
A ADDITIONAL PRELIMINARIES

Concatenation. We denote the concatenation of
paths by ⊕, so that for a path p = 〈V1, V2, . . . , Vm〉,
p = p(V1, Vr)⊕ p(Vr, Vm), for 1 ≤ r ≤ m.

Probabilistic implications of d-separation. Let
f be any observational density over X consistent with
an MPDAG G = (V,E,U). Let A, Y and Z be pairwise
disjoint node sets in V . If A and Y are d-separated
given Z in G, then XA and XY are conditionally inde-
pendent given XZ in the observational density f (Lau-
ritzen et al., 1990; Pearl, 2009). Hence, all DAGs that
encode the same d-separation relationships also encode
the same conditional independences and are therefore
Markov equivalent.

Buckets and bucket decomposition (Perković,
2020). A node set A, A ⊆ V is an undirected con-
nected set in G = (V,E,U) if for every two distinct
nodes Ai, Aj ∈ A, Ai− · · · −Aj is in G. If node set B,
B ⊆ D ⊆ V , is a maximal undirected connected subset
of D in G = (V,E,U), we call B a bucket in D. Addi-
tionally, D can be partitioned into D = D1 ∪· · ·∪DK ,
where each Dk, k ∈ {1, . . . ,K} is a bucket in D and
Di ∩Dj = ∅ for i 6= j. We call the above partitioning
of D into buckets the bucket decomposition. Further-
more, D1, . . . , DK can be ordered in such a way that
if D1 → D2 and D1 ∈ Di, D2 ∈ Dj , then i < j; see
PCO algorithm of Perković (2020).

Lemma A.1 (Rules of the do-calculus, Pearl, 2009).
Let A, Y, Z and W be pairwise disjoint (possibly
empty) node sets in causal DAG D = (V,E, ∅). Let
DA denote the graph obtained by deleting all edges
into A from D. Similarly, let DA denote the graph
obtained by deleting all edges out of A in D and let
DAZ denote the graph obtained by deleting all edges
into A and all edges out of Z in D.

Rule 1. If Y ⊥DA
Z|A∪W , then f(xy|do(xa), xw) =

f(xy|do(xa), xz, xw).

Rule 2. If Y ⊥DAZ
Z|A ∪ W , then

f(xy|do(xa),do(xz), xw) = f(xy|do(xa), xz, xw).

Rule 3. If Y ⊥D
AZ(W )

Z|A ∪ W , then

f(xy|do(xa), xw) = f(xy|do(xa), xz, xw), where
Z(W ) = Z \An(W,DA).

Lemma A.2 (Lemma 3.6 of Perković et al., 2017).
Let A and Y be distinct nodes in a MPDAG G. If
p is a possibly causal path from A to Y in G, then a
subsequence p∗ of p forms a possibly causal unshielded
path from A to Y in G.

Lemma A.3 (Wright’s rule, Wright, 1921). Let X =
AX + ε, where A ∈ Rp×p, X = XV , |V | = p,
and ε = (ε1, . . . , εp)T is a vector of mutually inde-

pendent errors with means zero and proper variance
such that var(Xi) = 1, for all i ∈ {1, . . . , p}. Let
D = (V,E, ∅), be the corresponding DAG For two dis-
tinct nodes i, j ∈ V , let p1, . . . , pk be all paths between
i and j in D that do not contain a collider. Then
cov(Xi, Xj) =

∑k
r=1 πr, where πr is the product of all

edge coefficients along path pr, r ∈ {1, . . . , k}.
Lemma A.4. (See, e.g., Mardia et al., 1980, Theo-
rem 3.2.4) Let X = (X1, X2) be a p-dimensional mul-
tivariate Gaussian random vector with mean vector

µ = (µ1, µ2) and covariance matrix Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

so that X1 is a q-dimensional multivariate Gaussian
random vector with mean vector µ1 and covariance
matrix Σ11 and X2 is a (p − q)-dimensional multi-
variate Gaussian random vector with mean vector µ2

and covariance matrix Σ22. Then E[X2|X1 = x1] =
µ2 + Σ21Σ−111 (x1 − µ1).

