
Fractional moment-preserving initialization schemes for training deep neural networks

A Notation

Let ‖ · ‖ denote the Euclidean (L2) norm. We use xi
to denote the i-th component of a vector, and Aij to
denote the entries of a matrix A. For a d×d symmetric
positive semi-definite matrix Σ, the notation N (m,Σ)
denotes the d-dimensional multi-variate normal dis-
tribution with mean m and covariance matrix Σ. Id
denotes the d× d identity matrix. For a real number
r ∈ R and a non-negative integer k, we introduce the
binomial coefficient(

r

k

)
:=

r(r − 1)(r − 2) · · · (r − k + 1)

k!
.

For z > 0, (Euler’s) Gamma function is defined as the
integral

Γ(z) =

∫ ∞
0

xz−1e−x dx.

For z > 0, the digamma function is defined as

ψ0(z) :=

(
d

dz
Γ(z)

)
/Γ(z)

and the trigamma function

ψ1(z) :=
d

dz
ψ0(z).

For x, y > 0, the Beta function is defined as the integral

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt.

If a sequence of random variables Xk converges to
a random variable X in distribution as k → ∞, we
denote this by Xk ⇒ X. The set of positive integers
will be denoted by Z+. Let f, g be real valued functions,
defined on some unbounded subset of R, and let g(x)
be strictly positive for all large enough values of x. We
denote f(x) = O(g(x)) as x → ∞ if there exists a
constant M > 0 and x0 ∈ R such that |f(x)| ≤Mg(x)
for all x ≥ x0. We denote f(x) = o(g(x)) as x → ∞
if for all ε > 0 there exists a constant x0 such that
|f(x)| ≤ εg(x) for all x ≥ x0.

B Proof of Theorem 1

Proof. When the activation function is linear, k-th
layer output x(k) obeys a linear recursion where the
proof technique of Cohen and Newman (1984) about
the moments of random Gaussian matrix products are
directly applicable. Our main proof idea is to extend
this proof technique to non-linear recursions obeyed by
x(k) when ReLU activation is used, where we exploit
piecewise-linearity properties of the ReLU function.

We first note that for x(k) 6= 0,

‖x(k+1)‖
‖x(k)‖

=
‖φ0(W (k+1)x(k))‖

‖x(k)‖

=

∥∥∥∥φ0

(
W (k+1) x(k)

‖x(k)‖

)∥∥∥∥ , (B.1)

which we used the equality φ0(cy) = cφ0(y) for any
given c > 0 and arbitrary vector y (with the choice of
y = W (k)x(k) and c = 1/‖x(k)‖). On the other hand,
the entries of the W (k) matrix are i.i.d. Gaussians,
where each row is a spherically symmetric random
vector (in the sense of (Fourdrinier et al., 2018, Ch.
4)) with i.i.d. entries. From this symmetry property it
follows that the distribution of W (k)z is independent
of the choice of z on the unit sphere in Rd. Therefore,
if we choose z = e1, we have

W (k) x(k)

‖x(k)‖
∼W (k)e1,

where e1 = [1, 0, . . . , 0]T is the first basis vector. There-
fore from (B.1), we obtain

‖x(k+1)‖
‖x(k)‖

∼
∥∥∥φ0

(
W (k+1)e1

)∥∥∥ ,
which says that the distribution of the ratio ‖x

(k+1)‖
‖x(k)‖

is independent of x(k) and the history x(j) for j < k.
Then, by the independence of the random variables
‖x(j+1)‖
‖x(j)‖ , we can write

E

[(
‖x(k)‖
‖x(0)‖

)s]
=E

[
Πk
j=1

‖x(j)‖s

‖x(j−1)‖s

]
=Πk

j=1E
[
‖x(j)‖s

‖x(j−1)‖s

]
=Πk

j=1E
∥∥∥φ0

(
W (j)e1

)∥∥∥s
= (σsE ‖φ0 (z)‖s)k ,

(B.2)

where z is a d-dimensional random vector with standard
normal distribution N (0, Id). The rest of the proof is
about explicit computation of the term E ‖φ0 (z)‖s
which appear in the product (B.2) and showing that
it is equal to I0(s, d) where I0(s, d) is defined by (3.1).
Note that

E ‖φ0 (z)‖s = E
[
φ2

0(z1) + φ2
0(z2) + · · ·+ φ2

0(zd)
]s/2

,

where z = (z1, z2, . . . , zd) and zi are i.i.d. standard nor-
mal random variables. We first note that the function
φ0(x) : Rd → R has a piecewise linear structure on Rd
depending on the sign of the components xi of a vector

Mert Gürbüzbalaban and Yuanhan Hu

x. In particular, we observe that by the definition of
the φ0 function,

‖φ0(z)‖2 =φ2
0(z1) + φ2

0(z2) + · · ·+ φ2
0(zd)

=
∑
i:zi>0

(zi)
2, (B.3)

which depends on the orthant that the vector z resides
in Rd. In particular, there are 2d (open) orthants in
dimension d, where each orthant is defined by a system
of inequalities:

ε1x1 > 0, ε2x2 > 0, ε3x3 > 0, . . . εnxn > 0,

where each εi is 1 or −1. Therefore, we can identify
each orthant from an element of the set {+,−}d. For
example, the non-negative (open) orthant corresponds
to {+,+, . . . ,+} whereas the non-positive (open) or-
thant corresponds to {−,−, . . . ,−}. On every quadrant
that corresponds to n plus signs and d− n minus signs
(with an arbitrary order of the signs), the distribution
of (B.3) is the same as the distribution of

Yn := χ2(n), (B.4)

where χ2(n) denotes a chi-squared distribution with n
degrees of freedom as long as n ≥ 1. If we choose a
random quadrant; with probability

pd(n) =

(
d

n

)
1

2d
, (B.5)

we will be in such a quadrant. 1 Therefore, we can
interpret ‖φ0(z)‖2 as a mixture of chi-square distribu-
tions with weights from the Binomial distribution. It
follows from (B.3)–(B.5) that we can write

E ‖φ0 (z)‖s =

d∑
n=1

pd(n)E(Y s/2n).

The moments of Yn are explicitly known, and we have

E(Y sn) = 2s
Γ(n/2 + s)

Γ(n/2)
for s ≥ 0,

(see (Walck, 1996, Sec. 8)) for any s ≥ 0 where Γ(·)
denotes the Gamma function. Therefore, we obtain

E ‖φ0 (z)‖s = I0(s, d) =

d∑
n=0

pd(n)2s/2
Γ(n/2 + s/2)

Γ(n/2)
.

1Note that pd(n) = P(Bd = n) where Bd ∼ Bi(d, 1
2
) is a

random variable with a Binomial distribution, where the
parameter d represents the total number of Bernouilli trials
and the parameter 1

2
is the success probability for each

trial.

We conclude from (B.2) that (3.1) holds. This also
implies directly that part (ii) and (iii) are true. Finally,
for any p > s, we have σ̄0(s, d) > σ̄0(p, d) by Corollary
9. Therefore, if σ = σ̄0(s, d), then σ > σ̄0(p, d) and by
part (iii), we obtain E‖x(k)‖p →∞ exponentially fast
in k. This completes the proof.

Remark 16. In the setting of Theorem 1, in the special
case when s = 2, we obtain I0(2, d) = d/2 and we obtain
I0(2, d) = 2

∑d
n=1

(
d
n

)
1
2d

Γ(n/2+1)
Γ(n/2) =

∑d
n=0

(
d
n

)
1
2d
n = d

2

where we used the identity Γ(x+ 1) = xΓ(x) for x > 0
and the last equality can be obtained from the properties
of the Binomial distributions, see e.g. (Walck, 1996,
Section 5.2). Therefore, from part (i) of Theorem 1,
σ̄0(2, d) = 1/

√
I0(2, d) =

√
2/
√
d. In particular, the

choice of σ̄0(2, d) corresponds to Kaiming initializa-
tion. Theorem 1 is more general in the sense that it is
applicable to any moment s > 0.

C Proof of Corollary 4

Proof. This result follows from analyzing the asymp-
totics of I0(s, d) for large d. It is known that for any
real α > 0 and z > 0, we can write the series expansion

Γ(z + α)

Γ(z)
= zαS(z, α),

with

S(z, α) :=

∞∑
m=0

Am(α)(
1

z
)m

=1 +
α(α− 1)

2z
+O(

1

z2
),

(C.1)

where Am(α) are coefficients of the expansion that
admits an explicit representation (see (Tricomi et al.,
1951)). Therefore, choosing z = n/2 and α = s/2,

Γ(n/2 + s/2)

Γ(n/2)
= (

n

2
)s/2S(n/2, s/2), (C.2)

so that

I0(s, d) =

d∑
n=1

pd(n)ns/2S(n/2, s/2).

Since the Γ function is log-convex (Merkle, 1996), we
also have

Γ(
n

2
+
s

2
) = Γ

(
(1− s

2
)
n

2
+
s

2
(
n

2
+ 1)

)
≤

(
Γ(
n

2
)
)1− s2 (

Γ(
n

2
+ 1)

) s
2

= Γ(
n

2
)(
n

2
)s/2,

Fractional moment-preserving initialization schemes for training deep neural networks

where we used the identity Γ(z + 1) = zΓ(z) for z > 0.
Therefore, we see from (C.2) that

0 ≤ S(n/2, s/2) ≤ 1, (C.3)

for every s > 0 and n > 0. Note that

(d2)s/2

I0(s, d)
=

1

E(Fd(Bd))
, (C.4)

where Bd is a Binomial random variable, i.e.

P(Bd = n) =

(
d

n

)
1

2d
for n = 0, 1, . . . , d, (C.5)

and

Fd(X) :=

{
2s/2X

s/2

ds/2
S(X/2, s/2) if X > 0,

0 if X = 0,

satisfying for all X > 0

Fd(X) = 2s/2
Xs/2

ds/2

(
1 +

s
2 (s2 − 1)

X
+O(

1

X2
)

)
(C.6)

where we used (C.1). By the normal approximation of
the binomial distribution, we also have

Zd :=
Bd − E(Bd)√

varBd
=
Bd − d

2√
d/2

⇒ N (0, 1) (C.7)

in distribution. We also have

E(Fd(Bd))

= E

(
Fd(

d

2
+

√
d

2
Zd)

)

= 2s/2E

[
(d2 +

√
d

2 Zd)
s/2

ds/2
S(
d

4
+

√
d

4
Zd, s/2)

]

= E

[
(1 +

1√
d
Zd)

s/2S(
d

4
+

√
d

4
Zd, s/2)

]
.

