Supplementary Materials

A MARGINAL LIKELIHOOD IN BAYESIAN LINEAR REGRESSION

For ease of notation, we drop the j subscript, and therefore Y — y = [y1...ynx]' and B; — B. Consider the
linear regression model
y=ow(X)B +e,  €~Ny(0,0°T), (18)

T

where ow(X) = [p(x1,W)...0o(xny,w)]', an N x M matrix. A common conjugate prior on B3 is a nor-

mal-inverse-gamma distribution,

B|o? ~ Nu(By0°Syt)

) (19)
o ~ InvGamma(ag, by),
We can write the functional form of the posterior and prior terms in as
_ 1
Py | ow (X),8,0%) = (270%) 2 exp(= 25 (y — ew(X)B) (v — pw(X)8))
_ 1/2 1
p(B | 0®) = 2mo®) 2|8 exp (= 5 (B~ ) "So(8 - By)) (20)
bg° —b
2y _ Y% 2y—(ao+1) )
P(o3) = pis B e (3).
We can combine the likelihood’s Gaussian kernel with the prior’s kernel in the following way:
(y = ew(X)B) " (y — ew(X)B) + (B — Bo) "So(8 — Bo) (21)
="y +80 S8y — BySNBy + (B By) " Sn(B - By)-
where B, and Sy are defined as
Sn = pw(X) Tpw(X) + So 22)
By = Sx'(By So +ew(X)Ty).
Now our posterior can be written as
- 1/2 1
Py | pw(X),8,0%) ox (2m)2[8| P exp (= 5 (8- Bx)TSn (B - By)])
_ 1
(2ma?) N/2 exp ( ] {YTY + ,BS—SOIBO - 5;SNﬁN]) (23)
b6° | 2\—(ao+1) —bo
Tag) ) eXp( o2 )
We can see that we have an M-variate normal distribution on the first line. If we ignore (27)~"/? and

inverse-gamma prior normalizer, we can combine the bottom two lines to be proportional to an inverse-gamma
distribution,

1 1
(0%) 7t N2 exp (— = [vo+ 3 {y Ty + B3 SoBy — BASNB })- (24)
Now define ay and by as
N
anN = ag + —
: (25)

1
by =bo+ 5 ('Y + B SoBy — BASNB):
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Thus, we can write our posterior as

p(B,0% | ow(X),y) x p(B | pw(X),y;,0°)p(0? | ew(X),y)
where

B | @W(X),Y70’2 NNM(IBN7SN)
o? |y, ow(X) ~ InvGamma(ay, by).

Now to compute the log marginal likelihood, we want

Py | pw(X), ao, by) = / / p(y | X, 8,0%)p(8), 0% | ao, by) d¥ B do?.

Using the definitions in and , we can write the joint as

ply.8,0%) = (2m0%) 2|80 exp(— S5 [(B— B) 8w (B~ )] )
e

)~ N/2 .
(2 ) F(a(])

The integral over 3 is only over the Gaussian kernel, which allows us to compute it immediately:

-1/2 1 1
2ro 25| = [exp (= 5(8- 07 [ 5585 (8- B))d VB
The terms (2702)M/? in cancel, and the first line of reduces to

1So

ISn|

(29)

(30)

We can compute the second integral in (27) because we know the normalizing constant of the gamma kernel,

F(CLN) _ /(0.2)—(aN+1) exp(— b%)daz.
g

b
Putting everything together, we see that the marginal likelihood is

1 Sol  b5° T(an)
Py [ow(X), a0.50) = 5087 \[1Sx] 957 T(ag) -

(31)
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B NEGATIVE BINOMIAL GIBBS SAMPLER UPDATES

B.1 Sampling 3,

Let w be a Polya-Gamma distributed random variable with parameters b > 0 and ¢ € R, denoted w ~ PG(b, ¢).
Polson et al.| (2013) proved two useful properties of Pdlya-Gamma variables. First,

e"’ a b K o w2
(1(+ e)w)b =27% w/o eV 2p(w)dw, (33)

where k = a — b/2 and p(w) = PG(w | b,0). And second,

p(w | ) ~PG(b,9). (34)
Now consider an NB likelihood on Y,
N J T .
(exp {B; pw (xn) ;)¥rs
p(Y|—) = HH { } — (35)
ot it (L+exp {B] ow(xp) })omitrs

