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Abstract

In observational studies, when a total causal
effect of interest is not identified, the set of all
possible effects can be reported instead. This
typically occurs when the underlying causal
DAG is only known up to a Markov equiv-
alence class, or a refinement thereof due to
background knowledge. As such, the class
of possible causal DAGs is represented by a
maximally oriented partially directed acyclic
graph (MPDAG), which contains both di-
rected and undirected edges. We character-
ize the minimal additional edge orientations
required to identify a given total effect. A
recursive algorithm is then developed to enu-
merate subclasses of DAGs, such that the to-
tal effect in each subclass is identified as a dis-
tinct functional of the observed distribution.
This resolves an issue with existing methods,
which often report possible total effects with
duplicates, namely those that are numerically
distinct due to sampling variability but are in
fact causally identical.

1 INTRODUCTION

We consider identifying total causal effects (“total
effects” or simply “effects” throughout) from causal
graphs that can be learned from observational data
and background knowledge, under the assumption of
no latent variables. The full knowledge of the causal
system is typically represented by a directed acyclic
graph (DAG) (Pearl, 2009). Fig. 1(a) shows an ex-
ample DAG D. Each node u € {A,Y,V;,V5} in D
represents a random variable X, in a random vector
X = (X4, Xy, Xv,, Xv,). Each edge in D represents
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Figure 1: (a) DAG D, (b) CPDAG C.

a direct causal relationship between two variables.

Given a causal DAG, every total effect can be identified
and hence consistently estimated from observational
data (Robins, 1986; Pearl, 1995; Pearl and Robins,
1995; Galles and Pearl, 1995). In general, however, one
cannot learn a causal DAG from observational data.
Instead, under the assumption of no latent variables,
one can learn a Markov equivalence class of DAGs that
can give rise to the observed distribution. A Markov
equivalence class is uniquely represented by a com-
pleted partially directed acyclic graph (CPDAG), also
known as an essential graph (Meek, 1995; Andersson
et al., 1997; Spirtes et al., 2000; Chickering, 2002).
Within the equivalence class, one DAG should not be
preferred over another based on observational data.
Fig. 1(b) shows the CPDAG C that represents D.

Often, we may have additional background knowledge
on the underlying causal system. For example, we
may know that A temporally precedes Y and there-
fore determine (or reveal) the edge orientation A — Y
in CPDAG C. Adding this knowledge to C results in
a maximally oriented partially directed acyclic graph
(MPDAG) G, drawn in Fig. 2(a). MPDAGs are a class
of graphs that subsumes both CPDAGs and DAGs.
They are obtained by (optionally) adding edge orien-
tations to a CPDAG and completing the orientation
rules of Meek (1995) (see Fig. 3). As such, the class
of DAGs represented by an MPDAG is a refinement of
the corresponding Markov equivalence class. For ex-
ample, the class of DAGs represented by G is drawn
in Fig. 2(b), which consists of all DAGs in the Markov
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Figure 2: Example 1. (a) MPDAG G, (b) all DAGs
represented by G, (¢) all MPDAGs with distinct par-
ent sets of A represented by G, (d) all MPDAGs with
distinct functionals f(zy|do(x4)) represented by G.

equivalence class represented by C that have A — Y.

The background knowledge of pairwise causal rela-
tionships of this type can be derived from field ex-
pertise. Moreover, other types of background knowl-
edge, such as tiered orderings (Scheines et al., 1998),
non-ancestral background knowledge (Fang and He,
2020), knowledge derived from experimental data
(Hauser and Biithlmann, 2012; Wang et al., 2017) as
well as certain model restrictions (Hoyer et al., 2008;
Rothenhéusler et al., 2018) can also be used to obtain
an MPDAG.

A total effect is identified given an equivalence class of
DAGs if it can be expressed as a functional of the ob-
served distribution, which is the same for all DAGs in
the equivalence class; see Section 2 for the definition.
Recently, Perkovié¢ (2020) gave a necessary and suffi-
cient graphical condition for identifying a total effect
given an MPDAG (Theorem 1). When the condition
fails, the effect of interest cannot be identified. One
example of this case is the effect of A on Y given G
in Fig. 2(a). In such cases, the observational data can
still be informative if one identifies a finite set that
contains the true effect. To do so, one can enumerate
all DAGs represented by G and estimate the total ef-
fect under each, obtaining a set of estimated possible
total effects. For instance, for the class of DAGs in
Fig. 2(b), seven possible total effects can be reported.

