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Abstract

Gaussian process-based latent variable mod-
els are flexible and theoretically grounded
tools for nonlinear dimension reduction, but
generalizing to non-Gaussian data likelihoods
within this nonlinear framework is statistically
challenging. Here, we use random features to
develop a family of nonlinear dimension reduc-
tion models that are easily extensible to non-
Gaussian data likelihoods; we call these ran-
dom feature latent variable models (RFLVMs).
By approximating a nonlinear relationship be-
tween the latent space and the observations
with a function that is linear with respect
to random features, we induce closed-form
gradients of the posterior distribution with
respect to the latent variable. This allows
the RFLVM framework to support compu-
tationally tractable nonlinear latent variable
models for a variety of data likelihoods in the
exponential family without specialized deriva-
tions. Our generalized RFLVMs produce re-
sults comparable with other state-of-the-art
dimension reduction methods on diverse types
of data, including neural spike train record-
ings, images, and text data.

1 INTRODUCTION

Many dimension reduction techniques, such as princi-
pal component analysis (Pearson, 1901; Tipping and
Bishop, 1999) and factor analysis (Lawley and Maxwell,
1962), make two modeling assumptions: (1) the obser-
vations are Gaussian distributed, and (2) the latent

⇤ Denotes equal contribution.
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structure is a linear function of the observations. How-
ever, for many applications, proper analysis requires
us to break these assumptions. For example, in compu-
tational neuroscience, scientists collect firing rates for
thousands of neurons simultaneously. These data are
observed as counts, and neuroscientists believe that the
biologically relevant latent structure is nonlinear with
respect to the data (Cunningham and Byron, 2014).

To capture nonlinear relationships in latent variable
models, one approach is to assume that the mapping
between the latent manifold and observations is Gaus-
sian process (GP)-distributed. A GP is a prior over
the space of real-valued functions, and posterior infer-
ence is tractable when the GP prior is conjugate to the
likelihood. This leads to the Gaussian process latent
variable model (GPLVM, Lawrence, 2004).

The basic GPLVM model with a radial basis function
(RBF) kernel has nice statistical properties that allow
for exact, computationally tractable inference meth-
ods to be used when the number of observations is
a reasonable size. Deviating from this basic model,
however, leads to challenges with inference. In Poisson
GPLVMs, for example, we cannot integrate out the
GP-distributed functional map, and we no longer have
closed form expressions for the gradient of the posterior
with respect to the latent space. This renders maxi-
mum a posteriori (MAP) estimation difficult, leading
to solutions at poor local optima (see Wu et al., 2017).

Random Fourier features (RFFs, Rahimi and Recht,
2008) were developed to avoid working with N ⇥N di-
mensional matrices when fitting kernel machines. RFFs
accelerate kernel machines by using a low-dimensional,
randomized approximation of the inner product as-
sociated with a given shift-invariant kernel. For this
approximation, RFFs induce a nonlinear map using a
linear function of random features.

We propose to use RFFs to approximate the kernel
function in a GPLVM to create a flexible, tractable,
and modular framework for fitting GP-based latent
variable models. In the context of GPLVMs, RFF
approximations allow for closed-form gradients of the
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objective function with respect to the latent variable.
Using RFFs solve a fundamental statistical problem
with GPLVMs in non-Gaussian settings. With a Gaus-
sian likelihood, we can obtain closed-form gradients
by integrating out the GP-distributed maps, but this
cannot be done in the non-Gaussian case. Our solution
is to induce these closed-form gradients by making the
data likelihood depend on the latent variables as a
linear function of the random features. In addition, we
can tractably explore the space of stationary covariance
functions by using a Dirichlet process mixture prior for
the spectral distribution of frequencies (BaNK, Oliva
et al., 2016), leading to a flexible latent variable model.

This paper makes the following contributions to the
space of nonlinear latent variable models: (1) we repre-
sent the nonlinear mapping in GPLVMs using a linear
function of random Fourier features; (2) we leverage this
representation to generalize GPLVMs to non-Gaussian
likelihoods and derive a Markov chain Monte Carlo
(MCMC) sampler for a wide variety of count-data like-
lihoods, such as the Poisson, binomial, negative bi-
nomial, and multinomial distributions; (3) we place
a prior on the random features to allow data-driven
exploration over the space of shift-invariant kernels,
to avoid putting restrictions on the kernel’s functional
form. While implementing GPs with RFFs has been
done before (Lázaro-Gredilla et al., 2007; Hensman
et al., 2017; Cutajar et al., 2017), it has always been
motivated by scalability. However, we motivate RFFs
with statistical tractability of non-conjugate GPLVMs.
Thus, our contributions focus on tractability and gen-
erality rather than scalability or state-of-the-art results
for specialized models. We validate our approach on
diverse simulated data sets, and show how results from
RFLVMs compare with state-of-the-art methods on
a variety of image, text, and scientific data sets. We
release a Python library1 with modular code for repro-
ducing and building on our work.