Using , we can express the nj-th term in the negative binomial likelihood using the following variable
substitutions,

Yng — T4
This gives us
(exp {B] ow (xn)})v"s
(1+ exp {B] ow (xn) })¥mit7s
T 2
— 7y > (B; ow(xn)) 37
X exp { Yng 9 ! /6 @Wxn)} / exp { — Wnj %}p(wnj)dwnj ( )
0
Wnj 2
oo {52 (3Tt )
where
ynj - Tj
Znj = (38)
J 2wnj
Finally, note that
w| ¥ ~PGH,¥) = wnj | B; ~PG(yn; + rj,,BjTgow(Xn)). (39)
If we vectorize across N, we can sample each 3; following |Polson et al. (2013)’s proposed Gibbs sampler:
Byl @y N, Vo) (40)
wj | B; ~ PG(y; + 15, ow(X)B;)
where
Q) = diag([wy;, ..., wn,])
Vo, = (pw(X) Q50w (X) + By )~ (41)

mw]‘ = ij (@W(X)Tﬁ’j + Balﬁo)v
ki =(y; —75)/2

B.2 Sampling r;

Consider the hierarchical model
Ynj ~ NB(r5, pnj)
r; ~ Ga(ag, 1/h) (42)

h ~ Ga(bo, 1/go)-
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[Zhou and Carin/ (2012)) showed we can sample r as follows:

1
r; ~ GalL;, .
! ( ’ —zf_llog<max<1—pnj,—oo>>)

where
e .

<)

N
L; = Z Z Une, Une ~ log(pn;), ¢; ~ Poisson(—r; In(1 — py;)).

n=1t=1

Zhou has released codd]

3https://mingyuanzhou.github.io/Softwares/LGNB_Regression_v0.zip


https://mingyuanzhou.github.io/Softwares/LGNB_Regression_v0.zip
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C MULTINOMIAL GIBBS SAMPLER UPDATES

In order to derive a Gibbs sampler for the multinomial likelihood, we first must use the reparameterization of the
likelihood developed in [Holmes et al.| (2006]). We may rewrite the likelihood as

N T (ijl Yij + 1) J exp {@W(Xl)ﬂ} Yij
Y[-) = J
o 11;11 Hj:l T (i +1) J];[l (Z}]—l eXP{@W(Xf,),@j}>
N J (exp {QDW (Xi)ﬁj _ gzj})yw
i=1j=1 (1 + exp {ow (x:)8; — fij})yiﬁzj:l Yii

Where &;; = log » ;1 ; exp{ew(x;)B; }. By convention and for identifiability purposes, we set 3, = 0. We let

(45)

X

Kij = Yij — ijl ¥ij/2. Now that we have written the likelihood in this form, we may use the Poélya-Gamma
augmentation trick again:

(exp {@W(Xi)/@j — fij})yij
(1 + exp {‘PW(Xi)ﬂj _ gij})yiﬁE‘j:l Yij

So this gives us a posterior w.r.t. 3, as

o exp {Feij (ww(xz')ﬁj - &j) - % (@W(Xi)ﬂj - 52‘1‘)2}- (46)

(8, 193:) o p(B) ] exo [hi(owx08, &) — 5 (owx)B; — &) Qu(owx8, —&)} @)

which we can rewrite into a closed form update as
/3j | Wi~ N(m“’j7ij) (48)
where
Q,; = diag([wij, - - -, wn;])
Vo, = (pw(X) Q0w (X) + By,
m,,, =V, (ew(X) " (k; + & Q) + By 8y), (49)

1 J
Kj =Y;— 52%;‘
j=1

and we sample 2; with
J
w; | B; ~PG | Y yij ow(X)B; — & (50)
j=1
Although we can sample the B parameters in closed form with the Polya-Gamma augmentation, we still face
a problem with obtaining the MAP of X through optimization when we assume the likelihood is multinomial.
Baker| (1994) discusses the optimization problem of learning the maximum likelihood estimate (MLE) of the
regression parameters in a multinomial logistic link regression problem. It is difficult to optimize parameters
with respect to an objective function where the parameters are pushed through the normalization constant of a
softmax function. To avoid this problem, we may write the