Using the Binomial expansion formula,

(1 + x)s/2 =

∞∑
k=0

(
s/2

k

)
xk for |x| < 1,

for Zd <
√
d, we can write

(1 +
1√
d
Zd)

s/2S(
d

4
+

√
d

4
Zd, s/2)

=

[
∞∑
k=0

(
s/2

k

)
1

(
√
d)k

Zkd

][
M∑
m=0

Am(s/2)

(
2

d
2

+
√
d
2
Zd

)m]

=

[
∞∑
k=0

(
s/2

k

)
1

(
√
d)k

Zkd

]
[
M∑
m=0

Am(s/2)
4m

dm

(
∞∑
`=0

(−1)l
√
d
`
Z`d

)m]

=

(
1 +

(
s/2

1

)
1√
d
Zd +

(
s/2

2

)
1

d
Z2
d + . . .

)

·

(
1 +

(
s/2

2

)
4

d

(
∞∑
`=0

(−1)l
√
d
`
Z`d

)
+ . . .

)

=1 +

(
s/2

2

)
4

d
+

[(
s/2

1

)
1√
d

+

(
s/2

2

)
4

d
√
d

]
Zd

+

[(
s/2

2

)
1

d
+

(
s/2

2

)
4

d2
(
s2

8
− 3s

4
+ 1)

]
Z2
d

+ . . .
(C.8)

where we used the identity A1(s/2) =
s
2 (s2−1)

2 . Since
P(Zd ≥

√
d) = O(e−d/2) and the function S is non-

negative and bounded by 1 according to (C.3), we have

E

[
(1 +

1√
d
Zd)

s/2SM (
d

2
+

√
d

2
Zd, s)

]

=O(e−
d
2) + E

[
1 +

(
s/2

1

)
1√
d
Zd +

(
s/2

2

)
5

d
Z2
d + . . .

]
=O(e−d/2) + 1 +

(
s/2

2

)
4

d
+

(
s/2

2

)
1

d

+

(
s/2

2

)
4

d2
(
s2

8
− 3s

4
+ 1) + o(

1

d2
)

=1 +

(
s/2

2

)
5

d
+ o(

1

d
),

(C.9)

where we used the fact that E(Zkd)→ E(Zk) as d→∞
for any fixed k implied by (C.7) where Z is a standard-
normal variable in R which satisfies E(Z) = 0 and
E(Z2) = 1. Then, it follows from (C.4) that

(d2)s/2

I0(s, d)
=1−

(
s/2

2

)
5

d
+ o(

1

d
)

=1 +
5s(2− s)

8d
+ o(

1

d
),

(C.10)

Mert Gürbüzbalaban and Yuanhan Hu

which implies

σ̄0(s, d) =
1

s
√
I0(s, d)

=

√
2√
d

(
1 +

5s(2− s)
8d

+ o(
1

d
)

)1/s

=

√
2√
d

(
1 +

5(2− s)
8d

+ o(
1

d
)

)
.

Similarly, taking square of both sides,

σ̄2
0(s, d) =

1
s/2
√
I0(s, d)

=
2

d

(
1 +

5(2− s)
4d

+ o(
1

d
)

)
which completes the proof.

D Probability of zero network output
for ReLU activations

When X is a Gaussian random variable with dis-
tribution N (0, σ2Id), we have P(φ0(X) = 0) =
P(max(X, 0) = 0) =

∏n
i=1 P(Xi ≤ 0) = 1

2d
due to the

symmetry of the i-th component Xi with respect to the
origin, independent of the choice of σ > 0. The output
of the k-th layer is actually not Gaussian, nevertheless
exploiting its symmetry properties and piecewise lin-
earity of the ReLU activations, the probability that
the output x(k) will be zero can be computed with a
similar calculation as follows and this probability is
independent of the choice of σ.
Lemma 17. Under Gaussian initialization (A1)–
(A2) with ReLU activation, i.e. when a = 0, for
any σ > 0 given, P(x(k) = 0) = 1− (1− 1

2d
)k.

Proof. Consider the first layer

x(1) = [x
(1)
1 , x

(1)
2 , . . . , x

(1)
d]T ,

where x(1)
i = φ(

∑d
j=1W

(1)
ij x

(0)
j). According to the as-

sumption, W (1)
ij is normally distributed with a zero

mean. Then,
∑d
j=1W

(1)
ij x

(0)
j is also normally dis-

tributed with zero mean P(
∑d
j=1W

(1)
ij x

(0)
j ≥ 0) = 1

2 .

Therefore, P(x
(1)
i 6= 0) = 1− 1

2 = 1
2 and P(x(1) 6= 0) =

1
2d
. If consider the k-th layer, we can get similarly

P(x(k) 6= 0|x(k−1) 6= 0) = 1− 1

2d
.

Since

P(x(k) 6= 0) =P(x(k) 6= 0|x(k−1) 6= 0)

P(x(k−1) 6= 0|x(k−2) 6= 0) . . .P(x
(1)
i 6= 0)

=(1− 1

2d
)k,

we can obtain the result

P(x(k) = 0) = 1− P(x(k) 6= 0) = 1− (1− 1

2d
)k.

E Proof of Theorem 5

Proof. By the same argument given in the proof of
Theorem 1, for any k ≥ 0, if x(k) 6= 0, we have

‖x(k+1)‖
‖x(k)‖

∼ ‖φ0 (z)‖ , (E.1)

where z ∼ N (0, Id) is a d-dimensional standard normal
random vector, and in particular ‖x

(k+1)‖
‖x(k)‖ is indepen-

dent from the choice of x(k) and the past history x(j)

for j < k. Let Ak be the event that x(k) 6= 0. We note
that

Ak = ∩kj=0Aj , (E.2)

that is x(k) 6= 0 if and only if x(j) 6= 0 for j≤k. This
fact follows simply from the piecewise linear structure
of the ReLU activation function. Conditioning on the
event Ak, we can write

1

k

(
log
‖x(k)‖
‖x(0)‖

|Ak
)

=
1

k

k−1∑
j=0

(
1

2
log
‖x(j+1)‖2

‖x(j)‖2
|Aj
)
,

(E.3)
where2 the logarithm is well-defined as the ratio
‖x(j+1)‖
‖x(j)‖ > 0 conditional on Aj . Due to (E.1) and

(E.2), the right-hand side of (E.3) can be viewed as an
average of i.i.d. random variables with mean

m1 =
1

2
E log

(
‖x(1)‖2

‖x(0)‖2
∣∣A0

)
=

1

2
E log

(
‖φ0 (σz)‖2

∣∣z 6∈ Rd−
)
,

where Rd− = {x ∈ Rd|xi ≤ 0 for i = 1, 2, . . . , d} de-
notes the (closed) non-positive orthant of vectors and
variance

m2 =var
(

1

2
log
(
‖φ0 (σz)‖2

∣∣z 6∈ Rd−
))

=
1

4
var
(

log
(
‖φ0 (z)‖2

∣∣z 6∈ Rd−
))

.

(E.4)

In the rest of the proof, we compute m1 and m2 ex-
plicitly showing them that they are finite; then by the
central limit theorem and the law of large numbers, the
theorem will hold with

µ0(σ) = m1 and s2
0 = m2. (E.5)

2Here, the equality is to be understood in the sense of
distributions, i.e. the left-hand side and the right-hand side
have the same distribution.

Fractional moment-preserving initialization schemes for training deep neural networks

We note that

m1 = log(σ) + E
(
log ‖φ0 (z)‖

∣∣z 6∈ Rd−
)

(E.6)

= log(σ) +
1

2
E
(
log ‖φ0(z)‖2

∣∣z 6∈ Rd−
)
.(E.7)

By (B.3) and following the same proof technique in
Theorem 1, we can show that given that z 6∈ Rd−,(

‖φ0(z)‖2
∣∣z 6∈ Rd−

)
∼ Yn (E.8)

with probability

πd(n) =
pd(n)∑d
n=1 pd(n)

=

(
d

n

)
1

2d − 1
,

for n ≥ 1 where Yn is a chi-square distribution with n
degrees of freedom where pd(n) is given by (B.5). We
have also

m1 = log(σ) + E log
(
‖φ0(z)‖2

∣∣z 6∈ Rd−
)

= log(σ) +

d∑
n=1

πd(n) [E log[Yn]] .

Using the mixture representation (E.8) and according
to Lemma 23, we have

var(log ‖φ0(z)‖2
∣∣z 6∈ Rd−)

=

d∑
n=0

πd(n)var(log(Yn)) +

d∑
n=0

πd(n)(E log(Yn))2

−

(
d∑

n=0

πd(n)E log(Yn)

)2

.

Logarithmic moments of chi-square distributions are
explicitly available as

E log[Yn] = log(2) + Ψ
(n

2

)
,

and
var(log(Yn)) = ψ1(n/2),

where ψ1(z) is the tri-gamma function (see (Cohen and
Newman, 1984, Lemma 2.3)). Therefore, from (E.7),
we obtain

m1 = log(σ) +
1

2

d∑
n=1

πd(n)
[
log(2) + Ψ

(n
2

)]
.

Then, from (E.4) we get,

m2 =
1

4
var(log ‖φ0(z)‖2

∣∣z 6∈ Rd−)

=
1

4

(
d∑

n=1

πd(n)ψ1(n/2)

)

+
1

4

(
d∑

n=1

πd(n)
[
log(2) + Ψ

(n
2

)]2)

− 1

4

(
d∑

n=1

πd(n)
[
log(2) + Ψ

(n
2

)])2

.

We conclude from (E.5).