Algorithm 1: MPDAG (see also Meek, 1995 and Al-
gorithm 1 of Perković et al., 2017)

input : MPDAG G, set of background knowledge
edge orientations R.

output: MPDAG G′ or FAIL.

1 Let G′ = G;
2 while R 6= ∅ do
3 Choose an edge {U → V } in R;
4 R = R \ {U → V };
5 if {U − V } or {U → V } is in G′ then
6 Orient {U → V } in G′;
7 Iterate the rules in Figure 3 of the main

text until no more can be applied;
8 else
9 FAIL;

10 end

11 end
12 return G′;

B PROOFS OF MAIN RESULTS

Proof of Theorem 2. Let p = 〈A1, V1, . . . , Vk =
Y1〉, k ≥ 1, A1 ∈ A, Y1 ∈ Y . If k = 1, that is, A1 − Y1
is in G, the proposition clearly holds. Hence, we will
assume k > 1. Suppose for a contradiction that there
is an MPDAG G∗ represented by G such that A1−V1 is
in G∗ and that the total effect of A on Y is identified in
G∗. Further, let p∗ be the path in G∗ that corresponds
to path p in G, so that p and p∗ are both sequences of
nodes 〈A1, V1, . . . , Vk = Y1〉, k > 1.

Since the total effect of A on Y is identified in G∗, and
because p∗ is a proper path from A to Y that starts
with an undirected edge in G∗, by Theorem 1, p∗ must



be a non-causal path from A1 to Y1 in G∗. We show
that this implies that A1−V1 ← V2 and A1 → V2 are in
G∗, which contradicts that G∗ is an MPDAG (because
orientations in G∗ are not complete with respect to R2
in Figure 3 of main text).

We first show that any existing edge between A1 and
Vi, i ∈ {2, . . . , k} in G is of the form A1 → Vi. Suppose
that there is an edge between A1 and Vi, in G. This
edge is cannot be of the form A1 ← Vi, since that
would imply that p is a non-causal path in G. This edge
also cannot be of the form A1 − Vi, because otherwise
we can concatenate A1− Vi and p(Vi, Y1) to construct
a proper possibly causal path from A to Y in G that is
shorter than p. Hence, any existing edge between A1

and Vi must be of the form A1 → Vi in G and G∗.

Next, we show that p∗(V1, Y1) starts with edge V1 ←
V2 in G. Since p is chosen as a shortest proper possibly
causal path from A to Y that starts with an undirected
edge in G, p(V1, Y1) is a proper possibly causal definite
status path in G (Lemma A.2). Then p∗(V1, Y1) is also
a path of definite status in G∗. Additionally, since
p(V1, Y1) is a possibly causal definite status path in G,
there cannot be any collider on p∗(V1, Y1).

Furthermore, p∗ is a non-causal path, A1−V1 is in G∗,
and any edge between A1 and Vi, i ∈ {2, . . . , k} is of
the form A1 → Vi, so p∗(V1, Y1) must be a non-causal
path from V1 to Y . Since p∗(V1, Y1) is a non-causal
definite status path without any colliders, it must start
with an edge into V1, that is V1 ← V2 is on p∗(V1, Y1)
in G∗. Then A1 − V1 ← V2 is in G∗.

Now, p∗(A1, V2) is of the form A1−V1 ← V2, so for G∗
to be an MPDAG, 〈A1, V2〉 is in G∗ (R1 in Figure 3).
Then A1 → V2 → V1 and A1 − V1 are in G∗, which by
R2 in Figure 3 contradicts that G∗ is an MPDAG. �

Proof of Theorem 3. Statement (iii) directly fol-
lows from the construction of the algorithm. State-
ment (i) follows from the construction of the algorithm
and Theorem 1.