However, there are two drawbacks to this approach.
First, enumerating all DAGs in a Markov equivalence
class (or a refinement thereof) is computationally pro-
hibitive unless one has only a few variables. For ex-
ample, the complete CPDAG of p variables contains p!
DAGs; see also Gillispie and Perlman (2002); Steinsky
(2013). Second, the number of distinct possible effects
can be much smaller than the size of the equivalence
class. For example, the effect of A on Y is the same for
the three DAGs listed in the second row of Fig. 2(b).
That being said, depending on the estimator applied
to each DAG, one may obtain three estimates that
only look different in finite samples, but which only
represent different estimators for the same possible ef-
fect. These statistical duplicates are undesirable as it
undermines the interpretability of the estimated set.
Hence, to save computation time and deliver causally
informative estimates, one should instead enumerate
all possible effects that are distinct, or in other words,
minimally.

Recent works on this topic include the “intervention
calculus when the DAG is absent” (IDA) algorithms
and joint-IDA algorithms of Maathuis et al. (2009),
Nandy et al. (2017), Perkovi¢ et al. (2017), Witte et al.
(2020), Fang and He (2020), and Liu et al. (2020).
Given an MPDAG G, these methods enumerate a set
of MPDAGs in which the total effect of A on Y is
identified, by considering all orientation configurations
of edges connected to A. However, this is often not
minimal. For instance, to estimate the total effect of A
on Y given MPDAG @G in Fig. 2(a), the IDA methods
would enumerate four graphs listed in Fig. 2(c) and
thus report four estimates. Nevertheless, only three
distinct total effects correspond to the MPDAGs listed
in Fig. 2(d).

In this paper, we characterize the minimal additional
edge orientations needed to identify a given total ef-
fect. Based on this characterization, we develop a
recursive algorithm that outputs the minimal set of
possible total effects and the corresponding MPDAGs.
Our results hold nonparametrically, that is, without
assuming a particular type of data-generating mecha-
nism such as linearity. Furthermore, our results can
be used in conjunction with recent developments on
efficient effect estimators (Henckel et al., 2019; Rot-
nitzky and Smucler, 2020; Guo and Perkovi¢, 2020) to
produce a set of informative estimates.

2 PRELIMINARIES

Throughout the paper we consider a random vector X,
indexed by V = {14,...,V,}, that is X = Xy, such
that each variable Xy, is represented by node V; in a
graph G = (V, E,U).
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Graphs, nodes and random variables. A partially
directed graph G = (V, E,U) consists of a set of nodes
V={W,...,V,}forp > 1, aset of directed (—) edges
E and a set of undirected (—) edges U.

Induced subgraph. An induced subgraph Gy, =
(V',E',U") of G = (V,E,U) consists of V/ C V,
E' C E, and U’ C U where E' and U’ are all edges
between nodes in V' that are in E and U respectively.

Paths. A path p = (V1,..., Vi), k > 1 from V; € A
to Vi € Y in G is a sequence of distinct nodes, such
that V; and Vi1, ¢ € {1,...,k — 1} are adjacent in
G. A path of the form V; — --- — V} is an undirected
path and a path of the form V; — --- — V}, is a causal
path. Additionally, p is a possibly causal path in G if
no edge V; - V;,0 <i < j < kisinG. Otherwise, p is
a non-causal path in G (see Definition 3.1 and Lemma
3.2 of Perkovié et al., 2017). A path from node set A
to Y is proper with respect to A when only its first
node is in A.