J ex xi)3; .
p(yi|—) H (ZJ p {ow(xi)8,} > 7 (51)

=1 j=1 eXp{‘PW(Xi)ﬁj}
as a Poisson probability mass function with an additional N-dimensional nuisance parameter, h, that we must
learn through optimization,

J
plyil=) o< [T (exp {h + ow(x:)8;})"" exp { - exp {h + ow(x:)8;} } (52)

j=1

where the MLE for the parameters in this Poisson reparamaterization are equal to the MLE learned in the original
multinomial likelihood. In our implementation, we use this Poisson parameterization to learn the MAP of X.
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D EXPERIMENTS

D.1 Additional results

®
g
[ 5]
y @ -
¢ Elﬂa ?ﬂg g So
.ﬂm; %2 @ 8
2 @ g

;-"
W D D @
P w0 9 p
0@ W o
o o 9 9

-15 -1.0 —-0.5 oo 05 10 15 20
X1

Figure 7: Latent space and generated faces for the Yale dataset using a Poisson RFLVM.
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Figure 8: Latent space for CIFAR-10 and generated digits for MNIST using a Poisson RFLVM.

D.2 Data descriptions and preprocessing

e Bridges: We used the number of bicycle crossing per day over four East River bridges in New York Cityﬂ
Since these data are unlabeled, we used weekday vs. weekend as binary labels since such information is
correlated with bicycle counts (Fig. [9] left).

e CIFAR-10: We limited the classes to [1 — 5] and subampled 400 images for each class for a final dataset of
size 2000. We converted the images to grayscale and resized them from 32 x 32 down to 20 x 20 pixels.

‘https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/gua4-p9wg


https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/gua4-p9wg
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Figure 9: (Left) The number of bicycle crossings over the Queensboro Bridge from April through November 2017.
(Right) The number of cyclists on Berri St. in Montreal throughout 2015.

e Congress: The word frequency counts from individual members of the 109th Congress (Gentzkow and
Shapirol 2010)). Labels are political party: Democrat, Independent, Republican.

e MNIST: We limited the dataset size by randomly subsampling 1000 images.

e Montreal: We use the number of cyclists per day on eight bicycle lanes in Montrealﬂ Since these data
are unlabeled, we used the four seasons as labels, since seasonality is correlated with bicycle counts (Fig. @
right).

e Newsgroups: The 20 Newsgroups Datasetﬂ We limited the classes to comp.sys.mac.hardware, sci.med,
and alt.atheism, and limited the vocabulary to words with document frequencies in the range 10 — 90%.

e Spam: The SMS Spam dataset from the UCI Machine Learning Repositoryﬂ Emails are labeled spam or
ham (not spam).

e Yale: The Yale Faces Dataset[ﬂ We used subject IDs as labels.

D.3 Scalability

To assess scalability of RFLVMs, we computed the wall-time in minutes required to fit both RFLVMs and the
benchmarks (Table [2). For both the VAE and deep count autoencoder, we trained the neural networks for 2000
iterations (default used in software packageﬂ). For DLA-GPLVM, we ran the optimizer for 50 iterations (default
used in software package{r_o']}. For RFLVMs, we ran the Gibbs samplers for 100 iterations. While results in Table
were run for 2000 Gibbs sampling iterations to ensure convergence for all datasets, we found empirically that
reducing the number of iterations to 100 did not significantly change the results. We find that RFLVMs are
indeed slower than most methods, but not significantly so. For example, on the CIFAR-10 dataset, a VAE takes
23.7 minutes, while a Poisson RFLVM takes 22.9 minutes and a negative binomial RFLVM takes 55.7 minutes.
The DLA-GPLVM is slowest, taking 69.8 minutes.

D.4 Miscellany

GPLVM baselines: We used GPy’s implementation BayesianGPLVMMiniBatch, which supports inducing points
and prediction on held out data.