Now we prove statement (ii). The proof follows a sim-
ilar reasoning as the proof of Theorem 2 of Shpitser
and Pearl (2006), proof of Theorem 57 of Perković
et al. (2018) and proof of Proposition 3.2. of Perković
(2020).

Suppose for a contradiction that |L| ≥ 2 and let G1 and
G2 be two different MPDAGs in L. Since G1 and G2
are both represented by G, any observational density
f consistent with G is also consistent with G1 and G2
due to Markov equivalence.

Let [G] denote the set of DAGs represented by G. Let
f1(xY |do(xA)) denote the density of XY under the
intervention do(XA = xA) computed from f(x) as-

suming that the causal DAG belongs to [G1]. Anal-
ogously, let f2(xY |do(xA)) denote the density of XY

under the intervention do(XA = xA) computed from
f(x) assuming that the causal DAG belongs to [G2].
For the above interventional densities of XY to dif-
fer, it suffices to show that E1[XY |do(XA = 1)] 6=
E2[XY |do(XA = 1)], where do(XA = 1) indicates a
do intervention that sets the value of every variable in-
dexed by A to 1, and E1 and E2 correspond to f1 and
f2 respectively. Furthermore, it suffices to show that
there is a node Y1 ∈ Y such that E1[XY1 |do(XA =
1)] 6= E2[XY1 |do(XA = 1)].

The stages of this proof are as follows. First, we
will establish some graphical differences between G1
and G2 that stem from the application of Theorem
2 in the IDGraphs algorithm (Algorithm 1 in the
main text). These graphical differences will be cat-
egorized as cases (i) and (ii) in Lemma B.1 below.
Then, for each case, we will construct a linear causal
model with Gaussian noise that imposes an observa-
tional density f(x) consistent with G1 and G2 such that
E1[XY1

|do(XA = 1)] 6= E2[XY1
|do(XA = 1)], which

gives us the desired contradiction.

First, we establish the pertinent graphical differences
between G1 and G2. For this purpose, let R1 and R2

be the list of edge orientations that were added to G to
construct G1 and G2 by the IDGraphs algorithm. That
is G1 = MPDAG(G, R1) and G2 = MPDAG(G, R2).
Without loss of generality, suppose that the edge ori-
entations in R1 and R2 are listed in the order that they
were added by the IDGraphs algorithm.

By construction ofR1 andR2, there is at least one edge
whose orientation differs between R1 and R2. Without
loss of generality, let A1 → V1, A1 ∈ A, V1 ∈ V \ A
be the first edge in R1 such that A1 ← V1 is in R2.
Also, let R∗ be the list of edge orientations that come
before A1 → V1 in R1 and let G∗ = MPDAG(G, R∗).
Then by Theorem 2, the total effect of A on Y is not
identified given G∗.

Among all the shortest proper possibly causal paths
from A to Y that start with an undirected edge in G∗,
choose p∗ as one that starts with A1−V1, p∗ = 〈A1 =
V0, V1, . . . , Vk = Y1〉, Y1 ∈ Y . Let p1 be the path in a
DAG D1 in [G1] that consists of the same sequence of
nodes as p∗ in G∗. Analogously, let p2 be the path in
a DAG D2 in [G2] that consists of the same sequence
of nodes as p∗.

By Lemma B.1 we have the following cases:

(i) if p∗ is unshielded in G∗, then p1 is of the form
A1 → V1 → · · · → Y1, and p2 starts with edge
A1 ← V1.

(ii) if p∗ is a shielded path in G∗, then A1 → Vi, i ∈
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(b)

Figure B.1: DAGs (a) D11 and (b) D21 corresponding
to (i) in the Proof of Theorem 3.

{1, . . . , r}, 2 ≤ r ≤ k, is in G∗, p2 is of the form
A1 ← V1 → · · · → Vr → · · · → Y1, and

(a) p1 is of the form
A1 → V1 → · · · → Vr → · · · → Y1, or

(b) p1 is of the form
A1 → V1 ← · · · ← Vl → · · · → Y1, 2 ≤ l ≤ r.