Colliders, shields, and definite status paths. If
a path p contains V; — V; < V}, as a subpath, then
V; is a collider on p. A path (Vi, V;, Vi) is an un-
shielded triple if V; and Vj are not adjacent. A path
is unshielded if all successive triples on the path are
unshielded. A node Vj is a definite non-collider on a
path p if the edge V; <=V}, or the edge V; — V}, is on
p, or if V; = V; — V}, is a subpath of p and V; is not
adjacent to Vi. A node is of definite status on a path
if it is a collider, a definite non-collider or an endpoint
on the path. A path p is of definite status if every
node on p is of definite status.

d-connection, d-separation, and blocking. A
definite status path p from node A to node Y is d-
connecting given a node set Z (A,Y ¢ Z) if every
definite non-collider on p is not in Z, and every col-
lider on p has a descendant in Z. Otherwise, Z blocks
p. If Z blocks all definite status paths between A and
Y in MPDAG G, then A is d-separated from Y given Z
in G and we write A 1g Y|Z (Lemma C.1 of Henckel
et al., 2019).

Ancestral relationships. If A — Y is in G, then
A is a parent of Y. If there is a causal path from
node A to node Y, then A is an ancestor of Y, and
Y is a descendant of A. If there is a possibly causal
path from node A to node Y, then Y is a possible
descendant of A. We use the convention that every
node is a descendant, ancestor, and possible descen-
dant of itself. The sets of parents, ancestors, and pos-
sible descendants of a node A in G are denoted by
Pa(A,G), An(A,G), PossDe(A, G) respectively. For a
set of nodes A = {A1,...,Ar}, we let Pa(4,G) =
(UF_, Pa(A;,G)) \ 4, An(A,G) = Uk, An(A;,G), and
PossDe(A,G) = UF_, PossDe(A;, G).
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Figure 3: The orientation rules from Meek (1995). If
the graph on the left-hand side of a rule is an induced
subgraph of a PDAG G, then orient the blue undi-
rected edge (—) as shown on the right-hand side.

DAGs, PDAGs. A directed graph contains only di-
rected edges. A causal path from node A to node
Y and Y — A form a directed cycle. A directed
graph without directed cycles is a directed acyclic
graph (DAG). A partially directed acyclic graph PDAG
is a partially directed graph without directed cycles.

Observational, interventional densities, and
causal DAGs. We consider do-interventions
do(X4 = x,) (for A C V), or do(z,) for shorthand,
which represent outside interventions that set X, to a
fixed value z,. We call a density f of X under no in-
tervention an observational density. An observational
density f(z) is consistent with a DAG D = (V, E, ) if
f((E) = f:l f(xm xPa(vi,D)) (Pearla 2009)

A density f(z|do(z,)) under intervention do(X4 =
xq), A C V is called an interventional density. An
interventional density f(z|do(z,)) is consistent with a
DAG D = (V, E, ) if there is an observational density
f consistent with D such that

P
f(z|do(x,)) H J (@, |2page, D)), (1)

Viﬁf

for values Zpa(, p) of Xpa(v;,p) that are consistent
with z,. Eq. (1) is known as the truncated factoriza-
tion formula (Pearl, 2009), manipulated density for-
mula (Spirtes et al., 2000) or the g-formula (Robins,
1986).

A DAG D = (V,E,0) is causal for a random vector
X if the observational and all interventional densities
over X are consistent with D.

CPDAGs and MPDAGs. All DAGs that encode
the same set of conditional independences are Markov
equivalent and form a Markov equivalence class of
DAGs, which can be represented by a completed par-
tially directed acyclic graph (CPDAG) (Meek, 1995;
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Andersson et al., 1997). A PDAG G is a mazimally
oriented PDAG (MPDAG) if and only if the edge ori-
entations in G are complete under rules R1-R4 in Fig-
ure 3 (Meek, 1995). An MPDAG is also known as
CPDAG with background knowledge (Meek, 1995). As
such, both a DAG and a CPDAG can be seen as spe-
cial cases of an MPDAG. Any graph in this paper can
hence be labeled an MPDAG.

G and [G]. A DAG D = (V,E,() is represented by
MPDAG G = (V,E',U’) if D and G have the same
adjacencies, same unshielded colliders and if E/ C FE
(Meek, 1995). If G is an MPDAG, then [G] denotes
the set of all DAGs represented by G. An MPDAG
g’ is said to be represented by another MPDAG G if
6 € (4.

