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Supplementary Material
Federated Learning with Compression:
Unified Analysis and Sharp Guarantees

The outline of our supplementary material follows. In Section A, we first elaborate further on related studies
in the literature. In Section B.1, we propose variations of Algorithm 2 used in the experimental setup. Then,
we present the proofs of our main theoretical results presented in the main body of the paper. In Section D,
we present the convergence properties of our FedCOM method presented in Algorithm 1 for the homogeneous
setting. In Section E, we present the convergence properties of our FedCOMGATE method presented in Algorithm 2
for the heterogeneous setting. In Section F, we present the proof of some of our intermediate lemmas.
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A Additional Related Work and Comparison

In this section, we summarize and discuss additional related work. We separate the related work into two broad
categories below.

Local computation with periodic communication. An elegant idea to reduce the number of communica-
tions in vanilla synchronous SGD is to perform averaging periodically instead of averaging models in all clients
at every iteration [69], also known as local SGD. The seminal work of [55] was among the first to analyze the
convergence of local SGD in the homogeneous setting and demonstrated that the number of communication
rounds can be significantly reduced for smooth and strongly convex objectives while achieving linear speedup.
This result is further improved in follow up studies [14,15,27,57,60,68]. In [60], the error-runtime trade-off of local
SGD is analyzed and it has been shown that it can also alleviate the synchronization delay caused by slow workers.
From a practical viewpoint, few recent efforts explored adaptive communication strategies to communicate more
frequently early in the process [14,38,51].

The analysis of local SGD in the heterogeneous setting, also known as federated averaging (FedAvg) [43], has seen
a resurgence of interest very recently. While it is still an active research area [64], a few number of recent studies
made efforts to understand the convergence of local SGD in a heterogeneous setting [11,18,26,27,30,33,34,71]. Also,
the personalization of local models for a better generalization in a heterogeneous setting is of great importance
from both theoretical and practical point of view [10,12,37,42,54].

Distributed optimization with compressed communication. Another parallel direction of research has
focused on reducing the size of communication by compressing the communicated messages. In quantization
based methods, e.g. [5,40,52,57], a quantization operator is applied before transmitting the gradient to server. A
gradient acceleration approach with compression is proposed in [35]. In heterogeneous data distribution, [23]
proposed the use of sign based SGD algorithms and [48] employed a quantization scheme in FedAvg with provable
guarantees. In sparsification based methods, the idea is to transmit a smaller gradient vector by keeping only very
few coordinates of local stochastic gradients, e.g., most significant entries [2,41]. For these methods, theoretical
guarantees have been provided in a few recent efforts [4,19,28,56,59,65]. Note that, most of these studies rely on
an error compensation technique as we employ in our experiments. We note that sketching methods are also
employed to reduce the number of communication in [17,22].

The aforementioned studies mostly fall into the centralized distribution optimization. Recently a few attempts are
made to explore the compression schema in a decentralized setting where each device shares compressed messages
with direct neighbors over the underlying communication network [29,49,50,53]. Another interesting direction
for the purpose of reducing the communication complexity is to exploit the sparsity of communication network as
explored in [18,30,61]. Moreover, the recent work of [46] studies bidirectional compression in Federated Learning.

Finally, more thorough related works that study federated learning from different perspectives can be found
in [24] and [32].

Additional comparison with DIANA [21] We provide a summary of the comparison of our algorithms
and algorithms introduced in [21] in two tables. We compare the rates in homogeneous and heterogeneous data
distributions separately. The following comments are in place:

In the homogeneous setting, shown in Table 5 and in comparison to DIANA and VR-DIANA | FedCOM improves
all the communication rounds in terms of dependency on ¢ (shown in blue). In the heterogeneous setting, shown
in Table 6, in comparison to DIANA and VR-DIANA, FedCOMGATE basically improves all the communication
rounds in terms of dependency on ¢ (shown in blue) except for the strongly convex (SC) case. For the SC case of
heterogeneous setting, we highlight that our results are for the PL, unlike DIANA which is for SC. Thus, we
believe that if we derive the results directly for SC we might obtain the same or even better results than DIANA
(like homogeneous setting). Comparison of finite-sum and stochastic algorithms does not seem to be fair, but
per your request, we provide the full comparison. We believe if we analyze our methods for FS settings the
dependency on n would only appear in 7 (not R). For deterministic settings, i.e., setting n = 1 in DIANA and
0?2 =0 in FedCOM and FedCOMGATE, again we observe that the communication bounds for FedCOM and
FedCOMGATE are better in terms of dependency on ¢ in homogeneous and heterogeneous settings except for the
SC heterogeneous case.
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Objective function