2 RANDOM FEATURE LATENT
VARIABLE MODELS

2.1 Random features for kernel machines

Here we briefly review random Fourier features (Rahimi
and Recht, 2008) to motivate a randomized approx-
imation of the GP-distributed maps in GPLVMs.
Bochner’s theorem (Bochner, 1959) states that any
continuous shift-invariant kernel k(x,x0) = k(x � x0)
on RD is positive definite if and only if k(x � x0) is
the Fourier transform of a non-negative measure p(w).
If the kernel is properly scaled, the kernel’s Fourier
transform p(w) is guaranteed to be a density. Let

1https://github.com/gwgundersen/rflvm

h(x) , exp(iw>x), and let h(x)⇤ denote its complex
conjugate. Observe that

k(x� x0) =

Z

RD

p(w) exp(iw>(x� x0))dw

= Ep(w)[h(x)h(x
0)⇤].

(1)

So h(x)h(x0)⇤ is an unbiased estimate of k(x�x0). If we
drop the imaginary part for real-valued kernels, we can
re-define h(x) , cos(w>x) by Euler’s formula. Then
we can use Monte Carlo integration to approximate
Eq. 1 as k(x,x0) ⇡ 'W(x)>'W(x0), where

'W(x) ,
r
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M

2
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sin(w>
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cos(w>

M/2x)
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777775
, wm

iid⇠ p(w). (2)

We draw M/2 samples from p(w), and the definition in
Eq. 2 doubles the number of RFFs to M . A representer
theorem (Kimeldorf and Wahba, 1971; Schölkopf et al.,
2001) says that the optimal solution to the objective
function of a kernel method, f⇤(x), is linear in pairwise
evaluations of the kernel. Using this random projection,
we can represent f⇤(x) as

f⇤(x) =
NX

n=1

↵nk(xn,x) =
NX

n=1

↵nh�(xn),�(x)iH

⇡
NX

n=1

↵n'W(xn)
>'W(x) = �>'W(x).

(3)

In the second equality, the kernel trick implicitly lifts
the data into a reproducing kernel Hilbert space H in
which the optimal solution is linear with respect to the
features. The randomized approximation of this inner
product lets us replace expensive calculations involving
the kernel with an M -dimensional inner product.

For example, the predictive mean in GP regression
implicitly uses the representer theorem and kernel
trick (Williams and Rasmussen, 2006). RFFs have been
used to reduce the computational costs of fitting GP
regression models from O(N3) to O(NM2) (Lázaro-
Gredilla et al., 2010; Hensman et al., 2017). However,
RFFs have not yet been used to make GPLVMs more
computationally tractable.

2.2 Gaussian process latent variable models

Now we introduce the basic GPLVM frame-
work (Lawrence, 2004). Let Y be an N ⇥ J matrix of
N observations and J features, and let X be an N ⇥D
matrix of latent variables where D ⌧ J . If we take the
mean function to be zero, and the observations Y to

https://github.com/gwgundersen/rflvm
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be Gaussian distributed, the GPLVM is:

yj ⇠ NN (fj(X),�2
j I),

fj ⇠ GP(0,KX),

xn ⇠ ND(0, I),

(4)

where KX is an N ⇥ N covariance matrix defined
by a positive definite kernel function k(x,x0) and
fj(X) = [fj(x1) . . . fj(xN )]>. Due to conjugacy be-
tween the GP prior on fj and Gaussian likelihood on
yj , we can integrate out fj in closed form. The re-
sulting marginal likelihood for yj is NN (0,KX + �2

j I).
We cannot find the optimal X analytically, but various
approximations have been proposed. We can obtain a
MAP estimate by integrating out the GP-distributed
maps and then optimizing X with respect to the poste-
rior using scaled conjugate gradients (Lawrence, 2004,
2005), where computation scales as O(N3). To scale
inference, we may use sparse inducing point methods
where the computational complexity is O(NC2), for
C ⌧ N inducing points (Lawrence, 2007).

