
Xiangyu Guo, Janardhan Kulkarni, Shi Li, Jiayi Xian

A Proof of Theorem 5

In this section we prove Theorem 5.

Theorem 5. Let S and S∗ be two sets of medians
with |S| = |S∗| = k. Suppose p, ρ ≥ 0, and ` ≥ 1 is an
integer. If there are no ρ-efficient `-swaps on S w.r.t
the penalty cost p, then we have

costp(S) ≤
∑

j∈C
min

{(
3 +

2

`

)
dp(j, S

∗),

(
1 +

1

`

)
p

}

+ kρ.

Proof. By making copies of medians, we assume S and
S∗ are disjoint. For every j ∈ C, define σ(j) and σ∗(j)
to be the closest median of j in S and S∗ respectively.
Let O∗ =

{
j : dp(j, S

∗) ≥ `+1
3`+2p

}
; these are the points

j with min
{(

3+ 2
`

)
dp(j, S

∗),
(
1+ 1

`

)
p
}

=
(
1+ 1

`

)
p. For

every i∗ ∈ S∗, define φ(i∗) to be the nearest median
of i∗ in S, according to the metric dp, breaking ties
arbitrarily. We partition S into three parts as follows:

• S0 := {i ∈ S : φ−1(i) = ∅}.
• S1 := {i ∈ S : 1 ≤ |φ−1(i)| ≤ `}.
• S+ := {i ∈ S : |φ−1(i)| > `}.
Let S∗1 := φ−1(S1) (which is defined as

⋃
i∈S1

φ−1(i))

and S∗+ := φ−1(S+); thus (S∗1 , S
∗
+) is a partition of S∗.

Moreover,|S1| ≤ |S∗1 | and |S+| ≤ |S∗+|/(` + 1). This
implies

|S0| = k − |S1| − |S+|
≥ (|S∗1 | − |S1|) + (k − |S∗1 |)− |S∗+|/(`+ 1)

= (|S∗1 | − |S1|) + |S∗+| − |S∗+|/(`+ 1)

= |S∗1 | − |S1|+
`

`+ 1
|S∗+|. (1)

We define a random mapping β : S∗ → S0 ∪ S1 in the
following way. See Figure i for the illustration of the
procedure. We first define β over S∗1 . For every i ∈ S1,
we take an arbitrary i∗ ∈ φ−1(i) and define β(i∗) = i;
for all other facilities i∗′ in φ−1(i), we define β(i∗′) to
be an arbitrary median in S0. So, |S1| medians in S∗1
are mapped to S1 by β and the remaining |S∗1 | − |S1|
facilities in S∗1 are mapped to S0. By (1), we can make
β restricted to S∗1 an injective function. Moreover, at
least `

`+1 |S∗+| facilities in S0 do not have preimages so
far; call the facilities free facilities. Then, we map S∗+
to these free facilities in a random way so that each free
facility is mapped to at most twice and in expectation,
each free facility in expectation has at most

(
1 + 1

`

)

pre-images in the function β.

With the random β defined, we describe a set of test
swaps that will be used in our analysis. For every i ∈

S0 S1 S+

S∗
1 S∗

+

Figure i: The definition of the function β. The ver-
tices at the top are S, the vertices at the bottom S∗,
` = 3, and the dashed lines give the definition of φ.
Then S0, S1, S+, S

∗
1 , S

∗
+ are depicted in the figure, and

a possible function β is given by the solid lines and
curves.

S1, we have a test swap (φ−1(i), β(φ−1(i))). For every
i∗ ∈ S∗+, we have a test swap ({i∗}, {β(i∗)}). It is easy
to see that each test swap (A∗, A) has A∗ ⊆ F ∗, A ⊆ F
and |A∗| = |A| ≤ `. Moreover, we have the following
properties:

(P1) Every median in i∗ ∈ S∗ is swapped in exactly
once in all test swaps.

(P2) In expectation over all possible β’s, every median
in i ∈ S is swapped out at most 1 + 1

` times in
the test swaps.