F Proof of Theorem 7

Proof. The approach is similar to the proof of Theorem
1. We first note that for x(k) 6= 0,

‖x(k+1)‖
‖x(k)‖

=
‖φa(W (k+1)x(k))‖

‖x(k)‖

=

∥∥∥∥φa(W (k+1) x(k)

‖x(k)‖

)∥∥∥∥ ,
which we used the equality φa(cy) = cφa(y) for any
given c > 0 and arbitrary vector y (with the choice
of y = W (k)x(k) and c = 1/‖x(k)‖). By a similar
reasoning to (B.1)–(B.2), we obtain

E

[(
‖x(k)‖
‖x(0)‖

)s]
= (σsE ‖φa (z)‖s)k, (F.1)

where z is a d-dimensional random vector with stan-
dard normal distribution N (0, Id). In the rest of the
proof, we compute the term E ‖φa (z)‖s explicitly and
establish that it is equal to Ia(s, d) where Ia(s, d) is
given by (4.2). Consider

E ‖φa (z)‖s = E
[
φ2
a(z1) + φ2

a(z2) + · · ·+ φ2
a(zd)

]s/2
,

where z = (z1, z2, . . . , zd) is a d-dimensional standard
normal random vector. We first note that the function
φa(x) : Rd → R has a piecewise linear structure on Rd
depending on the sign of the components xi of a vector
x. In particular, we observe that by the definition of
the φa function,

‖φa (z)‖2 =φ2
a(z1) + φ2

a(z2) + · · ·+ φ2
a(zd)

=
∑
i:zi>0

(zi)
2 + a2

∑
i:zi<0

(zi)
2, (F.2)

which depends on the orthant that the vector z resides
in Rd. In particular, there are 2d (open) orthants in
dimension d, where each orthant is defined by a system
of inequalities:

ε1x1 > 0, ε2x2 > 0, ε3x3 > 0, . . . εnxn > 0,

where each εi is 1 or −1. Therefore, we can identify
each orthant from an element of the set {+,−}d. For
example, the non-negative (open) orthant corresponds
to {+,+, . . . ,+} whereas the non-positive (open) or-
thant corresponds to {−,−, . . . ,−}. On every quadrant
that corresponds to n plus signs and d− n minus signs
(with arbitrary order of the signs), the distribution of
(F.2) is the same as the distribution of

Xn := Yn + Zn, (F.3)

Mert Gürbüzbalaban and Yuanhan Hu

where

Yn = χ2(n) and Zn = a2χ2(d− n).

χ2(v) denotes a chi-squared distribution with v degrees
of freedom. In this representation, Yn and Zn are
independent as they are related to i.i.d. entries of
the z vector. If we choose a random quadrant; with
probability

P(Bd = n) = pd(n) =

(
d

n

)
1

2d
(F.4)

we will be in such a quadrant where Bd is a Binomial
random variable defined in (C.5). Therefore, we can
write

E ‖φa (z)‖s =

d∑
n=0

pd(n)E(Xs/2
n). (F.5)

In the special case s = 2, we have

E ‖φa (z)‖2 =

d∑
n=0

pd(n)E(Xn)

=

d∑
n=0

pd(n)(E(Yn) + E(Zn))

=

d∑
n=0

pd(n)(n+ a2(d− n))

= (1 + a2)
d

2
= Ia(2, d),

where we used E(Bd) =
∑d
n=0 pd(n)n = d

2 and (F.1)
implies directly that (4.1) holds for the s = 2 case.
Next, we consider the case s < 2 where we compute
E ‖φa (z)‖s through moment generating function tech-
niques. We will show that it is equal to Ia(s, d) defined
by (4.2).

Let MX(t) = E(etX) denote the moment generating
function (MGF) of a random variable X. If we consider
arbitrary moments α > 0 (where α is not necessarily a
positive integer) of a non-negative random variable X;
we have

E [Xα] = DαMX(0), (F.6)

where Dα denotes the fractional derivative of order α
in the Riemann-Louiville sense (Cressie and Borkent,
1986).3 It is well-known that

MYn(t) =
1

(1− 2t)n/2
, MZn(t) =

1

(1− 2a2t)(d−n)/2
,

3In the special case when α is a positive integer, the
fractional derivative reduces to the ordinary derivative and
we obtain E [Xα] = DαMx(0) = dαMX (t)

dtα
|t=0.

(see e.g. (Bulmer, 1979)). By independence of Yn and
Zn, we have also

MXn(t) =MYn(t)MZn(t)

=
1

(1− 2t)n/2
· 1

(1− 2a2t)(d−n)/2
.

(F.7)

Hence,

d

dt
MXn(t) =

n

(1− 2t)
n
2 +1
· 1

(1− 2a2t)
d−n

2

+
1

(1− 2t)
n
2
· a2(d− n)

(1− 2a2t)
d−n

2 +1
,

(F.8)

and by (Cressie and Borkent, 1986, eqn. (7)), for
α ∈ (0, 1), we have also

DαMXn(0) =
1

Γ(1− α)

∫ 0

−∞
(−z)−α dMXn(z)

dz
dz

=
1

Γ(1− α)

∫ ∞
0

(z)−α
dMXn(−z)

dz
dz.

(F.9)

Evaluating this integral requires computing integrals
of the form

Jm,`(α) =

∫ ∞
0

z−α
1

(1 + 2z)m/2
· 1

(1 + 2a2z)
`
2

dz ,

for integer values of m and ` satisfying m+ ` = d+ 2.
If we substitute u = 1 − 1

2z+1 , then dz = 1
2(1−u)2 du

which leads to

Jm,l(α) =

1

2−α+1

∫ 1

0

u−α(1− u)
m+`

2
+α−2(1− (1− a2)u

)− `
2 du.

(F.10)

Using the binomial series

(1 + x)−n =

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk (F.11)

for |x| < 1, we obtain

Jm,l(α) =
1

2−α+1

1∑
k=0

(`
2 + k − 1

k

)
(1− a2)k

∫ 1

0

u−α+k(1− u)
m+`

2 +α−2du

=
1

2−α+1

∞∑
k=0

(`
2 + k − 1

k

)
(1− a2)k

B(k + 1− α, m+ `

2
+ α− 1),

(F.12)

Fractional moment-preserving initialization schemes for training deep neural networks

where

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

is the Beta function. From (F.6), (F.8) and (F.9); we
have

E(Xα
n)

=DαMXn(0)

=
1

Γ(1− α)
(nJn+2,d−n(α) + a2(d− n)Jn,d−n+2(α)).

(F.13)

From (F.5), choosing α = s/2 for s ∈ (0, 2), we con-
clude that

E ‖φa (z)‖s =

d∑
n=1

pd(n)E(Xs/2
n)

=
1

Γ(1− s/2)

d∑
n=1

pd(n)(
nJn+2,d−n(

s

2
) + a2(d− n)Jn,d−n+2(

s

2
)
)

=
1

2−s/2
1

Γ(1− s/2)

d∑
n=1

pd(n)

∞∑
k=0

wk,nB(k + 1− s

2
,
d

2
+
s

2
)

=Ia(d, s),
(F.14)

where Ia(s, d) is as in (4.2) and

wk,n =
1

2
(1− a2)k[(d−n

2 + k − 1

k

)
n+ a2(d− n)

(d−n
2 + k

k

)]
.

(F.15)

This proves (4.1). The proofs of remaining parts of the
theorem follow with a similar reasoning to the proof of
Theorem 1 and are omitted.

G Proof of Corollary 9

Proof. First, we consider the case of fixed a and s where
we vary d. Note that, by definition σ̄a(s, d) = 1

s
√
Ia(s,d)

where

Ia(s, d) = E
[
φ2
a(z1) + φ2

a(z2) + · · ·+ φ2
a(zd)

]s/2
,

and zi are i.i.d. standard normal random variables.
Clearly,

Ia(s, d+ 1) =E
[
φ2
a(z1) + φ2

a(z2) + · · ·+ φ2
a(zd+1)

]s/2
>Ia(s, d).

where the strict inequality stems from the fact that
φ2
a(zd+1) > 0 for zd+1 > 0. Since σ̄a(s, d) = 1

s
√
Ia(s,d)

,

we can conclude that σ̄a(s, d+ 1) < σ̄a(s, d).

Secondly, we consider the case of fixed s and d and
vary a. According to (F.2), for every a ∈ [0, 1] we have

Ia(d, s) =E

 ∑
i:zi≥0

(zi)
2 + a2

∑
i:zi<0

(zi)
2

s/2

≤ E

 ∑
i:zi≥0

(zi)
2 +

∑
i:zi<0

(zi)
2

s/2
= I1(d, s)

Differentiating the left hand side with respect to a, for
a > 0 we obtain

d

da
Ia(d, s) (G.1)

= E

 d

da

 ∑
i:zi≥0

(zi)
2 + a2

∑
i:zi<0

(zi)
2

s/2 (G.2)

= E

[
2a

∑
i:zi<0

(zi)
2

]s/2
> 0, (G.3)

where the interchangeability of the differentiation and
expectation in (G.2) follows from the fact that both
Ia(d, s) and the expectation in (G.3) are finite. This
proves that Ia(d, s) is monotonically strictly increas-
ing in a. Since σ̄a(s, d) = 1

s
√
Ia(s,d)

, this implies that

σ̄a(s, d) is (monotonically) strictly decreasing in a.

Finally, we consider fixed a and d and consider the
monotonicity of σ̄a(s, d) with respect to s for s > 0.
By the definition of σ̄a(s, d), σ = σ̄a(s, d) solves the
implicit equation

F (s, σ) = σsIa(s, d) = 1 (G.4)

where σ̄a(s, d) > 0 for s > 0. Differentiating both sides
with respect to s, by the chain rule,

dF

dσ
(s, σ̄a(s, d))

dσ̄a(s, d)

ds
+
dF

ds
(s, σ̄a(s, d)) = 0 ,

where the derivatives exist as the function F is con-
tinuously differentiable in s and σ. This is equivalent
to

s

σ̄a(s, d)

dσ̄a(s, d)

ds
+
dF

ds
(s, σ̄a(s, d)) = 0. (G.5)

Note that we have also

F (s, σ̄a(s, d)) = 1. (G.6)

For σ = σ̄a(s, d)), consider the function

κ(s̃) := F (s̃, σ) = σs̃Ia(s̃, d) = E‖φa(We1)‖s̃.

Clearly, κ(s̃) is continuously differentiable with respect
to s̃. It is also known that κ(s̃) is a log-convex function

Mert Gürbüzbalaban and Yuanhan Hu

of s̃ for s̃ > 0 (see e.g. (Buraczewski et al., 2014)),
a fact which follows from the non-negativity of the
second derivative of log κ(s̃). Therefore, κ(s̃) is convex
in s̃. If we consider the tangent line to the function
κ(s̃) at s̃ = 0 and s̃ = s, by convexity of the function
κ, we have

κ(s̃) ≥ κ(s) + κ′(s)(s̃− s), (G.7)
κ(s̃) ≥ κ(0) + κ′(0)s̃, (G.8)

for any s̃ ≥ 0 where κ′(s̃) := dκ
ds̃ (s̃). Noticing that

κ(0) = κ(s) = 1 and plugging in s̃ = 0 in (G.7) and
plugging in s̃ = s in (G.8), we obtain

1 ≥ 1− sκ′(s), (G.9)
1 ≥ 1 + κ′(0)s. (G.10)

Since s > 0, we conclude that we have necessarily
κ′(0) ≤ 0 and κ′(s) ≥ 0. Assume κ′(s) = 0. Then
(G.7) would imply κ(s̃) ≥ κ(s) = 1 for s̃ ≥ 0 and we
would obtain κ′(0) = 0 and κ(s̃) = 1 for s̃ ∈ [0, s]
which would be a contradiction. Therefore, we have
necessarily

κ′(s) =
dF

ds
(s, σ̄a(s, d)) > 0.