We will now show how to choose a linear causal
model consistent with G1 and G2 in each of the
above cases that results in E1[XY1 |do(XA = xA)] 6=
E2[XY1

|do(XA = xA)].

(i) Consider a multivariate Gaussian density over X
with mean zero, constructed using a linear causal
model with Gaussian noise consistent with D1 and
thus, also G1 (due to Markov equivalence). We define
the linear causal model in such a way that all edge co-
efficients except for the ones on p1 are 0, and all edge
coefficients on p1 are in (0, 1) and small enough so that
we can choose the error variances in such a way that
var(Xi) = 1 for every i ∈ V .

The density f(x) generated in this way is consistent
with D1 and thus also consistent with G1 and G2 (Lau-
ritzen et al., 1990). Moreover, f(x) is consistent with
DAG D11 that is obtained from D1 by removing all
edges except for the ones on p1; see Figure B.1(a).
Additionally, D11 is Markov equivalent to DAG D21,
which is obtained from D2 by removing all edges ex-
cept for those on p2; see Figure B.1(b). Hence, f(x) is
also consistent with D21.

Let f1(xY1
|do(xA)) be an interventional density ofXY1

under the intervention do(XA = xA) that is consistent
with D11 (and D1). By Rules 3 and 2 of the do-calculus
(Lemma A.1), we have

f1(xY |do(xA)) = f1(xY |do(xA1
)) = f(xY |xA1

).

So E1[XY1
|do(XA = 1)] =

∫
xY1

f(xY |XA1
=

1) dxY1 = cov(XY1 , XA1) = a by Lemma A.4. Ad-
ditionally, by Lemma A.3, a is equal to the product of
all edge coefficients along p1 and so a ∈ (0, 1).

Similarly, let f2(xY1 |do(xA)) be an interventional den-
sity of XY1

consistent with D21 (and D2). Then
f2(xY1

|do(xA)) = f(xY1
) by Rule 3 of Lemma A.1.

Hence, E2[XY1
|do(XA = 1)] = E[XY1

] = 0. Since
a 6= 0, this completes the proof for case (i).

(ii) Consider a multivariate Gaussian density over X
with mean zero, constructed using a linear causal

A1 V1 V2 · · · Vr · · · Y1

· · ·

(a)

A1 V1 V2 · · · Vr · · · Y1

· · ·

(b)

A1 V1 V2 Vl Vr Y1

· · · · · ·

(c)

Figure B.2: DAGs (a) D22, (b) D11, and (c) D12 corre-
sponding to (ii)a and (ii)b in the proof of Theorem 3.

model with Gaussian noise consistent with D2. We
define the causal model in a way such that all edge
coefficients except for the ones on p2 and A1 → Vi,
i ∈ {2, . . . , r} are 0, and all edge coefficients on p2 and
A1 → Vi are in (0, 1) and small enough so in such a
way that var(Xi) = 1 for all i ∈ V .

The density f(x) generated in this way is consistent
with D2 and G2 (Lauritzen et al., 1990). Moreover,
f(x) is consistent with DAG D22 that is obtained from
D2 by removing all edges except for the ones on p2 and
A1 → Vi, i ∈ {2, . . . , r}, 2 ≤ r ≤ k; see Fig. B.2(a).
Let f2(xY1

|do(xA)) be an interventional density ofXY1

under the intervention do(XA = xA) that is consistent
with D22 (and also D2).

We now have

f2(xY1
|do(xA))

= f2(xY1
|do(xA1

))

=

∫
f(xY1

|do(xA1
), xV1

)f(xV1
|do(xA1

)) dxV1

=

∫
f(xY1 |xA1 , xV1)f(xV1) dxV1 .