(P3) For any test swap (A∗, A), we have φ−1(A) ⊆ A∗.
(P1) and (P2) follow from the construction of β. To
see (P3), consider the two types of test swaps. If the
test swap is ({i∗}, {β(i∗)}) for some i∗ ∈ S∗+, then
β(i∗) ∈ S0 and thus φ−1(β(i∗)) = ∅. If the test swap
is (φ−1(i), β(φ−1(i))) for some i ∈ S1, then β(φ−1(i))
contains i and all the other elements in the set are in
S0. Thus φ−1(β(φ−1(i))) = φ−1(i).

Focus on a fixed test swap (A∗, A). After opening A∗

and closing A, we can reconnect a subset of points in
σ−1(A) ∪ σ∗−1(A∗). We guarantee that all points in
σ−1(j) will be reconnected. See Figure ii for how we
reconnect the points.

• For a point j ∈ σ∗−1(A∗) \O∗, we reconnect j from
σ(j) to σ∗(j) ∈ A∗. The decrease in the connection
cost of j is dp(j, σ(j)) − dp(j, σ

∗(j)) = dp(j, S) −
dp(j, S

∗).

• For a point j ∈ σ−1(A)\σ∗−1(A∗)\O∗, we reconnect
j to φ(σ∗(j)). Notice that σ∗(j) /∈ A∗. By (P3), we
have φ(σ∗(j)) /∈ A. Thus the connection is valid.
By triangle inequalities and definition of φ, for every

Consistent k-Median: Simpler, Better and Robust

O∗

σ−1(A)
σ∗−1(A∗)

reconnect to σ∗(j)

decrease = dp(j, S)− dp(j, S
∗)

reconnect arbitrarily

decrease ≥ −2dp(j, S
∗)

decrease ≥ dp(j, S)− p

reconnect to φ(σ∗(j))

Figure ii: How to reconnect points and the lower bound for the decrement in the connection cost for each point
j, using the Venn diagram for the three sets σ−1(A), σ∗−1(A∗) and O∗.

j ∈ σ−1(A) \ σ∗−1(A∗) \O∗, we have

dp(j, φ(σ∗(j)))

≤ dp(j, σ∗(j)) + dp(σ
∗(j), φ(σ∗(j)))

≤ dp(j, σ∗(j)) + dp(σ
∗(j), σ(j))

≤ dp(j, σ∗(j)) + dp(j, σ
∗(j)) + dp(j, σ(j))

= 2dp(j, σ
∗(j)) + dp(σ(j), j).

So the decrease in the connection cost of j is
dp(j, σ(j)) − dp(j, φ(σ∗(j))) ≥ −2dp(j, σ

∗(j)) =
−2dp(j, S

∗).

• For a point j ∈ σ−1(A) ∩ O∗, we reconnect j arbi-
trarily, and the decrease in the connection cost of j
is at least dp(j, σ(j)) − p = d(j, S) − p as p is the
diameter of the metric dp.

As the test swap operation is not ρ-efficient, we have

∑

j∈σ∗−1(A∗)\O∗
(dp(j, S)− dp(j, S∗))−

2
∑

j∈σ−1(A)\O∗
dp(j, S

∗) +
∑

j∈σ−1(A)∩O∗
(dp(j, S)− p)

≤ |A|ρ. (2)

Above, we used that that σ−1(A) \ σ∗−1(A∗) \ O∗ ⊆
σ−1(A) \O∗.
We now add up (2) over all test swap operations. We
consider the expectation of the left side of the summa-
tion, over all random choices of β:

• The sum of the first term on the left side of (2) is
always exactly

∑
j∈C\O∗

(
dp(j, S) − dp(j, S∗)

)
, due

to (P1).

• Consider the expectation of the sum of the second
term on the left side of (2). Since each i ∈ S is
swapped out in at most 1 + 1

` times in expectation
by (P2), the expectation of the sum of the second
term is at least −

(
2 + 2

`

)∑
j∈C\O∗ dp(j, S

∗).