Causal MPDAGs. An observational or interven-
tional density is consistent with MPDAG G if it is
consistent with a DAG D in [G]. An MPDAG G =
(V,E,U) is causal if it represents the causal DAG.

3 MAIN RESULTS

A total effect of A on Y 1is generally defined
as some functional of the interventional density
f(zy|do(Xa = z4)) (or f(zy|do(x,)) for short), such
as dE[X,| do(z,)]/ dz, for continuous treatments and
E[X,|do(z, = 1)]-E[X,| do(x, = 0)] for binary treat-
ments; see, e.g., Herndn and Robins (2020, Ch. 1). For
the common definitions, the total effect of A on Y is
identified in MPDAG G if and only if f(z,|do(z,)) can
be identified from any observational density f(x) con-
sistent with G (Galles and Pearl, 1995; Perkovié, 2020).
In this section, we show how to identify all MPDAGs
represented by a given MPDAG G = (V,E,U) that
have distinct identification maps for f(zy|do(z4)),
A, Y C V. Formally, the identification is a map from
the space of observational densities that are consistent
with G to the space of conditional kernels:

fePG)— flxy|do(za)) € K(Xa, Xy),

where (X4, Xy ) is the set of densities on the domain
of Y indexed by A. The identification (see Theorem 4)
is possible if and only if G meets the following graphical
condition.

Theorem 1 (Identifiability condition of Perkovié
2020). Let G = (V,E,U) be a causal MPDAG for a
random vector X. Further, let A and Y be disjoint
node sets in G. The total effect of A on Y is identified
in G if and only if every proper possibly causal path
from A to Y starts with a directed edge in G.

It follows that, if a total effect of A on Y is not identi-
fied given MPDAG G, then there is at least one proper
possible causal path from A to Y in G that starts with

an undirected edge Ay — V; for Ay € Aand V; € V.
Therefore, to identify the total effect, one can enu-
merate all the valid combinations of orientations just
for the undirected edges of this type. In fact, this is
the approach taken by the collapsible-IDA algorithm
of Liu et al. (2020), for |A| = 1.

As an example, consider MPDAG G in Fig. 2(a). Paths
A—V;—Y and A -V, — V] — Y are two proper pos-
sibly causal paths from A to Y in G that start with
an undirected edge. There are four ways to orient the
two starting edges:

Ri={A+ V5, A=V}, Ro={A—> VWV, A=V}
R3:{A—)V2,A<—V1}, R4:{A(—‘/2,A(—V1}

Using algorithm MPDAG(G, R;) for i = 1,...,4 (Meek,
1995; Perkovié et al., 2017; see Algorithm 1 in the Sup-
plement), which adds orientations R; and then com-
pletes the rules of Meek (1995) in Fig. 3, we obtain
four MPDAGs as listed in Fig. 2(c). The effect of A
on Y can be identified and estimated under each of the
four MPDAGsS.

The procedure described above already improves over
the current standard IDA and joint-IDA algorithms
(Maathuis et al., 2009; Nandy et al., 2017; Perkovié¢
et al., 2017; Witte et al., 2020; Fang and He, 2020) be-
cause orientations of fewer edges are considered — IDA
and joint-IDA orient all undirected edges connected to
A. However, we claim that it suffices to consider even
fewer edges. The next theorem characterizes the min-
imal amount of edge orientation needed to identify a
total effect. Its proof is left to the Supplement.

Theorem 2. Let G = (V, E,U) be a causal MPDAG.
Let A and Y be disjoint node sets in G such that the
total effect of A on Y is not identified given G. Suppose
p={(A1,WV,...,Y7) for A1 € A, Y] €Y is a shortest
proper possibly causal path from A to Y such that A; —
V1. Then the total effect of A on Y is not identified in
any MPDAG G* that is represented by G and contains
the undirected edge A1 — V7.

In the above, we say that G* is represented by G if
[G*] C [G]. Implicit in Theorem 2 is the fact that when
there are multiple paths that violate the identifiability
condition (Theorem 1), the order in which we orient
edges matters. In particular, the edge on a shortest
path should be oriented first.