Alternatively, we can introduce a variational Bayes ap-
proximation of the posterior and minimize the Kullback–
Leibler divergence between the posterior and the vari-
ational approximation with the latent variables X
marginalized out. However, integrating out X in the
approximate marginal likelihood is only tractable when
we assume that we have Gaussian observations and
when we use an RBF kernel with automatic relevance
determination, which limits its flexibility. This varia-
tional approach, called a Bayesian GPLVM (Titsias
and Lawrence, 2010; Damianou et al., 2016), may be
scaled using sparse inducing point methods.

2.3 Generative model for RFLVMs

The generative model of an RFLVM takes the form:

yj ⇠ L
�
g
�
'W(X)�j

�
,✓

�
, ✓ ⇠ p(✓),

�j ⇠ NM (�0,B0), xn ⇠ ND(0, I),

wm ⇠ ND(µzm ,⌃zm), zm ⇠ CRP(↵),
↵ ⇠ Ga(a↵, b↵),
(µk,⌃k) ⇠ NIW(µ0, ⌫0,�0, 0).

(5)

Following exponential family notation, L(·) is a likeli-
hood function, g(·) is an invertible link function that
maps the real numbers onto the likelihood parameters’
support, and ✓ are other likelihood-specific parameters.
Following Wilson and Adams (2013) and Oliva et al.
(2016), we assume p(w) is a Dirichlet process mixture of
Gaussians (DP-GMM, Ferguson, 1973; Antoniak, 1974).
By sampling from the posterior of w, we can explore
the space of stationary kernels and estimate the kernel
hyperparameters in a Bayesian way. We assign each
wm in W = [w1 . . .wM/2]

> to a mixture component

with the variable zm, which is distributed according to
a Chinese restaurant process (CRP, Aldous, 1985) with
concentration parameter ↵. This prior introduces addi-
tional random variables: the mixture means {µk}Kk=1,
and the mixture covariance matrices {⌃k}Kk=1 where K
is the number of clusters in the current Gibbs sampling
iteration.

The randomized map in Eq. 2 allows us to approximate
the original GPLVM in Eq. 4 as

yj ⇠ NN ('W(X)�j ,�
2
j I),

�j ⇠ NM (b0,B0),

xn ⇠ ND(0, I).

(6)

We approximate fj(X) in Eq. 4 as 'W(X)�j , where
'W(X) = ['W(x1) . . .'W(xN )]>. This is a Gaussian
RFLVM when L(·) is a Gaussian distribution and g(·)
is the identity function. Because the prior distribution
on the mapping weights �j is Gaussian, the model is
analogous to Bayesian linear regression given 'W(X);
if we integrate out �j , we recover a marginal likelihood
that approximates the GPLVM’s marginal likelihood.

We use this representation to generalize the RFLVM to
other observation types in the exponential family. For
example, a Poisson RFLVM takes the following form:

yj ⇠ Poisson(exp('W(X)�j)),

�j ⇠ NM (b0,B0),

xn ⇠ ND(0, I).

(7)

For distributions including the Bernoulli, binomial,
and negative binomial, the functional form of the data
likelihood is

L('W(X),�j , a(yj), b(yj), c(yj))

=
NY

n=1

c(ynj)
(exp('W(xn)�j))

a(ynj)

(1 + exp('W(xn)�j))
b(ynj)

,
(8)

for some functions of the data a(·), b(·), and c(·). The
general form of this logistic RFLVM is then:

yj ⇠ L('W(X),�j , a(yj), b(yj), c(yj)),

�j ⇠ NM (b0,B0),

xn ⇠ ND(0, I).

(9)

For example, by setting a(ynj) = ynj , b(ynj) = ynj+rj ,
and c(ynj) =

�ynj+rj�1
ynj

�
, we get the negative binomial

RFLVM with feature-specific dispersion parameter rj .

2.4 Inference for RFLVMs

We now present a general Gibbs sampling framework
for all RFLVMs. A consequence of the linearization
induced by the random features is that we can use all
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available techniques for Gibbs sampling in linear models
that are otherwise not possible for GPLVMs; and unlike
other sampling methods such as HMC, Gibbs samplers
do not require tuning parameters.

First, we write the Gibbs sampling steps to estimate the
posterior of the covariance kernel. Next, we describe
estimating the latent variable X by taking the MAP
estimate. Then, we sample the data likelihood-specific
parameters ✓ and linear coefficients �j . Variables sub-
scripted with zero, e.g., ✓0, denote hyperparameters.
While the number of mixture components may change
across sampling iterations, let K denote the number of
components in the current Gibbs sampling step. We
initialize all the parameters in our model by drawing
from the prior, except for X, which we initialize with
PCA.