Then, this implies that

dσ̄a(s, d)

ds
= −

(
σ̄a(s, d)

s

)
dF

ds
(s, σ̄a(s, d)) < 0 ,

(G.11)
for s > 0 and therefore σ̄a(s, d) is a monotonically
(strictly) decreasing function of s.

H Proof of Corollary 10

Proof. For a linear activation function, we have a = 1.
In this case, wk,n = d/2 for k = 0 and wk,n = 0 for
k > 0. Then, it follows that

I1(s, d) = 2s/2
d∑

n=1

pd(n)
Γ(d2 + s

2)

Γ(d2)
= 2s/2

Γ(d2 + s
2)

Γ(d2)
,

where we used B(x, y) = Γ(x)Γ(y)/Γ(x + y) and the
fact that Γ(d2 + 1) = d

2 Γ(d2). This yields σ̄1(s, d) =

1√
2

(
Γ(d2)

Γ(d2 + s
2)

)1/s

. In the special case with s = 2, us-

ing the identity Γ(d2 + 1) = d
2 Γ(d2) again, we obtain

σ̄1(2, d) = 1√
d
which recovers the results of LeCun et al.

(1998b) for linear activations and is the basis for Lecun
initialization.

The rest of the proof follows a similar approach to the
proof of Corollary 4. From (C.2) and (C.1), we obtain

I1(s, d) = 2s/2(
d

2
)s/2

(
1 +

s
2 (s2 − 1)

d
+O(

1

d2
)

)
.

This implies that

σ̄1(s, d) =
1

s
√
I1(s, d)

=
1√
d

[
1 +

s
2 (s2 − 1)

d
+O(

1

d2
)

]−1/s

=
1√
d
−

(s2 − 1)

2d
√
d

+O(
1

d
√
d

),

where we used (1+x)s = 1+sx+O(x2). Taking square
of both sides, we obtain

σ̄2
1(s, d) =

1
s/2
√
I1(s, d)

=
1

d
+

2− s
2d2

+O(
1

d2
√
d

).

Next, we approximate σ̄2
a(s, d) for a > 0 small. Follow-

ing the notation in the proof of Theorem 7, from (F.13)
we have,

E(Xα
n) =

1

Γ(1− α)
(nJn+2,d−n(α)+a2(d−n)Jn,d−n+2(α)).

(H.1)

For m+ ` = d+ 2, from (F.10), we have

Jm,`(α)

=
1

2−α+1

∫ 1

0

u−α(1− u)m/2+α−2
(
1 +

a2u

1− u
)−`/2

du

=
1

2−α+1

∫ 1

0

u−α(1− u)m/2+α−2

(
1− `

2

a2u

1− u
+

`
2 (`2 + 1)

2

a4u2

(1− u)2
+O(a6))du

=Jm,`|a=0 −
a2

2−α+1

`

2
B(2− α, m

2
+ α− 2)

+
`(`+ 2)

2−α+4
a4B(3− α, m

2
+ α− 3) +O(a6),

(H.2)

where we used the Binomial formula and (F.11). Plug-
ging a = 0 in (H.2),

Jm,`|a=0 =
1

2−α+1

∫ 1

0

u−α(1− u)m/2+α−2du

=
1

2−α+1
B(1− α,m/2 + α− 1).

Fractional moment-preserving initialization schemes for training deep neural networks

Therefore, from (H.1),

E(Xα
n)

=E(Xα
n)|a=0 +

1

Γ(1− α)
E
[

− a2(d− n)n

2−α+2
B(2− α, n

2
+ α− 1)

+
n(d− n)(d− n+ 2)a4

2−α+4
B(3− α, n

2
+ α− 2)

+
a2(d− n)

2−α+1
B(1− α, n

2
+ α− 1)

− a4(d− n)(d− n+ 2)

2−α+2
B(2− α, n

2
+ α− 2) +O(a6)

]
=E(Xα

n)|a=0 + E
[

αa2(d− n)

2−α+1Γ(1− α)
B(1− α, n

2
+ α− 1)

]
− E

[
(d− n)(d− n+ 2)a4α

2−α+3Γ(1− α)
B(2− α, n

2
+ α− 2)

]
+O(a6),

(H.3)

where we used the identities B(x, y) = Γ(x)Γ(y)/Γ(x+
y) and Γ(x+ 1) = xΓ(x) for x, y > 0. We denote

T1(n, α) :=
αa2(d− n)

2−α+1Γ(1− α)
B(1− α, n

2
+ α− 1),

T2(n, α) :=
(d− n)(d− n+ 2)a4α

2−α+3Γ(1− α)
B(2− α, n

2
+ α− 2).

We notice from (F.14) that

Ia(s, d) = E
(

(XBd)s/2
)

= E
(

(XBd)s/2
)
, (H.4)

where Bd follows a binomial distribution with P(Bd =
n) = pd(n). From (H.3), it follows that

Ia(s, d) =I0(s, d) + E[T1(Bd, s/2)]− E[T2(Bd, s/2)]

+O(a6ds/2)

Recall that from (C.7) we have

Zd =
Bd − E(Bd)√

varBd
=
Bd − d

2√
d/2

−−→ N (0, I).

Similar to (C.8), we consider

H(
s

2
) := (1 +

1√
d
Zd)

s/2S(
d

4
+

√
d

4
Zd, s/2),

which admits the expansion

E[H(
s

2
)] =O(e−d/2) + 1 +

(
s/2

2

)
4

d
+

(
s/2

2

)
1

d

+

(
s/2

2

)
4

d2
(
s2

8
− 3s

4
+ 1) + o(

1

d2
).

If we let α = s
2 , we also have

T1(Bd,
s

2
) =

a2s(d2 −
√
d

2 Zd)

2−
s
2 +2

Γ(d4 +
√
d

4 Zd + s
2 − 1)

Γ(d4 +
√
d

4 Zd)

=
a2s(d2 −

√
d

2 Zd)

2−
s
2 +2

(
d

4

) s
2−1

H(
s

2
− 1)

=

(
d

2

) s
2 a2s(1− 1√

d
Zd)

2
H(

s

2
− 1).

According to (C.9), we have

E[T1(Bd,
s

2
)] =

(
d

2

) s
2 a2s

2[
1 + (

5

8
s− 3)(s− 2)

1

d
+ o(

1

d
)

]
.

Similarly, we can write

T2(Bd,
s

2
) =

(
d

2

) s
2 a4(2− s)s

2
H(

s

2
− 2)(

1

4
− 1

2
√
d
Zd −

1

d
√
d
Zd +

1

d
+

1

4d2
Z2
d

)
,

and we have

E[T2(Bd,
s

2
)] =

(
d

2

) s
2 a4(2− s)s

2[
1

4
+ (

5

32
s2 − 33

16
s+ 7)

1

d
+ o(

1

d
)

]
.

Therefore, we can calculate

Ia(s, d)

=I0(s, d) + E[T1(Bd,
s

2
)]− E[T2(Bd,

s

2
)] +O(a6ds/2)

=

(
d

2

) s
2

K
[
1 +

1

K
(s− 2)

[5s

8
+
a2s

2
(
5

8
s− 3)

+
a4s

2
(

5

32
s2 − 33

16
s+ 7)

]1

d
+O(a6) + o(

1

d
)
]
,

where K is defined as

K := 1 +
a2s

2
+
a4s(s− 2)

8
.

Then we obtain

σ̄2
a(s, d) = I−2/s

a (s, d)

=
2

d
K−2/s

[
1 +

1

K
(s− 2)

[5s

8
+
a2s

2
(
5

8
s− 3)

+
a4s

2
(

5

32
s2 − 33

16
s+ 7)

]1

d
+O(a6) + o(

1

d
)
]−2/s

=
2

d
K−2/s

[
1 +

1

K
(2− s)

[5

4
+ a2(

5

8
s− 3)

+ a4(
5

32
s2 − 33

16
s+ 7)

]1

d
+O(a6) + o(

1

d
)
]

Mert Gürbüzbalaban and Yuanhan Hu

If a is small, we can write

σ̄2
a(s, d)

=
2

d

(
1 +

a2s

2
+O(a4)

)−2/s

[
1 +

2

2 + a2s
(2− s)(5

4
+ a2(

5

8
s− 3))

1

d
+
O(a4)

d

]
=

2

1 + a2

1

d
+ (2− s) (5s− 24)a2 + 10

2(s+ 2)a2 + 4

1

d2

+O(
a4

d
) + o(

1

d2
)

which is equivalent to the claimed result for σ̄2
a(s, d).

This completes the proof.

I Proof of Theorem 11

Proof. The proof follows by a similar reasoning to the
proof of Theorem 5. The same proof technique ap-
plies where we can show that the theorem holds with
constants

µa(σ) =
1

2
E log ‖φa(σz)‖2

= log(σ) +
1

2
E
(
log ‖φa(z)‖2

)
,

(I.1)

and

s2
a =

1

4
var
(

log
(
‖φa (z)‖2

))
. (I.2)

We also recall from (F.2)–(F.4) that

‖φa(z)‖2 ∼ Xn with probability pd(n), (I.3)

for n ≥ 1 where Xn is defined by (F.3) and pd(n) is
defined by (F.4). In the rest of the proof we compute
E(log(Xn)) and var(log(Xn)) for every n ≥ 1 and then
use the identities (I.1), (I.2) and (I.3) to obtain an
explicit formula for µa(σ) and s2

a.

Note that Xn is non-negative, and we have

E(log(Xn)) =
d

dα
E(Xα

n)|a=0 ,

and

var(log(Xn)) =
d2

dα2
(logE(Xα

n)) |a=0

=
d

dα

(
d
dαE(Xα

n)

E(Xα
n)

)
|a=0 ,

provided that the expectations are finite (see e.g. (Co-
hen and Newman, 1984)). For computing these expec-
tations, we calculate

d

dα
E(Xα

n) =
d

dα

(
1

Γ(1− α)
(nJn+2,d−n(α)

+ a2(d− n)Jn,d−n+2(α))

)
.

(I.4)

By the product rule for derivatives, for an integer m >
0,

d

dα
Jm,d+2−m(α) = log(2)Jm,d+2−m(α)

+
1

2−α+1

∞∑
k=0

(
d−m

2
+ k

k

)
(1− a2)k

d

dα
B(k + 1− α, d

2
+ α)

(I.5)

We also have

d

dα
B(k + 1− α, d

2
+ α) =

d

dα

Γ(k + 1− α)Γ(d2 + α)

Γ(d2 + k + 1)

=bkB(k + 1− α, d
2

+ α),

where

bk,α = ψ0(
d

2
+ α)− ψ0(k + 1− α),

and we used the fact B(x, y) = Γ(x)Γ(y)/Γ(x+ y) for
real scalars x, y > 0. Inserting this formula into (I.5),

d

dα
Jm,d+2−m(α)

= log(2)Jm,`(α) +
1

2−α+1

∞∑
k=0

(d−m
2 + k

k

)
(1− a2)k

bk,αB(k + 1− α, d
2

+ α).