Consider again G in Fig. 2(a). Because A —V; =Y
is shorter than A — V5 — Vi — Y, edge A — V; should
be oriented first. As soon as this edge is oriented as
A « V1, the acyclicity of the underlying DAG renders
both paths A+ V; —Y and A— Vo, — V; — Y as non-
causal from A to Y’; see the second row of Fig. 2(d).

This characterization naturally leads to a recursive al-
gorithm IDGraphs (Algorithm 1). The IDGraphs al-
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Algorithm 1: IDGraphs

input : MPDAG G, disjoint node sets A and Y

output: the minimal set of MPDAGs with
identified effects that partition G

if G satisfies the condition in Theorem 1 then
‘ return G;
else
Let A; — V7 be an edge in G that satisfies
Theorem 2;
(]2 = MPDAG(Q, {Al < Vl});
return
{IDGraphs(A,Y, G;), IDGraphs(A,Y, G2)};
end

gorithm takes MPDAG G and node sets A, Y as input
and outputs a finite set of MPDAGs {Gy,...,G,} that
partition G, such that (i) the total effect of A on Y
is identified in every G; and (ii) the effects identified
from G; and G; are different for i # j. Property (ii),
formally stated in Theorem 3, shows that the enumera-
tion is minimal. Additionally, by construction, it holds
that n < 29 where m(G) is the number paths that
violate the condition in Theorem 1.

To explain how the algorithm works, consider again
the example in Fig. 2(a). As we have already seen,
IDGraphs first orients edge A — V4 in G. We obtain
G1 = MPDAG(G, {A; — V4}) and Gy = MPDAG(G, {41 «
V1}). Note that the effect is already identified in G,
(second row of Fig. 2(d)) so Gy appears in the output.
The effect in G; is still not identified and the algorithm
proceeds to orient edge A— V5, which leads to the other
two graphs in the output (first row of Fig. 2(d)).

Note that, however, if A — V5, was oriented before
A—-V1, we would arrive at four MPDAGs (Fig. 2(c)) in-
stead of three! The next theorem summarizes the the-
oretical guarantees of IDGraphs. We prove the mini-
mality constructively; see the Supplement for details.

Theorem 3. Suppose G is a causal MPDAG and A, Y
are two disjoint node sets in G. Let L = {Gy,...,G,}
be the output of IDGraphs(A,Y,G). Then the follow-
ing statements hold.

(i) The total effect of A on Y is identified in each G;.

(ii) For any i # j, there exists an observational den-
sity f that is consistent with G such that the effect
identified from f in G; is different from the effect
identified from f in G;.

(iii) L is a partition of G in terms of DAGs represented.

Proof sketch. Here we sketch out the proof of (ii); see

the Supplement for details. For two MPDAGs G; and
Go output by IDGraphs, we construct a density f that
factorizes according to G; (and G, due to Markov
equivalence) but such that E[Xy |do(X 4 = 1)] has dif-
ferent values under G; and Gs.

First, we establish some graphical differences between
G1 and G5 that stem from the application of Thm 3.2
in the IDGraphs algorithm. Consider representing the
recursion of IDGraphs as a binary tree and let G* be
the lowest common ancestor of G; and G,. Without
loss of generality, suppose 41 — Vi € G* but A; —
Vi € Gy, A1 + V1 € Go. Let p be a shortest possibly
causal path from A to Y in G* that starts with A; — V7.
The difference between G; and Gs in terms of p can be
categorized into two cases given by Lemma B.1 in the
Supplement. For each case, we parametrize two linear
Gaussian DAGs D; € [G1] and Dy € [Go] such that
their observed distributions are identical (by matching
the first two moments) but values of E[Xy|do(X4 =
1)] are different. O

3.1 Examples

Suppose that a total effect of interest is not identified
in an MPDAG G. To obtain a set of possible total
effects, one needs to enumerate the MPDAGs repre-
sented by G in which the total effect is identified. Be-
low, we consider four methods that have appeared in
our discussion so far, listed from the most computa-
tionally demanding to the least (see also Table 1).

Method 1 List all DAGs represented by G. This is
adopted by the global IDA algorithm of Maathuis
et al. (2009).