First, we sample zm following Algorithm 8 from Neal
(2000). We choose to use a sampling method that
integrates out the Dirichlet process-distributed mixture
weights because such samplers can better propose new
features (Dubey et al., 2020) and therefore is more
effective at exploring the posterior behavior of the
covariance kernel. Let nk =

P
` �(z` = k), and let n�m

k
denote the same sum with zm excluded. Then we
sample the posterior of zm from the following discrete
distribution for k = 1, 2, . . . ,K:

p(zm = k | µ,⌃,W,↵) =
(

n�m
k

M�1+↵N (wm | µk,⌃k) n�m
k > 0

↵
M�1+↵

R
N (wm | µ,⌃)NIW(µ,⌃)dµd⌃ n�m

k = 0.
(10)

Given assignments z = [z1 . . . zM/2]
> and RFFs W, the

posterior of ⌃k is inverse-Wishart distributed. Given
⌃k, the posterior of µk is normally distributed (Gelman
et al., 2013):

⌃k ⇠ W�1( k, ⌫k), µk ⇠ N (mk,
1

�k
⌃k).

 k =  0 +

M/2X

m:zm=k

(wm � w̄(k))(wm � w̄(k))>

+
�0nk

�0 + nk
(wm � µ0)(wm � µ0)

>

w̄(k) =
1

nk

MX

m:zm=k

wm, ⌫k = ⌫0 + nk,

mk =
�0µ0 + nkw̄k

�0 + nk
, �k = �0 + nk.

(11)

We cannot sample from the full conditional distribution
of W, but prior work suggested a Metropolis–Hastings
(MH) sampler using proposal distribution q(W) set to
the prior p(W | z,µ,⌃) = ND(µzm ,⌃zm) (Eq. 5) and

acceptance ratio ⇢MH (Oliva et al., 2016):

w?
m ⇠ q(W) , p(W | z,µ,⌃),

⇢MH = min

(
1,

p(Y | X,w?
m,✓)

p(Y | X,wm,✓)

)
.

(12)

Finally, we sample the DP-GMM concentration pa-
rameter ↵ (Escobar and West, 1995). We augment the
model with variable ⌘ to make sampling ↵ conditionally
conjugate:

⌘ ⇠ Beta(↵+ 1,M),

⇡⌘
1� ⇡⌘

=
a↵ +K � 1

M(b↵ � log(⌘))
, K = |{k : nk > 0}| ,

↵ ⇠ ⇡⌘Ga(a↵ +K, b↵ � log(h))

+ (1� ⇡⌘)Ga(a↵ +K � 1, b↵ � log(⌘)).
(13)

For the Gaussian RFLVM (Eq. 6), let B0 = ��2S0.
We integrate out �j and ��2 in closed form to obtain
a marginal likelihood,

p(yj | X,W) =
1

(2⇡)N/2
·

s
|S0|
|SN | ·

ba0
0

baN
N

· �(aN )

�(a0)
, (14)

where SN = 'W(X)>'W(X)+S0, �N = S�1
N (�>

0 S0+
'W(X)>yj), aN = a0 + N/2, and bN = b0 +
(1/2)(y>

j yj + �>

0 S0�0 � �>

NSN�N ). See Appendix A
or Minka (2000) for details. However, inference can be
slow because marginalizing out �j introduces dependen-
cies between the latent variables, and the complexity
becomes O(NM2). Alternatively, we can Gibbs sample
�j and take the MAP estimate of X using the original
log likelihood where the complexity is O(NM).

In the Poisson RFLVM (Eq. 7), we no longer have
the option of marginalizing out �j . Instead, we take
iterative MAP estimates of �j and X. Given 'W(X),
inference for �j is analogous to Bayesian inference for
a Poisson generalized linear model (GLM). In Secs. 3.1
and 3.2, we show that, by inducing closed-form gra-
dients with respect to X through RFFs, this iterative
MAP procedure produces results that are competitive
with benchmarks on count data. For logistic RFLVMs
(Eq. 9), we use Pólya-gamma augmentation (Polson
et al., 2013) to make inference tractable. A random
variable ! is Pólya-gamma distributed with parameters
b > 0 and c 2 R, denoted ! ⇠ PG(b, c), if

!
d
=

1

2⇡2

1X

k=1

gk
(k � 1/2)2 + c2/(4⇡2)

, (15)

where d
= denotes equality in distribution and gk ⇠

Ga(b, 1) are independent gamma random variables.