From (I.4), we also get

d

dα
E(Xα

n)

=
1

Γ(1− α)

d

dα
(nJn+2,d−n(α) + a2(d− n)Jn,d−n+2(α))

+
Γ′(1− α)

Γ2(1− α)
(nJn+2,d−n(α) + a2(d− n)Jn,d−n+2(α))

=
1

Γ(1− α)

d

dα
(nJn+2,d−n(α) + a2(d− n)Jn,d−n+2(α))

+
ψ0(1− α)

Γ(1− α)
(nJn+2,d−n(α) + a2(d− n)Jn,d−n+2(α))

=
1

Γ(1− α)

1

2−α

∞∑
k=0

wk,nbk,αB(k + 1− α, d
2

+ α)

+ [log(2) + ψ0(1− α)]E(Xα
n),

(I.6)

where we used (F.12), (F.13) and wk,n is defined by
(F.15). Therefore,

d
dαE(Xα

n)

E(Xα
n)

=

∑∞
k=0 wk,nbk,αB(k + 1− α, d2 + α)∑∞
k=0 wk,nB(k + 1− α, d2 + α)

+ log(2) + ψ0(1− α),

Fractional moment-preserving initialization schemes for training deep neural networks

where we used (F.13) again. Differentiating with re-
spect to α, we find

d

dα

(
d
dαE(Xα

n)

E(Xα
n)

)

=

∑∞
k=0 wk,n(b2k,α + d

dαbk,α)B(k + 1− α, d2 + α)∑∞
k=0 wk,nB(k + 1− α, d2 + α)

−

(∑∞
k=0 wk,nbk,αB(k + 1− α, d2 + α)∑∞
k=0 wk,nB(k + 1− α, d2 + α)

)2

− ψ1(1− α),

(I.7)

where

d

dα
bk,α = ψ1(

d

2
+ α) + ψ1(k + 1− α).

Evaluating the expression (I.6) at α = 0, we find

mn :=E(log(Xn)) =
d

dα
E(Xα

n)|α=0

=

∞∑
k=0

wk,nbk,0B(k + 1,
d

2
) + [log(2)− γ]

=

∞∑
k=0

wk,n

(
ψ0(

d

2
)− ψ0(k + 1)

)
B(k + 1,

d

2
)

+ [log(2)− γ]

.

(I.8)

In the last two steps, we used the fact that ψ0(1) = γ
where γ is the Euler–Mascheroni constant. Similarly,

vn :=var(log(Xn))

=
d2

dα2
E(Xα

n)|α=0

=

∑∞
k=0 wk,n(b2k,0 + d

dαbk,0)B(k + 1, d2)∑∞
k=0 wk,nB(k + 1, d2)

−

(∑∞
k=0 wk,nbk,0B(k + 1, d2)∑∞
k=0 wk,nB(k + 1, d2)

)2

− ψ1(1).

(I.9)

On the other hand, by (F.13) and (F.12), we have

E(Xα
n) =

1

Γ(1− α)

1

2−α

∞∑
k=0

wk,nB(k + 1− α, d
2

+ α).

(I.10)
We note that Xα

n ≤ Sn := 1 +Xn for α ∈ [0, 1] where
E(Sn) <∞. Therefore, by the dominated convergence
theorem we have

lim
α→0

E(Xα
n) = E(X0

n) = 1.

Taking limits in (I.10) as α→ 0,

1 = lim
α→0

E(Xα
n) =

1

Γ(1)

∞∑
k=0

wk,nB(k + 1,
d

2
).

Since Γ(1) = 1, this is equivalent to
∞∑
k=0

wk,nB(k + 1,
d

2
) = 1 for every n ≥ 1.

Plugging this identity into (I.9),

vn =

∞∑
k=0

wk,n(b2k,0 +
d

dα
bk,0)B(k + 1,

d

2
)

−

(
∞∑
k=0

wk,nbk,0B(k + 1,
d

2
)

)2

− ψ1(1)

=ψ1(
d

2
) +

∞∑
k=0

[ψ1(k + 1)− ψ1(1)]wk,nB(k + 1,
d

2
)

+

∞∑
k=0

[
ψ0(

d

2
)− ψ0(k + 1)

]2
wk,nB(k + 1,

d

2
)

−

[
∞∑
k=0

(
ψ0(

d

2
)− ψ0(k + 1)

)
wk,nB(k + 1,

d

2
)

]2
.

We conclude that

µa(σ) = log(σ) +
1

2
E logXn = log(σ) +

1

2

d∑
n=0

pd(n)mn

(I.11)
and

s2
a =

1

4

[
d∑

n=0

pd(n)vn +

d∑
n=0

pd(n)(mn)2

−

(
d∑

n=0

pd(n)mn

)2] (I.12)

where pd(n) is defined by (B.5). This completes the
proof.

Remark 18. (First-order stochastic dominance
property compared to Kaiming’s method) Figure
4 illustrates Theorem 11, showing the pdf and cdf of
Rk,a for linear activations (a = 1) and Leaky ReLU
activations with a = 0.01 after k = 100 layers with two
choices of σ according to Kaiming initialization and our
initialization technique which preserves approximately
the fractional moment of order s = 1. We observe
that the distribution of Rk,a is similar to a Gaussian
distribution, and with our initialization, the network
output Rk,a possesses a first-order stochastic dominance
property in the sense of Hadar and Russell (1969)
(Remark 6). This dominance property will hold for
large enough k, as our initialization can choose a larger
σ and hence results in a larger mean value µa(σ) in
the setting of Theorem 7 and as the results also admit
non-asymptotic versions according to Remark 12.

Mert Gürbüzbalaban and Yuanhan Hu

J Extensions of results to dropout

In this section, we consider extensions of our results
reported in the main text to dropout which is a mech-
anism where some neurons are removed randomly to
prevent overfitting (see Remark 13 in the main text for
more details).

J.1 ReLU activation with dropout

Theorem 19. (Explicit characterization of the
critical variance σ2

0(s, d) with dropout) Consider
a fully connected network with an input x(0) ∈ Rd
and Gaussian initialization satisfying (A1)-(A2) with
ReLu activation function φ0(x) = max(x, 0) with
dropout where the probability to keep the neurons is
given by q ∈ (0, 1]. Let s > 0 be a given real scalar.
The s-th moment of the output of the k-th layer is given
by

E
[
‖x(k)‖s

]
= ‖x(0)‖s(σsI0,q(s, d))k,

I0,q(s, d) =
1

qs
2s/2

d∑
n=0

qd(n)
Γ(n/2 + s/2)

Γ(n/2)
,

(J.1)

where

qd(n) =

(
d

n

)
(
q

2
)n(1− q

2
)d−n, (J.2)

and Γ is the Gamma function. Then, it follows that we
have three possible cases:

(i) If σ = σ̄0,q(s, d) where σ̄0,q(s, d) := 1
s
√
I0,q(s,d)

,

then the network preserves the s-th moment of the
layer outputs, i.e. for every k ≥ 1, E

[
‖x(k)‖s

]
=

‖x(0)‖s, whereas for any p > s, E‖x(k)‖p → ∞
exponentially fast in k.

(ii) If σ < σ̄0,q(s, d), then E
[
‖x(k)‖s

]
→ 0 exponen-

tially fast in k.

(iii) If σ > σ̄0,q(s, d), then E
[
‖x(k)‖s

]
→ ∞ exponen-

tially fast in k.

Proof. The proof follows from minor adaptations to
the proof of Theorem 1. In the proof of Theorem 1, it
suffices to replace pd(n) with

qd(n) :=

(
d

n

)
(
q

2
)n(1− q

2
)d−n

and Xn with Xn/q
2 as the effect of dropout is to scale

the network output and change the mixing probabilities
of the chi-square distributions arising in the proof of

Theorem 1. This yields

E
[
‖x(k)‖s

]
= ‖x(0)‖s(σsI0,q(s, d))k,

I0,q(s, d) =
1

qs
2s/2

d∑
n=0

qd(n)
Γ(n/2 + s/2)

Γ(n/2)
.

(J.3)

The proofs of remaining parts follow from a reasoning
similar to the proof of Theorem 1 and are omitted.

Corollary 20. (Critical variance σ̄0,q(d, s) when
d is large with dropout) For fixed width d and s ∈
(0, 2], we have

σ̄2
0,q(s, d) =

2q

d
+

(2− s)(6− q)
2d2

+ o(
1

d2
),

Therefore, it follows from Theorem 1 that if σ2 = 2q
d +

(2−s)(6−q)
2d2 , then the network will preserve the moment

of order s + o(1
d) of the network output if dropout is

used.

Proof. The proof follows from minor modifications to
the proof of Corollary 4. Following the proof technique
of Corollary 4, we can write

(d2)s/2

I0,q(s, d)
=

qs

E(Fd(Bd,q))
, (J.4)

where Bd,q is a Binomial random variable, i.e.

P(Bd,q = n) = qd(n) =

(
d

n

)
(
q

2
)n(1− q

2
)d−n (J.5)

for n = 0, 1, . . . , d, where Fd is defined by (C.6). By
the normal approximation to binomial distribution, we
have

Zd,q :=
Bd − E(Bd)√

varBd
=

Bd − dq
2√

d
2

√
2q − q2

−−→ N (0, I)

(J.6)
which is similar to (C.7). Then, we follow similar
computations to the proof of Corollary 4:

E(Fd(Bd,q))

=E

(
Fd(

dq

2
+

√
d

2

√
2q − q2Zd)

)

=2s/2E

[
(dq2 +

√
d

2

√
2q − q2Zd)

s/2

ds/2

S(
dq

2
+

√
d

2

√
2q − q2Zd, s/2)

]

=qs/2E

[
(1 +

1√
d

√
2− q
√
q

Zd)
s/2

S(
dq

2
+

√
d

2

√
2q − q2Zd, s/2)

]
.

Fractional moment-preserving initialization schemes for training deep neural networks

Using the Binomial expansion,

(1 + x)s/2 =

∞∑
k=0

(
s/2

k

)
xk for |x| < 1.