Method 2 List MPDAGs corresponding to all valid
orientations for undirected edges attached to A.
This is adopted by the local /semi-local IDA algo-
rithms of Maathuis et al. (2009); Perkovié¢ et al.
(2017); Witte et al. (2020); Fang and He (2020)
and the joint-IDA algorithm of Nandy et al.
(2017).

Method 3 List MPDAGs corresponding to all valid
combinations of edge orientations for edges A; —
Vi, Ay € A, V; € V| such that V; is on a proper
possibly causal path from AtoY in G. For [A| =1,
this is adopted by the collapsible-IDA algorithm of
Liu et al. (2020).

Method 4 Use IDGraphs(A4,Y, ).

These methods are compared through two examples,
one for point intervention (|A| = 1) and one for joint
intervention (|A] = 2).
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Example 1 (J4| = 1). Consider again G in Fig. 2(a).
Recall that Method 1 lists 7 DAGs shown in
Fig. 2(b) and Method 4 lists 3 MPDAGs shown in
Fig. 2(d). And as discussed earlier, both Method 2
and Method 3 would orient edges A —V, and A — V7,
and hence list 4 MPDAGs shown in Fig. 2(d).

IRy
| <] XX
T

MPDAGSs with distinct causal identification formulas
for f(zy|do(za,,za,)) represented by G.

Example 2 (JA] = 2). Consider MPDAG G in
Fig. 4(a) and let A = {A;,As}. Method 4 yields
9 MPDAG:S listed in Fig. 4(b), which correspond to 9
distinct possible effects of (A1, A2) on Y. Method 2
would consider all valid combinations of orientations
for edges Ay — Ay, Ay — Vi, A1 =Y, Ay — V7, and
As — Y resulting in 18 MPDAGs. Lastly, Method 3
would consider all valid combinations of orientations
for edges A1 —Vp, A1 =Y, As—V1, and A;—Y, resulting
in 12 MPDAGSs.

3.2 Computational Complexity

The computational complexities of various algorithms
are summarized in Table 1. Here I(G) is the number
of undirected edges incident to A. For the run time of
collapsible IDA (Liu et al., 2020), O(|V| +|E|) reflects
finding the neighbors of A that are on a possible causal
path to Y and 7(G) is the size of that subset. Both
local IDA and collapsible IDA are only applicable when
|A] = 1.

Table 1: Computational complexity

local IDA O(
collapsible IDA O(
semi-local/joint /optimal IDA  O(
IDGraphs O(

UG
(IVI + |E[)2"9)
2! g))poly(\Vl)

2m(9)poly(|V])

For more general settings, our IDGraphs algorithm
is asymptotically on par with semi-local (Maathuis

et al., 2009; Perkovi¢ et al., 2017), joint (Nandy et al.,
2017), and optimal (Witte et al., 2020) variants of
the IDA algorothm. The run time of these meth-
ods is bounded by O(249)poly(|V]), where poly(|V])
time is used to complete the orientation rules of Meek
(1995).  Similarly, the complexity of IDGraphs is
0(2™9)poly(|V|), where m(G) is the number of undi-
rected edges incident to A on a proper possibly causal
path from A to Y (Theorem 1). Clearly, we have
m(G) < I(G). The number of recursions is bounded
by 2™(9) and the time for each recursion by poly(|V]),
which includes completing the orientation rules, check-
ing the condition of Theorem 1, and identifying the
shortest path (Theorem 2) if the condition is not met.

In practice, from the simulations in Section 4, we find
that IDGraphs roughly costs twice the time of IDA
type algorithms; see Fig. 5.

Figure 5: Average run time versus the average node
degree of the graph (shade: 95% C.1.).

3.3 Corollaries of the Main Result

Having obtained a set of MPDAGs from the IDGraphs
algorithm, the total effect can be estimated for each
graph. Some recently developed efficient estimators
can be employed, including the semiparametric ef-
ficient estimator of Rotnitzky and Smucler (2020)
and the efficient least-squares estimator of Guo and
Perkovié¢ (2020) under linearity assumptions. This
strategy applies to any other causal quantity that is
a functional of the interventional density.