Gregory W. Gundersen⇤, Michael Minyi Zhang⇤, Barbara E. Engelhardt

Figure 1: Simulated data with Gaussian emissions. (Left) Inferred latent variables for both a GPLVM and
Gaussian RFLVM. (Upper middle) Comparison of estimated fj(X) for a single feature as estimated by GPLVM
and RFLVM. (Lower middle) Comparison of MSE reconstruction error on held out Y⇤ for increasing M , where
M is the number of inducing points for GPLVM and random Fourier features for RFLVM. (Right) Ground truth
covariance matrix KX compared with the RFLVM estimation for increasing M .

The identity critical for Pólya-gamma augmentation is

(e nj )anj

(1 + e nj )bnj
= 2�bnjenj nj

Z
1

0
e�! 

2
nj/2p(!)d!,

(16)
where nj = anj � bnj/2 and p(!) = PG(! | bnj , 0).
If we define  nj = 'W(xn)>�j , then Eq. 16 allows
us to rewrite the likelihood in Eq. 8 as proportional
to a Gaussian. Furthermore, we can sample ! con-
ditioned on  nj as p(! |  nj) ⇠ PG(bnj , nj). This
enables convenient, closed-form Gibbs sampling steps
of �j , conditioned on Pólya-gamma augmentation vari-
ables !nj :

!nj | �j ⇠ PG(bnj ,'W(xn)
>�j),

�j | ⌦j ⇠ N (m!j ,V!j ),

V!j = ('W(X)>⌦j'W(X) +B�1
0 )�1,

m!j = V!j ('W(X)>j +B�1
0 �0),

(17)

where⌦j = diag([!1j . . .!Nj ]) and j = [1j . . .Nj ]>.
This technique has been used to derive Gibbs samplers
for binomial regression (Polson et al., 2013), negative
binomial regression (Zhou et al., 2012), and correlated
topic models (Chen et al., 2013; Linderman et al., 2015).
Here, we use it to derive samplers for logistic RFLVMs.

RFLVMs are identifiable up to the rotation and scale of
X. As a result, MAP estimates of X between iterations
are unaligned as they can be arbitrarily rescaled and
rotated through inference. Thus, a point estimate of
X that is a function of the Monte Carlo samples of X,

e.g., the expectation of X across the samples, will not
be meaningful. To this end, we arbitrarily fix the rota-
tion of X by taking the singular value decomposition
(SVD) of the MAP estimate, X̂ = USVT , and set-
ting X to be the left singular vectors corresponding to
the D largest singular values, X , [u1, . . . ,uD] where
diag(S) = [s1 . . . sD] and s1 � s2 � . . . � sD. Then,
we rescale X so that the covariance of the latent space
is the identity matrix. This has the effect of enforcing
orthogonality, and does not allow heteroskedasticity
in the latent dimensions. This operation is analogous
to the covariance adjustment in parameter-expanded
expectation–maximization (Liu et al., 1998) and has
been used to fix the rotation in Bayesian factor analysis
models (Ročková and George, 2016).

3 EXPERIMENTS

In our results, we refer to the Gaussian-distributed
GPLVM using inducing point methods for infer-
ence as GPLVM (Titsias and Lawrence, 2010). We
fit all GPLVM experiments using the GPy pack-
age (GPy, 2012). We refer to the Poisson-distributed
GPLVM using a double Laplace approximation as DLA-
GPLVM (Wu et al., 2017). DLA-GPLVM is designed
to model multi-neuron spike train data, and the code2

initializes the latent space using the output of a Pois-
son linear dynamical system (Macke et al., 2011), and
places a GP prior on X. To make the experiments

2https://github.com/waq1129/LMT

https://github.com/waq1129/LMT
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Figure 2: Simulated data with Poisson emissions. (Top) True latent variable X compared with inferred
latent variables X̂ from benchmarks (see text for abbreviations) and a Poisson RFLVM. (Bottom) Distance
matrices between true X and X̂ from the above benchmark (darker is farther away).

comparable for all GPLVM experiments, we initialize
DLA-GPLVM with PCA and assume xn ⇠ ND(0, I).
We refer to our GPLVM with random Fourier features
as RFLVM and explicitly state the assumed distribu-
tion. In Sec. 3.1, we use a Gaussian RFLVM with the
linear coefficients {�j}Jj=1 marginalized out (Eq. 14)
for a fairer comparison with the GPLVM.