Therefore, for Zd,q <
√
d
(√

q√
2−q

)
, we can write

(1 +
1√
d

√
2− q
√
q

Zd,q)
s/2S(

dq

2
+

√
d

2

√
2q − q2Zd,q, s/2)

=

[
∞∑
k=0

(
s/2

k

)√
2− qk

(
√
dq)k

Zkd,q

][
M∑
m=0

Am(s/2)(
2

dq
2

+
√
d
2

√
2q − q2Zd,q

)m]

=

[
∞∑
k=0

(
s/2

k

)√
2− qk

(
√
dq)k

Zkd,q

][
M∑
m=0

Am(s/2)
2m

(dq)m 2

1 + 1√
d

√
2−q√
q
Zd,q

m]

=

[
∞∑
k=0

(
s/2

k

)√
2− qk

(
√
dq)k

Zkd,q

][
M∑
m=0

Am(s/2)
4m

dmqm(
∞∑
`=0

1
√
d
`

√
2− q`
√
q`

Z`d,q

)m]

=

(
1 +

(
s/2

1

)√
2− q√
dq

Zd,q +

(
s/2

2

)
2− q
dq

Z2
d,q + . . .

)

·

(
1 +

(
s/2

2

)
4

dq

(
∞∑
`=0

1
√
d
`

√
2− q`
√
q`

Z`d,q

)
+ . . .

)

=1 +

(
s/2

1

)
1√
d
Zd,q +

(
s/2

2

)
6− q
dq

Z2
d + . . . ,

where we used the identity A1(s/2) =
(
s/2
2

)
=

s
2 (s2−1)

2 .
Since P(Zd,q ≥

√
d) = O(e−d/2) and the function S is

non-negative and bounded by 1 according to (C.3), we
have

E

[
(1 +

1√
d

√
2− q
√
q

Zd,q)
s
2 S(

dq

2
+

√
d

2

√
2q − q2Zd,q,

s

2
)

]

=E

[
1 +

(
s/2

1

)
1√
d
Zd +

(
s/2

2

)
(6− q)
dq

Z2
d + . . .

]
+O(e−

d
2
(2q−q2))

=1 +

(
s/2

2

)
6− q
dq

+ o(
1

d
),

where we used the fact that E(Zkd,q) → E(Zk) as
d→∞ for any fixed k implied by (C.7) where Z is a
standard-normal variable in R with the property that
E(Z) = 0 and E(Z2) = 1. Then, it follows from (J.4)

that

(d2)s/2

I0,q(d, s)
=qs/2

[
1−

(
s/2

2

)
6− q
dq

+ o(
1

d
)

]
=qs/2

[
1− (6− q)s(s− 2)

8dq
+ o(

1

d
)

]
,

(J.7)

which implies

σ2
0,q(d, s) =(

1

I0,q(d, s)
)2/s

=
2q

d

[
1− (6− q)s(s− 2)

8dq
+ o(

1

d
)

]2/s

=
2q

d

[
1− (6− q)(s− 2)

4dq
+ o(

1

d
)

]
=

2q

d
− (6− q)(s− 2)

2d
+ o(1/d2).

(J.8)

This completes the proof.

J.2 Parametric ReLU activation with
dropout

Theorem 21. (Explicit characterization of the
critical variance σ2

a,q(s, d) with dropout) Consider
a fully connected network with an input x(0) ∈ Rd
and Gaussian initialization satisfying (A1)–(A2) with
activation function φa(x) for any choice of a ∈ (0, 1]
fixed and with dropout where the probability to keep a
neuron is q ∈ (0, 1]. Then, for any s ∈ (0, 2], the output
of the k-th layer satisfies

E
[
‖x(k)‖s

]
= ‖x(0)‖s(σsIa,q(s, d))k (J.9)

with Ia,q(s, d) defined as:

Ia,q(s, d) =
1

qs
2s/2

1

Γ(1− s/2)

d∑
n=0

d−n∑
m=0

qd(n,m)

∞∑
k=0

wk,n,mB(k + 1− s

2
,
n+m

2
+
s

2
)

for s ∈ (0, 2), especially if s = 2

Ia,q(s, d) =
1

q2
(1 + a2)

d

2

where qd(n,m) is defined by (J.11), B(·, ·) is the Beta
function and

wk,n,m =
1

2
(1− a2)k

[(
m
2

+ k − 1

k

)
n+ a2m

(
m
2

+ k

k

)]
.

(J.10)
Let σ̄a,q(s, d) = 1

s
√
Ia,q(s,d)

. We have three possible
cases:

Mert Gürbüzbalaban and Yuanhan Hu

(i) If σ = σ̄a,q(s, d) where then the network preserves
the s-th moment of the layer outputs, i.e. for
every k ≥ 1, E

[
‖x(k)‖s

]
= ‖x(0)‖s, whereas for

any p > s, E‖x(k)‖p →∞ exponentially fast in k.

(ii) If σ < σ̄a,q(s, d), then E
[
‖x(k)‖s

]
→ 0 exponen-

tially fast in k.

(iii) If σ > σ̄a,q(s, d), then E
[
‖x(k)‖s

]
→∞ exponen-

tially fast in k.

Proof. The proof follows from minor changes to the
proof of Theorem 7. In the abscence of dropout (i.e.
when q = 1), the quantity defined in the proof of
Theorem 7, Ia(d, s) has the distribution

Xn := χ2
1(n) + a2χ2

2(d− n),

with probability pd(n) where χ2
1(n) and χ2

2(d−n) are in-
dependent chi-square distributions with degrees of free-
dom n and d− n respectively. When there is dropout,
the distribution of Xn and the corresponding binomial
probabilities will be subject to change because now
there is the possibility of zero output from some neu-
rons due to dropout and scaling the neuron outputs.
The corresponding probabilities will come from the
trinomial distribution instead. More specifically, it
suffices to replace Xn with

Xn,m =
1

q2

(
χ2

1(n) + a2χ2
2(m)

)
with probabilities from the trinomial distribution

qd(n,m) =
d!

n!m!(d− n−m)!
(
q

2
)n+m(1− q)d−n−m.

(J.11)

Moreover, we can compute EXs/2
n,m by simply replacing

d with n+m in the formula for E((Xn)s/2) we obtained
in (F.13). After following similar steps to the proof of
Theorem 7, we obtain the desired result.

Corollary 22. (Critical variance σ̄1,q(d, s) when
d is large with dropout) For fixed width d and s ∈
(0, 2], we have

σ̄2
1,q(s, d) =

q

d
+

(3− q)(2− s)
4d2

+ o(
1

d2
)

with σ̄2
1,q(2, d) = q

d . Therefore, it follows from Theorem
7 that if σ2 = 1

d + (3−q)(2−s)
4d2 , then the network with

linear activation will preserve the moment of order
s+ o(1

d) of the network output.

Proof. In the linear activation function case, we have
a = 1, then we obtain wk,n,m = m+n

2 for k = 0,

wk,n,m = 0 for k > 0. Then it follows that

I1,q(s, d)

=
1

qs
2s/2

1

Γ(1− s
2)

d∑
n=0

d−n∑
m=0

qd(n,m)
m+ n

2

B(1− s

2
,
m+ n

2
+
s

2
)

=
1

qs
2s/2

d∑
n=0

d−n∑
m=0

qd(n,m)
Γ(m+n

2 + s
2)

Γ(m+n
2)

.

where we use the identity Γ(m+n
2 + 1) = m+n

2 Γ(m+n
2)

and the fact that B(x, y) = Γ(x)Γ(y)/Γ(x + y) for
x, y > 0. Then denote t = m+ n, we get

I1,q(s, d) =
1

qs
2s/2

d∑
t=0

hd(t)
Γ(t2 + s

2)

Γ(t2)
, (J.12)

where

hd(t) :=

(
d

t

)
qt(1− q)d−t.

We see that in the special case q = 1/2, this formula
reduces to the analysis provided in Corollary 4. The
proof will be similar where we will follow a similar
approach to the proof of Corollary 4. Similar to the
proof technique of Corollary 4, We write

I1,q(s, d) =
1

qs
2s/2

d∑
t=1

hd(t)(
t

2
)s/2S(t/2, s/2).

Note that

(d2)s/2

I1,q(s, d)
=

qs

E(Fd(Hd))
, (J.13)

where Hd is a Binomial random variable, i.e.

P(Hd = n) =

(
d

t

)
qt(1− q)d−t for t = 0, 1, . . . , d,

where Fd is defined by (C.6). By the normal approxi-
mation of the binomial distribution, we also have

ξd,q :=
Hd − E(Hd)√

varHd

=
Hd − dq√
dq(1− q)

−−→ N (0, 1)

(J.14)

Fractional moment-preserving initialization schemes for training deep neural networks

in distribution. We also have

E(Fd(Hd))

=E
(
Fd(dq +

√
dq(1− q)ξd,q)

)
=2s/2E

[
(dq +

√
dq(1− q)ξd,q)s/2

ds/2

S(
1

2
(dq +

√
dq(1− q)ξd,q), s/2)

]

=(2q)s/2E

[
(1 +

√
1− q
dq

ξd,q)
s/2

S(
1

2
(dq +

√
dq(1− q)ξd,q), s/2)

]
.

Recall the Binomial expansion formula,

(1 + x)s/2 =

∞∑
k=0

(
s/2

k

)
xk for |x| < 1.