Theorem 4 (Causal identification formula, Perkovié,
2020). Let G be a causal MPDAG. Suppose G sat-
isfies the identifiability condition in terms of the to-
tal effect of A on Y (Theorem 1). Further, let B =
An(Y,Gy\a) \ Y and let By, ..., By be the bucket de-
composition of BUY (see Supplement A for its defi-
nition). Then for any observational density f that is
consistent with G, we have

/Hf b, [Tpach,g)) dzs,  (2)

f(zy| do(zg))

where values of Tp,(;,,g) are consistent with x,.

Let L be the output of IDGraphs(A4,Y,G).
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Corollary 1. There are no two graphs in L that share
the same formula Eq. (2).

Another prominent method for identifying the in-
terventional density is through covariate adjustment.
The IDA algorithms of Maathuis et al. (2009);
Perkovié¢ et al. (2017); Witte et al. (2020) are based
on covariate adjustment for causal linear models. See
Perkovi¢ (2020) for the generalized adjustment crite-
rion, which is necessary and sufficient for covariate ad-
justment in MPDAGs and generalizes the well-known
back-door formula of Pearl (1993).

Corollary 2. There are no two MPDAGs in L that
share the same adjustment set relative to (4,Y"). Fur-
ther, if |A| = |Y| = 1, then there exists an adjustment
set relative to (A,Y") for each MPDAG in L.

A consequence of Corollary 2 and Henckel et al. (2019,
Lemma E.7) for |[A] =1 is that the optimal IDA algo-
rithm of Witte et al. (2020) returns a minimal set of
possible effects.

4 NUMERICAL RESULTS

We present numerical results on estimating possible to-
tal effects under a linear causal model (Bollen, 1989).
Consider DAG D in Fig. 7(a) and suppose data is gen-
erated using the following causal linear model

Xa, =e1, Xa, =712Xa, +e2,

Xv =v13Xa, +723X4, +€3,
Xy = y1aXa, +7v21X4a, +e4.

We further set 714 = 23 = 2 and 12 = y13 = 724 = 1.
The errors ¢; for i = 1,...,4 are drawn independently
from N(0,1). Suppose the causal DAG is known up
to its CPDAG G (no added background knowledge),
which is shown in (b). We consider estimating the
total effect of A; on Y (point intervention), and the
total effect of (A;, A3) on Y (joint intervention).

Table 2 shows the estimates from 100 samples, where
“our method” refers to applying the efficient estimator
of Guo and Perkovié¢ (2020) to each graph returned by
IDGraphs. We compare against available IDA meth-
ods in the R package pcalg. The IDA algorithms enu-
merate possible graphs where the effect is identified
and return the estimates as a multiset. The distinct
values of the multiset can be taken as the estimates
of possible effects. However, as we can see, one pos-
sible effect can correspond to more than one distinct
values due to sampling variability. Moreover, NA’s are
produced when applying IDA (optimal) to joint inter-
ventions due to the nonexistence of valid adjustment
sets (Perkovi¢ et al., 2018).

To examine these issues in more generality, we simulate
random instances and compare the size of estimates to
the true number of possible effects. Causal DAG D is
generated by sampling from the Erdos-Rényi model
and assigning a random causal ordering. We consider
graphs of size p = 10 and p = 50, where the average
degree k is drawn from {2,...,8} for the former and
{2,...,45} for the latter. We take G to be the CPDAG
of D. Treatment variables A and outcome Y are ran-
domly selected such that the total effect of A on Y is
unidentified in G. The size of A varies from 1 to 4.
For each instance, the possible effects of A on Y are
estimated given G and 500 independent samples gen-
erated by a corresponding linear causal model (with
random coefficients and errors drawn from N(0, 1)).

The result is summarized in Fig. 6 from roughly 55,000
random instances. For point interventions (left panel),
IDA (local) produces duplicates, i.e., more distinct
values than the actual number of possible effects, es-
pecially when the number of possible effects is small,
whereas IDA (optimal) returns the correct number of
distinct values. For joint interventions (right panel),
the joint-IDA algorithm often suffers from an exces-
sive amount of duplicates, while IDA (optimal), on
the other hand, severely under reports the size of pos-
sible effects due to too many NA’s it produced — note
the logarithmic scale of both axes. Therefore, our
IDGraphs algorithm, in conjunction with a statisti-
cally efficient estimator of an identified effect, should
be used in place of IDA algorithms in both cases to
avoid unnecessary computational overhead and deliver
causally informative estimates.