Since hyperparameter tuning our model on each dataset
would be both time-consuming and unfair without also
tuning the baselines, we fixed the hyperparameters
across experiments. We used 2000 Gibbs sampling it-
erations with 1000 burn-in steps, M = 100, and D = 2.
We initialized K = 20 and ↵ = 1. In Sec. 3.2, we used
D = 3 and visualized X̂ after the best affine transforma-
tion onto 2-D rat positions following Wu et al. (2017).
For computational reasons, MNIST and CIFAR-10 were
subsampled (see Appendix D for details).

3.1 Simulated data

We first evaluate RFLVM on simulated data. We set
X to be a 2-D S-shaped manifold, sampled functions
F = {fj(X)}Jj=1 from a Gaussian process with an RBF
kernel, and then generated observations for Gaussian
emissions (Eq. 4) and Poisson emissions (Eq. 7). For
all simulations, we used N = 500, J = 100, and D = 2.

For these experiments, we computed the mean-squared
error (MSE) between test set observations, Y⇤, and
predicted observations Ŷ⇤, where we held out 20% of
the observations for the test set. To evaluate our latent
space results, we projected the estimated latent space,
X̂, onto the hyperplane that minimizes the squared er-
ror with the ground truth, kX� X̂Ak22, and calculated
the R2 value between the true X and the projected
latent space X̂A. We evaluated our model’s ability to
estimate the GP outputs fj(X) ⇡ 'W(X)�j by com-
paring the MSE between the estimated 'W(X̂)�j and
the true generating fj(X). We computed the mean
and standard deviation of the MSE and R2 results by

running each experiment five times.

We compared the performance of a Gaussian RFLVM
to the GPLVM. We ran these experiments across mul-
tiple values of M , where M denotes the number of
random features for the RFLVM and the number of
inducing points for the GPLVM. Both models recovered
the true latent variable X accurately and estimated
the nonlinear maps, F, well (Fig. 1, upper middle).
Empirically, a GPLVM shows better performance for
estimating Y⇤ than the RFLVM (Fig. 1, lower middle).
We hypothesize that this is because Nyström’s method
has better generalization error bounds than RFFs when
there is a large gap in the eigenspectrum (Yang et al.,
2012), which is the case for KX . However, we see that
the RFLVM approximates the true KX given enough
random features (Fig. 1, right), though perhaps less
accurately than the GPLVM (Fig. 1, lower middle).

To demonstrate the utility of our model beyond
Gaussian-distributed data, we compared results for
simulated count data from a Poisson RFLVM with
the following benchmarks: PCA, nonnegative matrix
factorization (NMF, Lee and Seung, 1999), hierarchi-
cal Poisson factorization (HPF, Gopalan et al., 2015),
latent Dirichlet allocation (LDA, Blei et al., 2003), vari-
ational autoencoder (VAE, Kingma and Welling, 2013),
deep count autoencoder (DCA, Eraslan et al., 2019),
negative binomial VAE (NBVAE, Zhao et al., 2020),
and Isomap (Balasubramanian et al., 2002). Addition-
ally, we compared results to our own naive implementa-
tion of the Poisson GPLVM that performs coordinate
ascent on X and F by iteratively taking MAP esti-
mates without using RFFs. We refer to this method
as MAP-GPLVM. We found that the Poisson RFLVM
infers a latent variable that is more similar to the true
latent structure than other methods (Fig. 2). Linear
methods such as PCA and NMF lack the flexibility
to capture this nonlinear space, while nonlinear but
Gaussian methods such as Isomap and VAEs recover
smooth latent spaces that lack the original structure.
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Figure 3: Hippocampal place cells. (Left three plots) Inferred latent space for the DLA-GPLVM and the
Poisson RFLVM. The points are colored by three major regions of the true rat position in a W-shaped maze.
(Right two plots) KNN accuracy using 5-fold cross validation and R2 performance of the best affine transformation
from X̂ onto the rat positions X. Error bars computed using five trials.

Figure 4: MNIST digits. Digits visualized in 2-D latent space inferred from DLA-GPLVM (left) and Poisson
RFLVM (right). Following Lawrence (2004), we plotted images in a random order while not plotting any images
that result in an overlap. The RFLVM’s latent space is visualized as a histogram of 1000 draws after burn-in.
The plotted points are the sample posterior mean.