(1)

The first line follows using Rule 3 of the do-calculus,
and the third line follows from an application of Rule
2 and Rule 3; see Lemma A.1.

We now compute E2[XY1 |do(XA = 1)]. For sim-
plicity, we will use shorthands cov(XY1

, XA1
) = a,

cov(XY1
, XV1

) = b and cov(XA1
, XV1

) = c. Now, us-



ing Lemma A.4 and Eq. (1), we have

E2[XY1
|do(XA = 1)]

=

∫
E[XY1

|XA1
= 1, XV1

= xV1
]f(xV1

) dxV1

=

∫ [
a b

] [1 c
c 1

]−1 [
1
xV1

]
f(xV1

) dxV 1

=

∫
1

1− c2
[
a b

] [ 1 −c
−c 1

] [
1
xV1

]
f(xV1

) dxV 1

=
a− bc
1− c2

+
−ac+ b

1− c2
E[XV1

] =
a− bc
1− c2

.

Now, consider the cases (ii)a and (ii)b. Note that f(x)
is also consistent with D1, G1 and a DAG that is ob-
tained from D1 by removing all edges except for the
ones on p1 and A1 → Vi, i ∈ {2, . . . , r} (Lauritzen
et al., 1990). Depending on case (ii)a or (ii)b, this will
be either DAG D11 in Figure B.2(b) or DAG D12 in
Figure B.2(c).

Let f11(xY1 |do(xA)) and f12(xY1 |do(xA)) be the inter-
ventional densities of XY1

that are consistent with D11

and D12, respectively. Note that f11(xY1
|do(xA)) =

f12(xY1
|do(xA)) since

f11(xY1 |do(xA))

= f11(xY1 |do(xA1))

= f(xY1 |xA1)

= f(xY1 |xA) = f12(xY1 |do(xA)).

(2)

The first two equalities above follow from Rule
3 and Rule 2 of the do-calculus, while the third
and forth follow from Rule 1 and Rule 2; see
again Lemma A.1. Hence, f1(xY1 |do(xA)) =
f11(xY1 |do(xA)) = f12(xY1 |do(xA)).

Using Equation (2) and Lemma A.4, we have
E1[XY1 |do(XA = 1)] = E[XY1 |XA1 = 1] =
cov(XY1

, XA1
) = a. To show that E1[XY1

|do(XA =
1)] 6= E2[XY1

|do(XA = 1)], we need only to show that
a 6= (a− bc)/(1− c2).

We will show that b > ac and c > 0, which leads to
a − bc < a − ac2, that is (a − bc)/(1 − c2) < a. To
show b > ac and c > 0, we need to discuss a, b and c
in terms of the original linear causal model.

By Lemma A.3, we have that c = cov(XA1
, XV1

) is
equal the edge coefficient assigned to A1 ← V1 in D21,
and hence c ∈ (0, 1). Let a1 be the product of edge co-
efficients on p2(V1, Y1) and let ai be the product of edge
coefficients along 〈A1, Vi〉 ⊕ p2(Vi, Y1), i ∈ {2, . . . , r}.
Then ai ∈ (0, 1) for all i ∈ {1, . . . , r}. By Lemma A.3,
we now have

a = cov(XY1 , XA1) = c · a1 + a2 + · · ·+ ar,

b = cov(XY1 , XV1) = a1 + c · (a2 + · · ·+ ar),

which yields b − ac = a1(1 − c2) > 0, completing the
proof. �

Lemma B.1. Suppose that the total effect of A on
Y is not identified given MPDAG G. Let p = 〈A1 =
V0, V1, . . . , Vk = Y1〉, k ≥ 1, A1 ∈ A, Y1 ∈ Y , be
a shortest proper possibly causal path from A to Y
in G. Let G1 = MPDAG(G, {A1 → V1}) and G2 =
MPDAG(G, {A1 ← V1}). Let p1 and p2 be the paths
in G1 and G2 respectively, that consist of the same
sequence of nodes as p in G.