Shttp://donnees.ville.montreal.qc.ca/dataset/f170fecc- 18db-44bc-bafe-5b0b6d2c7297 /resource/
64c26£d3-0bdf-45£8-92c6-715a9c852a7b

http://qwone.com/~ jason/20Newsgroups/

"https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

Shttp://vision.ucsd.edu/content/yale-face-database

%https://github.com/theislab/dca

Ohttps://github.com/waql129/LMT


http://donnees.ville.montreal.qc.ca/dataset/f170fecc-18db-44bc-b4fe-5b0b6d2c7297/resource/64c26fd3-0bdf-45f8-92c6-715a9c852a7b
http://donnees.ville.montreal.qc.ca/dataset/f170fecc-18db-44bc-b4fe-5b0b6d2c7297/resource/64c26fd3-0bdf-45f8-92c6-715a9c852a7b
http://qwone.com/~jason/20Newsgroups/
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
http://vision.ucsd.edu/content/yale-face-database
https://github.com/theislab/dca
https://github.com/waq1129/LMT

Latent Variable Modeling with Random Features

Table 2: Wall-time in minutes for model fitting. Mean and standard error were computed by running each

experiment five times.

PCA

NMF

HPF

LDA

VAE

DCA

Bridges
CIFAR-10
Congress
MNIST
Montreal
Newsgroups
Spam

Yale

0.0186 £ 0.0005
0.4398 £ 0.0743
0.0244 £ 0.0002
0.2368 & 0.0064
0.0171 £ 0.0008
0.0219 £ 0.0006
0.0230 & 0.0004
0.0884 £ 0.0003

0.0182 4 0.0012
0.4151 +0.0123
0.0245 4 0.0007
0.2522 +0.0273
0.0164 £ 0.0001
0.0227 4 0.0000
0.0235 4 0.0012
0.0984 4 0.0064

0.0273 £ 0.0002
1.0894 £ 0.0500
0.7296 & 0.0824
1.0004 £ 0.1880
0.0523 = 0.0350
0.1757 £ 0.0215
0.3039 4+ 0.0419
0.3774 +0.0181

0.0528 £ 0.0067
0.8674 & 0.0199
0.0846 £ 0.0221
0.3264 £ 0.0237
0.0632 £ 0.0065
0.1163 £ 0.0344
0.1262 £ 0.0381
0.1381 £ 0.0072

1.8193 £ 0.0708
23.6770 £ 0.3789
4.2919 £+ 0.0539
15.3385 £ 1.8402
2.0585 £ 0.0947
6.8089 & 0.7869
6.8448 + 0.7796
5.5177 £ 0.1645

0.5740 = 0.0255
1.1341 £ 0.0540
0.5448 + 0.0134
0.8719 + 0.0618
0.5028 + 0.0120
0.8551 &+ 0.0527
0.7146 + 0.0453
0.6410 = 0.0223

NBVAE

Isomap

DLA-GPLVM

Poisson RFLVM

Neg. binom. RFLVM

Multinomial RFLVM

Bridges
CIFAR-10
Congress
MNIST
Montreal
Newsgroups
Spam

Yale

0.0867 £ 0.0157
2.1002 £ 0.0594
1.5898 £ 0.0725
2.1104 £ 0.1020
0.0819 £ 0.0009
0.7432 £ 0.0248
1.8411 £ 0.0283
0.7931 & 0.0589

0.0098 £ 0.0018
0.4366 4 0.0034
0.0236 &= 0.0005
0.2148 4 0.0019
0.0080 4 0.0001
0.0721 4 0.0008
0.0795 4 0.0036
0.0402 4 0.0026

0.5182 4 0.0206
69.7889 £ 4.2406
45.8584 £ 22.9771
26.4795 £ 1.5429
0.8723 +0.0237
1088.2659 + 35.5089
440.5963 £ 26.7444
6.7210 +0.1193

0.3318 £ 0.0135
22.9299 £ 1.2624
9.8935 £ 0.1041
17.8148 £ 0.0493
0.5006 £ 0.0143
2.6502 £ 0.4063
10.6939 £ 0.4018
9.8992 £ 0.5530

0.4915 £ 0.0502
55.6701 £ 2.6837
20.4514 £ 0.3995
33.8967 £ 4.1385
0.9291 4 0.0434
3.2600 £ 0.0892
17.9958 £ 2.8573
21.6030 £ 0.8839

0.5715 £ 0.0473
59.8926 £ 9.9910
94.0656 & 2.7319
74.3100 £ 2.1778
0.8769 + 0.0376
2.8393 £ 0.1525
19.0018 £ 2.4612
45.4209 £ 4.4139