The MAP-GPLVM appears to get stuck in poor local
modes (see Wu et al., 2017) because we do not have
gradients of the posterior in closed form. Both DLA-
GPLVM and RFLVM, however, do have closed-form
gradients and approximate the true manifold with sim-
ilar R2 and MSE values for X̂ and f̂j(X) (not shown).

3.2 Hippocampal place cell data

Next, we checked whether a non-Gaussian RFLVM
recovers an interpretable latent space when applied to
a scientific problem. In particular, we use an RFLVM
to model hippocampal place cell data (Wu et al., 2017).
Place cells, a type of neuron, are activated when an
animal enters a particular place in its environment.

Here, Y is an N ⇥ J matrix of count-valued spikes
where n indexes time and j indexes neurons. These
data were jointly recorded while measuring the position
of a rat in a W-shaped maze. We are interested in
reconstructing the latent positions of the rat with X.

We quantified goodness-of-fit of the latent space by
assessing how well the RFLVM captures known struc-
ture, in the form of held-out sample labels, in the low-
dimensional space. After estimating X̂, we performed
K-nearest neighbors (KNN) classification on X̂ with
K = 1. We ran this classification five times using 5-fold
cross validation. We report the mean and standard
deviation of KNN accuracy across five experiments.
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Figure 5: Yale face data set. Face data visualized in 2-D latent space using a Poisson RFLVM (left). Synthetic
faces for the Yale dataset sampled from the posterior data generating process using a Poisson RFLVM (right).

Figure 6: CIFAR-10 and MNIST images. CIFAR-10 image data set visualized in 2-D latent space using a
Poisson RFLVM (left). Synthetic digits for MNIST sampled from the posterior data generating process using a
Poisson RFLVM (right).

The Poisson RFLVM and DLA-GPLVM have similar
performance in terms of how well they cluster samples
in the latent space as measured by KNN accuracy using
regions of the maze as labels. Furthermore, the models
have similar performance in recovering the true rat po-
sitions X, measured by R2 performance (Fig. 3). While
this clustering would not be impressive for many bench-
mark datasets such as MNIST, dimension reduction for
large-scale neural recordings is an open problem (Cun-
ningham and Byron, 2014; Linderman et al., 2016; Wu
et al., 2017). These results suggest that our generalized
RFLVM framework finds structure even in empirical,
complex, non-Gaussian data and is competitive with
models built for this specific task.

3.3 Text and image data

Finally, we examine whether an RFLVM captures the
latent space of text, image, and empirical data sets.
We hold out the labels and use them to evaluate the
estimated latent space using the same KNN evalua-
tion from Sec. 3.2. Across all eight data sets, the
Poisson and negative binomial RFLVMs infer a low-
dimensional latent variable X̂ that generally captures
the latent structure as well as or better than linear
methods like PCA and NMF (Lee and Seung, 1999).
Moreover, adding nonlinearity but retaining a Gaus-
sian data likelihood—as with real-valued models like
Isomap (Tenenbaum et al., 2000), a variational au-
toencoder (VAE, Kingma and Welling, 2013), and the
Gaussian RFLVM, or even using the Poisson-likelihood
DLA-GPLVM—perform worse than the Poisson and
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Table 1: Classification accuracy evaluated by fitting a KNN classifier (K = 1) with five-fold cross validation.
Mean accuracy and standard deviation were computed by running each experiment five times.

PCA NMF HPF LDA VAE DCA

Bridges 0.8469± 0.0067 0.8664± 0.0164 0.7860± 0.0328 0.6747± 0.0412 0.8141± 0.0301 0.7093± 0.0317
CIFAR-10 0.2651± 0.0019 0.2450± 0.0028 0.2516± 0.0074 0.2248± 0.0040 0.2711± 0.0083 0.2538± 0.0178
Congress 0.5558± 0.0098 0.5263± 0.0108 0.6941± 0.0537 0.7354± 0.1018 0.6563± 0.0314 0.5917± 0.0674
MNIST 0.3794± 0.0146 0.2764± 0.0197 0.3382± 0.0370 0.2176± 0.0387 0.6512± 0.0228 0.1620± 0.0976
Montreal 0.6802± 0.0099 0.6878± 0.0207 0.6144± 0.1662 0.6238± 0.0271 0.6702± 0.0325 0.6601± 0.0997
Newsgroups 0.3896± 0.0043 0.3892± 0.0042 0.3921± 0.0122 0.3261± 0.0193 0.3926± 0.0113 0.4000± 0.0153
Spam 0.8454± 0.0037 0.8237± 0.0040 0.8719± 0.0353 0.8699± 0.0236 0.9028± 0.0128 0.8920± 0.0414
Yale 0.5442± 0.0129 0.4739± 0.0135 0.5200± 0.0071 0.3261± 0.0193 0.6327± 0.0209 0.2861± 0.0659