For ξd,q <
√

dq
1−q , we can write[

(1 +

√
1− q
dq

ξd,q)
s/2S(

1

2
(dq +

√
dq(1− q)ξd,q), s/2)

]
=

[
∞∑
k=0

(
s/2

k

)
(
1− q
dq

)k/2ξkd,q

][
M∑
m=0

Am(s/2)

(
2

dq +
√
dq(1− q)ξd,q

)m]

=

[
∞∑
k=0

(
s/2

k

)
(
1− q
dq

)k/2ξkd,q

][
M∑
m=0

Am(s/2)(
2

dq
)m 1

1 +
√

1−q
dq
ξd,q

m]

=

[
∞∑
k=0

(
s/2

k

)
(
1− q
dq

)k/2ξkd,q

][
M∑
m=0

Am(s/2)(
2

dq
)m(

∞∑
`=0

(−1)l(

√
1− q
dq

)`ξ`d,q

)m]

=1 +

(
s/2

2

)
2

dq
+

[(
s/2

1

)√
1− q
qd
−

(
s/2

2

)
2

dq

√
1− q
dq

+

(
s/2

1

)(
s/2

2

)
2

dq

√
1− q
dq

]
ξd,q

+

(
s/2

2

)[
2(1− q)
d2q2

+
1− q
dq

+

(
s/2

2

)
2(1− q)
d2q2

]
ξ2d,q

−

(
s/2

1

)(
s/2

2

)
2(1− q)
d2q2

ξ2d,q +

where we used the identity A1(s/2) =
s
2 (s2−1)

2 . Since

P(ξd,q ≥
√

dq
1−q) = O(e−dq/2(1−q)) and the function S

is non-negative and bounded by 1 according to (C.3),
we have

E
[
(1 +

√
1− q
dq

ξd,q)
s/2S(

1

2
(dq +

√
dq(1− q)ξd,q), s/2)

]
=O(e−dq/2(1−q)) + 1 +

(
s/2

2

)
2

dq

+

(
s/2

2

)[
2

dq

1− q
dq

+
1− q
dq

+

(
s/2

2

)
2

dq

1− q
dq

−

(
s/2

1

)
2

dq

1− q
dq

]
+

=1 +

(
s/2

2

)
3− q
dq

+ o(
1

d
),

where we used the fact that E(ξkd,q)→ E(Zk) as d→∞
for any fixed k implied by (C.7) where Z is a standard-
normal variable in R which satisfies E(Z) = 0 and
E(Z2) = 1. Then, it follows from (J.13) that

(d2)s/2

I1,q(s, d)
= qs

1

E(Fd(Bd))

= (
q

2
)s/2(1−

(
s/2

2

)
3− q
dq

+ o(
1

d
))

= (
q

2
)s/2

(
1− (3− q)s(s− 2)

8dq
+ o(

1

d
)

)
,

which implies

σ̄2
1,q(s, d) =

1
s/2
√
I1,q(s, d)

=
q

d

(
1 +

(3− q)(2− s)
4dq

+ o(
1

d
)

)
,

which completes the proof for the case s ∈ (0, 2]. For
s = 2, (J.12) simplifies to

I1,q(2, d) =
1

q2
2

d∑
t=0

hd(t)
t

2
=
d

q
(J.15)

where we used Γ(t2 + 1) = t
2Γ(t2) and the fact that

E(Hd) = qd. This leads to σ̄1,q(2, s) = q/d as desired.

K Proof of Theorem 14

Proof. We first consider the ReLU case where a = 0.
In this case, the fact that x(k) goes to zero a.s. follows
from a relatively simple argument. After a simple
computation (see Lemma 17), we find that P(x(k) =
0) = 1 − (1 − 1

2d
)k regardless of the choice of σ > 0.

This implies that for all ε > 0,∑
k≥1

P(|x(k)| > ε) ≤
∑
k≥1

(1− 1

2d
)k <∞.

Mert Gürbüzbalaban and Yuanhan Hu

Therefore, x(k) → 0 almost surely. We next consider
the a ∈ (0, 1] case and build on the theory of iterated
random Lipschitz maps. Recall that the layer outputs
obey the stochastic recursion

x(k+1) = F (k+1)(x(k)) = MW (k+1),a(x(k)) (K.1)

where MW,a(x) := φa(Wx). We also note that for a
non-negative random variable

E log(M) =
d

ds
E(Ms)|s=0 ,

when the expectations are finite. Therefore, choosing
M = ‖φa(We1)‖,

µa(σ) =
d

ds
E‖φa(We1)‖s|s=0 . (K.2)

Then, similar to the proof of Corollary 9, we consider
κ(s) = σsIa(s, d) = E‖φa(We1)‖s where Ia(s, d) is
defined by (4.2). The function κ(s) is convex and
continuously differentiable (see the proof of Corollary 9).
Notice that µa(σ) = κ′(0) and κ(0) = 1. If µa(σ) < 0,
then κ(s) < 1 for s > 0 small enough. Since κ(s) =
E‖φa(We1)‖s goes to infinity as s goes to infinity, we
conclude that there exists s∗ > 0 such that κ(s∗) = 1.
From the definition of the κ function, this is equivalent
to saying σ = 1

s∗
√
Ia(s∗,d)

= σ̄a(s∗, d) for some s∗ > 0.

Correspondingly, if σ = 1
s∗
√
Ia(s∗,d)

= σ̄a(s∗, d) for some

s∗ > 0, then κ(s∗) = 1 and since κ(0) = 1, by convexity
of κ we find that κ(s) < 1 for s ∈ (0, s∗) which implies
µa(σ) = κ′(0) < 0. For s ∈ (0, s∗), by Corollary 9 we
have σ̄a(s∗, d) < σ̄a(s, d). If apply part (ii) of Theorem
7 with the fact that σ = σ̄a(s∗, d) < σ̄a(s, d), then we
obtain E(‖x(k)‖s) → 0, i.e. x(k) converges to zero in
the space Ls.

We next prove that x(k) has a subsequence that con-
verges to zero a.s. when µa(σ) < 0. From Theorem 11,
we see that for any constant C > 0, we have

lim
k→∞

P(‖x(k)‖ > C)

= lim
k→∞

P(log ‖x(k)‖ > log(C))

= lim
k→∞

P
(

log ‖x(k)‖ − µa(σ)k√
k

>
log(C)√

k
− µa(σ)

√
k

)
=

{
0 if µa(σ) < 0,

1 if µa(σ) > 0.

(K.3)

We have two cases, depending on the sign of µa(σ).

(i) (µa(σ) < 0): In this case, for C = 1/2, based on
(K.3), we can choose n1 large enough so that

P(‖x(n1)‖ > 1

2
) ≤ 1

2
.

Continuing by a recursive fashion choose nk large
enough such that

P(‖x(nk)‖ > 1

2k
) ≤ 1

2k

with n1 < n2 < · · · < nk. Then the event Ak =
{‖x(nk)‖ > 1

2k
} is such that

∑
k P(Ak) < ∞. By

the Borel-Cantelli lemma, we find that

P
(

lim sup
k→∞

{‖x(nk)‖ > 1

2k
}
)

= 0.

This proves that for any ε > 0 given P(‖x(nk)‖ ≥
ε infinity often) = 0 which is equivalent to saying
P(‖x(nk)‖ < ε) = 1 or yet equivalently x(nk) → 0
almost surely.
In the special case when s∗ > 1, we can stronger
results. In particular, we can consider

∞∑
j=0

E‖x(j+1) − x(j)‖ ≤
∞∑
j=0

(
E‖x(j+1)‖+ E‖x(j)‖

)
≤2

∞∑
j=0

E‖x(j)‖ <∞

(K.4)

where we applied part (ii) of Theorem 7 with
the fact that σ = σ̄a(s∗, d) < σ̄a(1, d). Then, by
(Steinsaltz, 1999, Lemma 1), x(k) converges almost
surely to a limit. Since the subsequence x(nk)

converges to zero, we obtain that x(k) converges
a.s. to zero.

(ii) (µa(σ) > 0): The proof follows from a similar ap-
proach to part (i).When µa(σ) > 0, we see from
Theorem 7 that all the moments E(‖x(k)‖α) di-
verges for any α > 0 (because if it were not, then
σ = σa(s, d) for some s > 0 which would imply
µa(σ) < 0 by the discussion above). Furthermore,
based on (K.3), x(k) diverges to infinity in prob-
ability and we can choose a subsequence n̄k such
that

P(‖x(n̄k)‖ > 2k) ≥ 1− 1

2k

with n̄1 < n̄2 < · · · < n̄k. Then the event Āk =
{‖x(nk)‖ < 2k} is such that

∑
k P(Āk) < ∞. By

the Borel-Cantelli lemma, we find that

P
(

lim sup
k→∞

{‖x(nk)‖ < 2k}
)

= 0.

This proves that for any ε > 0 given P(‖x(nk)‖ ≤
ε infinity often) = 0 which is equivalent to saying
P(‖x(nk)‖ > ε) = 1 or yet equivalently x(nk) →∞
almost surely.

Fractional moment-preserving initialization schemes for training deep neural networks

L Proof of Theorem 15

Proof. Due to the addition of Gaussian noise to post-
activations, we have the recursion over the layers

x̃(k+1) = MW (k+1),ξ(k+1)(x̃(k)) := W (k+1)x̃(k) + ξ(k+1)

(L.1)
where x̃(k) denotes the input to the (k+ 1)-st layer and
ξ(k) is a random vector with components ξ(k)

i that are
i.i.d. mean zero random variables. The map MW (k),ξ(k)

is a random Lipschitz (linear) map whose convergence
behavior has been studied in the literature. If the
following conditions hold

E
[
max

(
0, log(‖W (k+1)‖)

)]
<∞, (L.2)

E
[
max

(
0, log(‖ξ(k+1)‖)

)]
<∞, (L.3)

c1 = inf
k

1

k
E log ‖W (k)W (k−1) . . .W (1)‖ <∞, (L.4)

then it is known that x̃(k) admits an almost sure limit
x̃(∞) in which case the limit is given by the formula

x(∞) =

∞∑
j=1

(
j−1∏
i=1

W (i)

)
ξ(j), (L.5)

(see e.g. (Diaconis and Freedman, 1999, Thm. 2.1)).
We check the conditions in (L.3) and (L.4). The second
condition in (L.3) is satisfied by the assumption on the
noise ξ(k), and the first condition in (L.3) is satisfied
as

E
[
max

(
0, log(‖W (k+1)‖)

)]
≤E

max

0,
1

2
log

 d∑
i,j=1

(W
(k+1)
ij)2

 <∞ ,

(L.6)

where we used the fact that
∑d
i,j=1(W

(k+1)
ij)2 is a chi-

square distribution with d2 degrees of freedom. Finally,
the condition (L.4) is equivalent to

c1 = inf
k

1

k
E log

‖x(k)‖
‖x(0)‖

, (L.7)

where x(k) are the iterations without noise, i.e. x(k)

satisfies x(k+1) = W (k+1)x(k) starting from x(0). It
follows from the analysis of Theorem 11 that we have
also

c1 = µ1. (L.8)

Due to the choice of σ = σ̄1(s, d), by Theorem 14, we
have also µ1 < 0. We conclude from (L.8) that c1 < 0
and (L.4) is also satisfied. Hence, having checked that

assumptions (L.3)–(L.4) hold, we conclude that the
limit x̃(∞) exists, it is non-zero and is given by the
series sum (L.5). With the addition of i.i.d. noise to
activations, moments cannot grow slower; i.e. it is not
hard to show that

E(‖x̃(k)‖p) ≥ E(‖x(k)‖p)

with the same initialization i.e. x(0) = x̃(0). By The-
orem 7, we also know that E(‖x(k)‖p) → ∞ for any
p > s as k →∞. Therefore we conclude that

E(‖x̃(k)‖p)→∞, for any p > s,

as k →∞. Then, we have necessarily E(‖x̃(∞)‖p) =∞
because otherwise x̃(k) would converge to x̃(∞) in Lp
which would be a contradiction as E(‖x̃(k)‖p) → ∞.
This proves that the limit x̃(∞) is heavy tailed in the
sense that its moments of order p are infinite for any
p > s. In particular for s < 2, this implies that the
variance of the limit x̃(∞) is infinite. This completes
the proof.