(i) If p is an unshielded path in G, then

• p1 is of the form A1 → V1 → · · · → Y1, and

• p2 is of the form A1 ← V1 . . . Y1.

(ii) If p is a shielded path in G, then

• A1 → Vi is in G for all i ∈ {2, . . . , r}, r ≤ k,
k > 1,

• p2 is of the form A1 ← V1 → · · · → Y ,

• Let D1 be a DAG in [G1] and let p11 be the
path in D1 corresponding to p1 in G1 and to
p in G, then

(a) p11 is of the form A1 → V1 → · · · → Y1 in
D1, or

(b) p11 is of the form A1 → V1 ← · · · ← Vl →
· · · → Y1, 1 < l ≤ r in D1.

Proof of Lemma B.1. Path p is chosen as a shortest
proper possibly causal path from A to Y that starts
with an undirected edge in G. Hence, p(V1, Y1) must
be an unshielded possibly causal path from V1 to Y1,
otherwise we can choose a shorter path than p in G.
This implies that no node Vi, i ∈ {2, . . . k − 1} can be
a collider on either p1 or p2.

(i) Suppose first that p itself is unshielded. That is,
no edge 〈Vi, Vi+2〉, i ∈ {0, k − 2} is in G. Of course,
since G2 contains edge A1 ← V1, p2 is of the form
A1 ← V1 . . . Y1. Hence, we only need to show p1 is a
causal path in G2.

Since p is unshielded, p1 is also an unshielded path.
Since A1 → V1 is in G1, as a consequence of iterative
application of rule R1 of Meek (1995) (Fig. 3), p1 is a
causal path in G1.

(ii) Next, we suppose that p is shielded. We first show
that A1 → Vi, for all i ∈ {2, . . . , r}, r ≤ k is in G.

As discussed at the beginning of this proof, p(V1, Y1) is
unshielded. Therefore, since p is shielded and p(V1, Y1)
is unshielded, edge 〈A1, V2〉 is in G. Furthermore, since
p is chosen as a shortest proper possibly causal path
from A to Y that starts with an undirected edge in G,
〈A1, V2〉 must be of the form A1 → V2.



If path 〈A1, V2〉 ⊕ p(V2, Y1) is shielded, then by the
same reasoning as above, A1 → V3 is in G. We
can continue with the same reasoning, until we reach
Vr, r ∈ {2, . . . , k}, so that A1 → Vi is in G for
i ∈ {2, . . . , r} and 〈A1, Vr〉⊕p(Vr, Y1) is an unshielded
possibly causal path.

We note that if r < k, p(Vr, Y1) is of the form Vr →
· · · → Y1. This is due to the fact that A1 → Vr is in G
and that 〈A1, Vr〉⊕ p(Vr, Y1) is an unshielded possibly
causal path in G.

Next, we show that p2 is of the form A1 ← V1 → · · · →
Y1. Since A1 ← V1 and A1 → V2 are in G2 and since G2
is acyclic, by rule R2 of Meek (1995), the edge 〈V1, V2〉
is of the form V1 → V2 in G2. Then since p2(V1, Y1)
is an unshielded possibly causal path that starts with
V1 → V2, by iterative applications of rule R1 of Meek
(1995), p2(V1, Y1) must be a causal path in G2.

Suppose D1 is a DAG in [G1]. From the above, we
know that A1 → V1 and if r < k, Vr → . . . Y1 are in
G1 and therefore in D1 as well. The subpath p(V1, Vr)
is a possibly causal unshielded path in G and hence,
no node among V2, . . . , Vr−1 is a collider on p, p1, or
p11. It then follows that either p11(V1, Vr) is a causal
path in D11, in which case p11 is of the form A1 →
V1 → · · · → Y1, or there is a node Vl, 1 < l ≤ r
on p11(V11, Vr), such that p11(V1, Vr) is of the form
V1 ← · · · ← Vl → · · · → Vr. �
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