5 DISCUSSION

We have studied the set-identification of a total effect
given that the underlying causal DAG is known up to
a Markov equivalence class or its refinement. FExist-
ing enumerative approaches to this problem are often
not minimal, which causes unnecessary computational
overheads and undesirable statistical duplicates. We
ensure minimal set-identification by focusing on two
key steps. First, we use Theorem 1 to locate the set
of “problematic” undirected edges. These are undi-
rected edges that need to be oriented in order to iden-
tify the causal effect of interest. The second key step
is to determine the order in which the “problematic”
edges need to be oriented. Perhaps surprisingly, an
optimal order can be determined, which is to first ori-
ent a “problematic” edge on a shortest proper possibly
causal path from A to Y (Theorem 2). This naturally
leads to IDGraphs, a simple recursive algorithm that
applies these two steps and guarantees minimal enu-
meration (Theorem 3).
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Table 2: Estimates of possible effects for the example in Fig. 7. Symbol (a)® denotes value a with multiplicity b
in the multiset. Note that IDA (local) and joint-IDA return more values than the number of possible effects.

A on'Y (Fig. 7(c))

A1, Ay on'Y (Fig. 7(d))

true effect 3 (2,1)
true possible effects {3, 2, 1.8, 0} {(2,1), (3,0), (0,2), (0,0)}
our method {2.9, 2.1, 1.9, 0} {(2 1,0.9), (2.9,0), (0,1.9), (0,0)}
IDA (optimal) (Witte et al., 2020)  {2.9, (2.1)2, 1.9, 0} {(2.1,0.9)%, (0,0)?, (NA,NA)?}
IDA (local) (Maathuis et al., 2009) {2.9, 2.1, 2.2, 1.9, 0} —
joint-IDA (Nandy et al., 2017) — {(2.1,0.9)2, (2.2,0.9), (1.9,1.1), (2.2,1.1)2,
(0,1.9), (29.0), (0,0)}
p: 10, IAl: 1 p: 50, IAl: 1 p: 10 p: 50 ¢ distinct values
1000 - 100001 = —] 4 multiset
g £ SR | e 2[R
© ey Wi I . aec oo
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Figure 6: Size of estimates vs. the number of possible effects on random instances (left: |A| = 1, right: |A| > 1).

Both axes are in logarithmic scale.
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Figure 7: Estimating possible total effects: (a) the
underlying causal DAG D, (b) CPDAG G of D, (c¢)
IDGraphs(A;,Y,G), (d) IDGraphs({4;, A2}, Y, G).

IDGraphs can be readily used in conjunction with
recent developments in efficient estimation (Henckel
et al., 2019; Rotnitzky and Smucler, 2020; Guo and
Perkovié, 2020) to deliver informative estimates of the
true causal effect. From this perspective, our result
can be viewed as separating two sources of uncer-

A dot on the graph represents either the size of the multiset (A) or the

tainty — identification and estimation — the two cru-
cial steps in causal inference.

An advantage of the local IDA algorithms over our
approach is that they only require knowledge of the
parent set (or parent sets) of A instead of the whole
MPDAG. Yet, it is unclear whether there are many
cases where one knows the neighborhood of A without
knowing more structure.

Finally, one may wonder whether this approach can
be extended to allow latent variables. The latent vari-
able IDA (LV-IDA) algorithm of Malinsky and Spirtes
(2017) employs a strategy similar to the IDA algorithm
given a partial ancestral graph (PAG). A PAG repre-
sents a Markov equivalence class of maximal ancestral
graphs (MAGs), and each MAG can be obtained from
a DAG by marginalizing out latent variables. One ob-
stacle to applying an approach like ours in this setting
is that it is unknown how to incorporate background
knowledge of edge orientations into a PAG. In addi-
tion, Jaber et al. (2019) recently showed that if an ef-
fect is not identified given a PAG, then there is at least
one MAG in the Markov equivalence class in which the
effect is still not identified (see their Theorem 4) — the
same enumeration strategy will no longer work.
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