M A Supporting Lemma

Lemma 23. Let Mi be the random variables and pi be
the constant weights. Let M be the mixture distribution
M :=

∑
i piMi. We have

var(M) =
∑
i

pivar(Mi)+
∑
i

pi(E[Mi])
2−

(∑
i

piE[Mi]

)2

Proof. Let µ(r) denote the r-th (raw) moment of M ,
and µ(r)

i the r-th moment of Mi. Then we obtain

µ(r) =
∑
i

piE[Mr
i] =

∑
i

piµ
(r)
i .

The variance of M can be written as

var(M) = µ(2)−
(
µ(1)

)2

=
∑
i

piµ
(2)
i −

(∑
i

piµ
(1)
i

)2

.

Since µ(2)
i = var(Mi) + (µ

(1)
i)2, we have

var(M) =
∑
i

pi(var(Mi) + (µ
(1)
i)2)−

(∑
i

piµ
(1)
i

)2

=
∑
i

pivar(Mi) +
∑
i

pi(E[Mi])
2

−

(∑
i

piE[Mi]

)2

.

Mert Gürbüzbalaban and Yuanhan Hu

N Extensions of results to
Convolutional networks

For a convolutional layer, we can write the process as

x(k+1) = φa(W kxk + bk),

where xk is a m2
kck × 1 vector which represents co-

located mk × mk pixels in ck input channels, where
mk here is the spatial filter size of the layer k. If
we introduce the quantities dk = m2

kck, and nk as
the number of filters in layer k then W k is a nk × dk
matrix and each row of W k represents the weights
of one filter. Moreover, we also have ck+1 = nk by
the definition. Therefore, we can use our method to
initialize the convolutional neural networks where we
take dk = m2

kck.

O Further Numerical Experiments
and Illustrations

O.1 Numerical Illustrations

In this section, we present additional figures and nu-
merical experiments that were not part of the main
text due to space considerations.

(a) Linear (b) ReLU

(c) Leaky-ReLU

Figure 8: Distribution of norm of the output ‖x(k)‖
through k = 100 layers. 8a: Probability density of
‖x(k)‖ for linear activation, where we set σ2 = 1

d+ 1
2d2 ≈

σ̄2
a(s, d) with a = 0 and s = 1 with our initialization.

8b: Probability density of ‖x(k)‖ for ReLU activation,
where we set σ2 = 2

d + 5
2d2 ≈ σ̄2

a(s, d) with a = 0 and
s = 1 with our initialization. 8c: Probability density of
‖x(k)‖, where we set σ2 ≈ σ̄2

a(s, d) with a = 0.01 and
s = 1 with our initialization. Kaiming initialization
corresponds to σ2 = σ̄2

a(s, d) for s = 2.

Distribution of the network output. The distribu-
tion of the natural logarithm of the norm of the output
Rk,0 is plotted in Figure 2 in the main text. Figure 8
illustrates the distribution the norm of the k-th layer
output for linear, ReLU and Leaky ReLU activations
which supplements Figures 2 and 4. The distribution is
obtained from the samples by standard kernel density
estimation methods provided in the Python package
seaborn.1 We observe that our initialization leads to
heavier tails compared to Kaiming initialization, where
the frequency of small outputs is less frequent in our
method compared to Kaiming initialization.

O.2 Numerical Experiments

(a) Train loss (b) Test loss

(c) Train accuracy (d) Test accuracy
train loss test loss
mean std mean std

Xavier 2.3026 1.1405 2.3026 1.1985
Randwalk 1.8519 0.1231 1.8158 0.1367
Kaiming 1.833 0.098 1.793 0.109
s=0.8 1.772 0.1294 1.7264 0.1469

train acc test acc
mean(%) std mean(%) std

Xavier 10.07 0.0006 10.07 0.0014
Randwalk 33.84 0.0346 35.21 0.0386
Kaiming 34.8 0.0304 36.46 0.0329
s=0.8 35.55 0.0431 37.37 0.05

Figure 9: Fully connected network with ReLU activa-
tion on CIFAR-10. The results are the average over
10 samples. The x-axis is epoch number.

1This package is publicly available at https://seaborn.
pydata.org/.

https://seaborn.pydata.org/
https://seaborn.pydata.org/

Fractional moment-preserving initialization schemes for training deep neural networks

(a) Train loss (b) Test loss

(c) Train accuracy (d) Test accuracy

train loss test loss
mean std mean std

Xavier 2.3016 0.0001 2.3026 0.0001
Kaiming 1.8459 0.1266 1.8108 0.1383
s=1 1.7771 0.1668 1.7298 0.1796

train acc test acc
mean(%) std mean(%) std

Xavier 10.29 0.0147 10.32 0.0163
Kaiming 33.36 0.0376 34.93 0.0433
s=1 34.9 0.0512 36.65 0.0568

Figure 10: Fully connected network with Leaky ReLU
on CIFAR-10. The plots are averages over 10 runs,
where mean and standard deviation (std) are also re-
ported. The x-axis is the epoch number.

CIFAR-10 dataset.2 CIFAR-10 dataset consists of
60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images
and 10000 test images. For ReLU activations, we com-
pare our initializaion method with Kaiming and Xavier
method as well as with the random walk initialization.
However for the Leaky ReLU activation, we compare
our new method with Kaiming and Xavier method
only as the parameters of random walk initialization
are not available for Leaky ReLU initialization. For
understanding the effect of initialization on training,
we report the first 50 epochs in the training process
where we train our networks with stochastic gradient
descent (SGD) using a constant stepsize. We tuned
the SGD stepsize and used the same stepsize for each
method.

(a) Train loss (b) Test loss

(c) Train accuracy (d) Test accuracy
train loss test loss
mean std mean std

Xavier 1.442 0.0169 1.3636 0.0103
Randwalk 1.4344 0.0128 1.3565 0.0104
Kaiming 1.4479 0.0124 1.3727 0.0088
s=1 1.4255 0.0236 1.3445 0.0239

train acc test acc
mean(%) std mean(%) std

Xavier 46.92 0.0059 49.79 0.0043
Randwalk 47.43 0.0033 50.18 0.0031
Kaiming 46.82 0.0053 49.61 0.0066
s=1 47.87 0.0096 51.22 0.0114

Figure 11: Linear fully connected network on CIFAR-
10. The results are the average over 10 samples. The
x-axis is epoch number.

Figure 9 shows the results of a fully connected network
with ReLU activation. For our method in the ReLU
case, we set σ2 = 2

d + 3
d2 , which preserves the moment

s ≈ 0.8 according to Corollary 4. Figure 11 displays the
results of network with linear activation on CIFAR-10
with a similar setup where we set σ2 = 1

d + 1
2d2 which

corresponds to the choice of s ≈ 1. Similarly, Figure 12
reports the corresponding results for Leaky ReLU. In
all cases (linear, ReLU and Leaky ReLU activations),
we use two convolutional layers, 20 fully-connected lay-
ers and d = 64 for all hidden layers in this network.
We consider four criteria for comparison: train loss,
test loss, train accuracy, and test accuracy. We observe
that our method performs no worse than other meth-
ods (Xavier initialization, Kaiming initialization, and
Random walk initialization) and in many cases leads

Mert Gürbüzbalaban and Yuanhan Hu

(a) Train loss (b) Test loss

(c) Train accuracy (d) Test accuracy
train loss test loss
mean std mean std

Xavier 2.2975 0.0157 2.2966 0.0196
Kaiming 0.2613 0.1027 0.2394 0.1096
s=1 0.2518 0.1459 0.2464 0.1496

train acc test acc
mean(%) std mean(%) std

Xavier 11.63 0.0502 11.57 0.0452
Kaiming 91.4 0.0446 90.55 0.0479
s=1 91.78 0.0575 90.82 0.0578

Figure 12: Fully connected network with Leaky ReLU
on MNIST. The results are the average over 20 samples.
The x-axis is epoch number.

to an improvement.

MNIST dataset.3 MNIST database is a database
of handwritten digits with a training set of 60,000 ex-
amples, and a test set of 10,000 examples. The setup is
similar to our experiments for CIFAR-10. In our results,
we consider 20 runs. Figure 5 (reported in the main
text), Figure 12 and Figure 13 show the performance of
our method of the fully connected network with ReLU,
Leaky ReLU, and linear activations respectively in the
first 30 epochs. For the ReLU and Leaky ReLU case,
we use 20 layers with d = 64. For the linear case, we
use 30 layers with d = 64. Similar to the CIFAR-10
experiments, we set s ≈ 0.8 for ReLU, s = 1 for Leaky
ReLU and linear case.

2This dataset can be downloaded from https://www.cs.
toronto.edu/~kriz/cifar.html.

3This dataset can be downloaded from http://yann.
lecun.com/exdb/mnist/.

(a) Train loss (b) Test loss

(c) Train accuracy (d) Test accuracy
train loss test loss
mean std mean std

Xavier 0.4686 0.0567 0.4485 0.0311
Randwalk 0.4652 0.042 0.4414 0.0317
Kaiming 0.5011 0.0519 0.4634 0.0399
s=1 0.4586 0.0371 0.451 0.0348

train acc test acc (%)
mean(%) std mean(%) std

Xavier 85.71 0.0084 86.52 0.0084
Randwalk 86.29 0.0096 87.22 0.0104
Kaiming 85.53 0.0121 86.33 0.12
s=1 86.16 0.008 86.74 0.0089

Figure 13: Linear fully connected network on MNIST.
The results are the average loss over 20 runs. The
x-axis is epoch number.

Both MNIST and CIFAR-10 experiments are imple-
mented by the Python package torch.4 Our experi-
ments are trained on Nvidia GTX 1080Ti GPU. Each
experiment of MNIST takes around 3-4 hours, and each
experiment of CIFAR-10 takes around 6-7 hours.

4This package is publicly available at https://pytorch.
org/.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://pytorch.org/
https://pytorch.org/

	Notation
	Proof of Theorem 1
	Proof of Corollary 4
	Probability of zero network output for ReLU activations
	Proof of Theorem 5
	Proof of Theorem 7
	Proof of Corollary 9
	Proof of Corollary 10
	Proof of Theorem 11
	Extensions of results to dropout
	ReLU activation with dropout
	Parametric ReLU activation with dropout

	Proof of Theorem 14
	Proof of Theorem 15
	A Supporting Lemma
	Extensions of results to Convolutional networks
	Further Numerical Experiments and Illustrations
	Numerical Illustrations
	Numerical Experiments