• Consider the expectation of the sum of the third
term on the left side of (2). Using that dp has diam-
eter at most p, and (P2), the expectation is at least(
1 + 1

`

)∑
j∈O∗(dp(j, S) − p) ≥ ∑

j∈O∗ dp(j, S) −(
1 + 1

`

)
|O∗|p. We changed the coefficient before a

non-negative term from
(
1 + 1

`

)
to 1 in the inequal-

ity; this is sufficient.

Overall, the expectation of the sum of the left side of
(2) over all test swap operations is at least

∑

j∈C\O∗

(
dp(j, S)− dp(j, S∗)

)

−
(

2 +
2

`

) ∑

j∈C\O∗
dp(j, S

∗)

+
∑

j∈O∗
dp(j, S)−

(
1 +

1

`

)
|O∗|p

=
∑

j∈C
dp(j, S)−

(
3 +

2

`

) ∑

j∈C\O∗
dp(j, S

∗)

− |O∗| ·
(

1 +
1

`

)
p

=
∑

j∈C
dp(j, S)−

∑

j∈C
min

{(
3 +

2

`

)
dp(j, S

∗),

(
1 +

1

`

)
p

}
,

Xiangyu Guo, Janardhan Kulkarni, Shi Li, Jiayi Xian

where the last equality used the definition of O∗.

The summation of the right side of (2) over all test
swaps is always exactly kρ. Therefore, we have

∑

j∈C
dp(j, S)−

∑

j∈C
min

{(
3 +

2

`

)
dp(j, S

∗),
(
1 +

1

`

)
p

}

≤ kρ.

Rearranging the terms and replacing
∑
j∈C dp(j, S)

with costp(S) finish the proof of the theorem.

B Experiments

In this section, we corroborate our theoretical findings
by performing experiments on real world datasets8.
Our goal is to empirically show that the local search
algorithm is stable and does few reclusterings, while
maintaining a good approximation factor.

Algorithm implementation: We modified our algo-
rithm slightly to make it faster: when a new data point
comes, instead of conducting local search directly, we
assign the point to its nearest center; then we check
whether the current cost is at least (1 + α) times the
cost resulting from the last application of local search,
and if not we continue to the next data point with-
out doing any local operations. It is easy to see that
this will increase our approximation ratio by a (1 +α)
factor. Though this modification doesn’t improve our
worst-case recourse bound, it reduces the number of
local operations needed when the incoming data are
non-adversarial, which is often the case in practice.
Throughout the experiment we set α = 0.2.

Data set and parameter setting: We follow the ex-
periment setting in Lattanzi and Vassilvitskii (2017).
The algorithm is tested on three UCI data sets Lich-
man (2013): (i) Skin with 245, 057 data points of di-
mension 4; (ii) Covertype with 581, 012 data points
of dimension 54; In the experiment we’ll only use the
first 10 features of Covertype because other features
are categorical. (iii) Letter with 20, 000 data points
of dimension 16. To keep the duration of experiments
short, we restrict the experiments to the first 10K data
points in each data set. We set the algorithm pa-
rameters ε = 0.05 and γ = 1; these were chosen to
minimize the number of discarded outliers. We set
the available center locations F = C, so when a new
data point comes, it will be added to both F and C.
Throughout the experiment, we set the number of out-
liers to be z = 200, and tried three different values of
k ∈ {10, 50, 100}. We observe that in all the runs, our
algorithm removes at most 840 outliers, hence achiev-

8The code can be found at https://github.com/
xyguo/OnlineKZMedian

ing an approximation factor of 4.2 on the number of
discarded outliers.

Results: We first show the how the recourse grows
overtime in Figure iii. One can observe that the re-
course dependence on k is roughly O(k log n) instead
of the O(k2 log n log(nD)) worst-case bound predicted
by our theoretical result. We also observe that the
growth rate of recourse is lower for Covertype and
Letter data sets compared to Skin. This is because
of the data ordering in Skin; if we randomly shuffle
the Skin data set and re-run the algorithm then we
get a graph similar to the other two data sets.

