point zo = 3.3 for different tunings of «, 8. Black areas
mean no linear convergence

8 Conclusion

In this paper we presented an argument on the necessity
to adopt different conditions from the ones classically
used (smoothness and strong convexity), in order to
tune the hyperparameters of FOA in a meaningful way.
Via a new notion of continuity of a condition number,
we have established that the properties of strong con-
vexity and smoothness have an important weakness
resulting in a lack of robustness for first-order algo-
rithms tuned on them. We have presented promising
alternatives that do not share this weakness and given
examples of the benefits of a theoretical framework
based on these conditions. We have proposed an exten-
sive study of the relationships between these conditions
and provided their guaranteed convergence rates for
GD.

The study of the convergence properties of optimization
algorithms largely depends on their tuning, hence un-
derstanding its underlying conditions leads to a better
comparison between them and improves the algorithm
performances, as illustrated in Section [7]

While it is well known that some optimization algo-
rithms (e.g. Nesterov Accelerated Gradient, Nesterov
(1983)) can approach the lower bound of convergence
rates achievable for p-strongly convex and L-smooth
functions, as function of k = £, lower bounds based on
alternative condition numbers will result in different
optimality results, which we leave to future work.
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