Reference Nonconvex PL Strongly Convex General Convex F.S.
DIANA [21] - - h=0 (k45 +9) _ X
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Table 5: Homogeneous data distribution with R communication rounds and 7 local updates. F.S. stands for
finite-sum assumption, n = max;e[n,) n;, where n; is the number of local samples at the ith device. m is the total

number of devices, and ¢ is the quantization noise. We use O() to keep key parameters and to omit log(%) term.

Objective function

Reference Nonconvex PL Strongly Convex General Convex F.S.
-0 Kq
DIANA 21] - - R=0(x+5+a) X
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VR-DIANA [21] R*O< ¢ - R=0(k+%+q+n) R=0 . v
T=1
T=1 T=1
Fed COMGATE [16] =9 ( ¢ ) ('ﬁ1 (g+1)) (,j (g +1)) R=0 ( + ) X
T:O(%) T:O(E) T:O(E) T:O(mlez)

Table 6: Heterogeneous data distribution with R communication rounds and 7 local updates. F.S. stands for
finite-sum assumption, n = max;c;,) n;, where n; is the number of local samples at the ith device. m is the total
number of devices, and ¢ is the quantization noise. We use O(.) to keep key parameters and to omit log(%) term.
Note that our results for PL condition hold for the strongly convex case as the latter is implied by former.

B Further Experimental Studies and Results

In this section, we present additional experimental results, as well as details, that will further showcase the efficacy
of the proposed algorithms in the paper. First, we should elaborate on the algorithms we used in Section 6, but
due to lack of space we did not describe in the main body. In addition, we introduce a version of Algorithm 2
without compression, and its version with sampling of clients.

B.1 Variations of Algorithm 2

In this section we describe the details of variants of Algorithm 2 that are used in experiments.

Without compression. In this part, we first elaborate on a variant of Algorithm 2 without any compression
involved, which we call it Federated Averaging with Local Gradient Tracking, FedGATE. Algorithm 3 describes the
steps of FedGATE, which involves a local gradient tracking step. This algorithm is similar to the SCAFFOLD [26],
however, the main difference is that we do not use any server control variate. In fact, FedGATE, as well as
FedCOMGATE, are implicitly controlling the variance of the server model by controlling its subsidiaries’ variances
in local models. Therefore, there is no need to have another variable for this purpose, which can help us to
greatly reduce the communication size, to half of what SCAFFOLD is using. Hence, even in the simple algorithm
of FedGATE, we can gain the same convergence rate as SCAFFOLD, while enjoying the 2x speedup in the
communication. Note that, since the communication time of broadcasting from server to clients (or downlink
communication) is negligible compared to gathering from clients to the server (or uplink communication), the
overall communication complexity of this algorithm is close to FedAvg, and half of the SCAFFOLD, as it is
depicted in Figure 3. Also, the communication complexity of FedCOMGATE is close to that of FedPAQ [48].
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Algorithm 3: FedGATE(R, 7,7, ~) Federated Averaging with Local Gradient Tracking
Inputs: Number of communication rounds R, number of local updates 7, learning rates v and 7, initial
global model w(?), initial gradient tracking 51(»0) =0, Vj € [m]

forr=0,...,R—1do
for each client j € [m] do in parallel

0,r) _
Set w; =

w™
for ¢=0,...,7/—1do
Set aic,r) = g§”) — 5J(-T) where gj(.c’” £V, (wgc’r); ZJ(-C’T))
w§c+1,r) _ w§c,r) . glgw')
end
Device sends uy) =w) — ng’T) back to the server and gets u(")
Device computes w(") = w() — (")

Device updates 5§r+1) = 5]@ + n%' ('&)(T) - w;T’T))