Now we turn to the quality of clustering maintained
by our algorithm. Since the optimal solution is hard
to compute, we follow the setting of Lattanzi and Vas-
silvitskii (2017) and use the clustering produced by of-
fline k-means−− algorithmChawla and Gionis (2013)
as an coarse estimation of OPT. Specifically, for every
50 newly-arrived data points, we compute 5 offline k-
means−− solutions (with different initializations) for
all already arrived data points, and choose the best one
as the estimation for OPT at this time point. Then we
linearly interpolate between these estimations to get
an OPT curve for every time point. Figure iv shows
the estimated approximation ratio over time. We see
that the ratio is bounded by 1.5 most of the times. One
might notice that the ratio sometimes even falls below
1. This is because of two reasons: 1) we only have an
estimate of the real OPT; 2) the bi-criteria approxi-
mation means our algorithm might remove more than
z outliers, while the OPT is calculated by removing at
most z outliers.

Results for incremental-z: In practice it might be
more reasonalbe to allow the number of outliers grow
with the amount of accumulated data. Here we include
experiment results for this setting. We let z grow uni-
formly as follows: we still focus on the first 10K data
points, and for each time point t ∈ [1, 10000], we set
the number of allowed outliers zt = t

10000 × 200. So
as more data points come, we allow to remove more
outliers. All other parameters are the same as before:
ε = 0.05, γ = 1, k ∈ {10, 50, 100}, and available center
locations F = C.

Figure v shows how the total recourse grows with
time. One can see that it’s largely the same as that
in Figure iii, exhibiting an O(k) dependence on k and
O(log n) dependence on n. The major difference is
that the recourse starts growing in very early time
stages, while in Figure iii there’s a longer warm-up
phase. This is because in the setting of Figure iii the
algorithm is allowed to remove roughly 4z = 800 out-
liers from the beginning, which means it can simply
ignore the first few hundred arrived data points and

Consistent k-Median: Simpler, Better and Robust

102 103 104

n: #points arrived

0

500

1000

re
co

ur
se

k = 10

k = 50

k = 100

(a) Skin

102 103 104

n: #points arrived

0

500

1000

1500
k = 10

k = 50

k = 100

(b) Covertype

102 103 104

n: #points arrived

0

200

400

600

800
k = 10

k = 50

k = 100

(c) Letter

Figure iii: Recourse over time. The x-axis is plotted in the log-scale

0 2000 4000 6000 8000 10000

n: #points arrived

0.00

0.25

0.50

0.75

1.00

ap
pr

ox
.

ra
ti

o

k = 10

k = 50

k = 100

(a) Skin

0 2000 4000 6000 8000 10000

n: #points arrived

0.0

0.5

1.0

k = 10

k = 50

k = 100

(b) Covertype

0 2000 4000 6000 8000 10000

n: #points arrived

0.0

0.5

1.0

k = 10

k = 50

k = 100

(c) Letter

Figure iv: Estimated approximation ratio over time.

102 103 104

n: #points arrived

500

1000

1500

re
co

ur
se

k = 10

k = 50

k = 100

(a) Skin

102 103 104

n: #points arrived

0

1000

2000

k = 10

k = 50

k = 100

(b) Covertype

102 103 104

n: #points arrived

500

1000
k = 10

k = 50

k = 100

(c) Letter

Figure v: Incremental-z setting: Recourse over time. The x-axis is plotted in the log-scale

0 2000 4000 6000 8000 10000

n: #points arrived

0.0

0.5

1.0

ap
pr

ox
.

ra
ti

o

k = 10

k = 50

k = 100

(a) Skin

0 2000 4000 6000 8000 10000

n: #points arrived

0.0

0.5

1.0

k = 10

k = 50

k = 100

(b) Covertype

0 2000 4000 6000 8000 10000

n: #points arrived

0.0

0.5

1.0

k = 10

k = 50

k = 100

(c) Letter

Figure vi: Incremental-z setting: Estimated approximation ratio over time.

Xiangyu Guo, Janardhan Kulkarni, Shi Li, Jiayi Xian

conduct no local operations, i.e., no recourse. Fig-
ure vi shows the clustering quality on the three data
sets. One can see that our algorithm still achieves very
good approximation ratio (nearly 1) on all three data
sets.