NBVAE Isomap DLA-GPLVM Poisson RFLVM Neg. binom. RFLVM Multinomial RFLVM

Bridges 0.7485± 0.0613 0.8375± 0.0240 0.8578± 0.0101 0.8440± 0.0165 0.8664± 0.0191 0.7984± 0.0102
CIFAR-10 0.2671± 0.0048 0.2716± 0.0056 0.2641± 0.0063 0.2789± 0.0080 0.2656± 0.0048 0.2652± 0.0024
Congress 0.8541± 0.0074 0.5239± 0.0178 0.7815± 0.0185 0.7673± 0.0109 0.8093± 0.0154 0.6516± 0.0385
MNIST 0.2918± 0.0174 0.4408± 0.0192 0.3820± 0.0121 0.6494± 0.0210 0.4463± 0.0313 0.3794± 0.0153
Montreal 0.7246± 0.0131 0.7049± 0.0098 0.2885± 0.0001 0.8158± 0.0210 0.7530± 0.0478 0.7555± 0.0784
Newsgroups 0.4079± 0.0080 0.4021± 0.0098 0.3687± 0.0077 0.4144± 0.0029 0.4045± 0.0044 0.4076± 0.0039
Spam 0.9570± 0.0045 0.8272± 0.0047 0.9521± 0.0069 0.9515± 0.0023 0.9443± 0.0035 0.9397± 0.0015
Yale 0.5261± 0.0346 0.5891± 0.0155 0.4788± 0.0991 0.6894± 0.0295 0.5394± 0.0117 0.5441± 0.0059

negative binomial RFLVMs (Tab. 1, Figs. 4, 5, 6).
The point of these results is not that RFLVMs are
the best method for every dataset, a spurious claim
given “no free lunch” theorems (Wolpert and Macready,
1997), but rather that our framework allows for the
easy implementation of a large number of practical
non-conjugate GPLVMs. Thus, RFLVMs are useful
when first performing nonlinear dimension reduction
on non-Gaussian data. We posit that our improved
performance is because the generating process from the
latent space to the observations for these data sets is
(in part) nonlinear, non-RBF, and integer-valued. See
Appendix D.3 for wall-time experiments for the models
in Table 1.

4 CONCLUSION

We presented a framework that uses random Fourier
features to induce computational tractability between
the latent variables and GP-distributed maps in Gaus-
sian process latent variable models. Our approach
allows the Gaussian model to be extended to arbitrary
distributions, and we derived an RFLVM for Gaus-
sian, Poisson and logistic distributions. We described
distribution-specific inference techniques for each pos-
terior sampling step. Our empirical results showed that
each was competitive in downstream analyses with ex-
isting distribution-specific approaches on diverse data
sets including synthetic, image, text, and multi-neuron
spike train data. We are particularly interested in
exploring extensions of our generalized RFLVM frame-
work to more sophisticated models such as extending
GP dynamic state-space models (Ko and Fox, 2011)
to count data and neuroscience applications, which

assume temporal structure in X.

RFLVMs have a number of limitations that motivate
future work. First, the latent variables are unidentifi-
able up to scale and rotation. Our rescaling procedure
(Sec. 2.4) does not allow heteroscedastic dimensions
and enforces orthogonality between the Gaussian latent
variables. This prevents the use of more structured
priors, such as a GP prior on X, since any inferred
structure is eliminated between iterations. We are in-
terested in adopting constraints from factor analysis
literature to address the identifiability issues without
a restrictive rescaling procedure (Erosheva and Cur-
tis, 2011; Millsap, 2001; Ghosh and Dunson, 2009).
Second, label switching in mixture models is a well-
studied challenge that is present in our model. Enforc-
ing identifiability may improve inference and model
interpretability (Stephens, 2000). In this work, we
focused on distributions in the exponential family be-
cause this class is both ubiquitous and well-studied.
However, we do not see obvious obstacles to extending
our approach to data likelihoods outside the exponen-
tial family, as we only need closed-form gradients to
learn the latent space. Finally, our model has a number
of hyperparameters such as the latent dimension, the
number of random Fourier features, and the number of
Gibbs sampling iterations. Both simplifying the model
and estimating these hyperparameters from data are
two important directions to improve the usability of
RFLVMs.
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