Device updates server model w1 = w() — 44" // Option I

end

Server computes u(") = % Z;n:l uy) and broadcasts back to clients

Server updates w1 = w() — 44 (")
Server broadcasts w1 to all devices // Option II

end

The common approach in federated learning without sampling for FedGATE and FedCOMGATE would be similar to
Option IT in Algorithm 3, where the server updates its model and broadcasts it to clients. This approach has one
extra downlink step, that is negligible compared to the uplink steps, as it was mentioned before. However, when
there is no sampling of the clients, we can avoid this extra downlink by using the Option I, where each local
device keeps track of the server model and updates it based on what it gets for updating the gradient tracking
variable. In practice, when sampling is not involved, we use Option I. In Section 6, we compare the performance
of FedGATE and SCAFFOLD.

User sampling. One important aspect of federated learning is the sampling of clients since they might not be
available all the time. Also, sampling clients can further reduce the per round communication complexity by
aggregating information from a subset of clients instead of all clients. Hence, in Algorithm 4, we incorporate the
sampling mechanism into our proposed FedCOMGATE algorithm. Based on this algorithm, at each communication
round, the server selects a subset of clients S C [m], and sends the global server model only to selected devices
in S("). The remaining steps of the algorithm are similar to Algorithm 2. In Section 6, we also study the effect
of user sampling on the performance of FedGATE, FedCOMGATE, and other state-of-the-art methods for federated
learning.

B.2 Additional Experiments

EMNIST dataset In addition to the results presented for the datasets in the main body, here, we present the
results of applying different algorithms on EMNIST [9] dataset. This dataset, similar to the MNIST dataset,
contains images of characters in 28 x 28 size. The difference here is that the dataset is separated based on the
author of images, hence, the distribution each image is coming from is different for different nodes. In this
experiment, we use data from 1000 authors in the EMNIST dataset, and set the sampling ratio kK = 0.1. Also,
we tune the learning rate to the fixed value of 0.01 for all the algorithms. The model, similar to the MNIST
case, is a 2-layer MLP with 200 neurons for each hidden layer and ReLU activations. Figure 6 shows the results
of this experiment for the training loss and testing accuracy based on the size of communication. It can be
inferred that FedCOMGATE and FedPAQ both have the fastest convergence based on the communication size, and
accordingly, wall-clock time. The reason that the final convergence rate is the same for all algorithms is that
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Algorithm 4: FedCOMGATE(R, 7, 7,7, k), FedCOMGATE algorithm with sampling of clients

Inputs: Number of communication rounds R, number of local updates 7, learning rates v and 7, initial
global model w(®), participation ratio of clients k € (0, 1], initial gradient tracking 5;0) =0, Vj € [m]

forr=0,...,R—1do

Sever selects a subset of devices S(") C [m], with the size |km)]

Server broadcasts w(™ to the selected devices j € S

for each client j € S do in parallel
Set w;O,r) =w
for ¢=0,...,7—1do
N(c’r) — s(er) (r) s(cer) A (077»)- (e;r)
Setd;, =g, —9; (wﬁlere g =Vfiw; 27

(e+1,7) _ (e,r) ~(e,r
w; =w;" —nd;,
end

Device sends Agg = Q((w — w§T7T))/77) back to the server and gets A"
Device updates 5§r+1) =5 4 LAl - Agr))

J T 7,4

end

m A(T) and broadcasts back to devices j € S

() — 1
Server computes A,V = .- = AL
— T

Server computes w1 = w() — nfyAff)
end
25 95
] —e— SCAFFOLD
—— FedGATE
220 | —»— FedCOMGATE 90
3 —<— FedAvg :_?
E . FedPAQ § .
c (3]
‘© <
= T 80
g 10 2 ‘ —e— SCAFFOLD
S o —>— FedGATE
o 75 —w— FedCOMGATE
0.5 —<— FedAvg
FedPAQ
00 05 10 15 20 25 30 35 o0 05 10 15 20 25 30 35

Number of Bits Communicated 1e10

Number of Bits Communicated

Figure 6: Comparing the performance of different algorithms on the EMNIST dataset, using 1000 clients’ data on
a 2-layer MLP model. FedCOMGATE and FedPAQ have the fastest convergence in time.

similar to Figure 2(a), this dataset is close to the homogeneous setting. To show that, and to compare it to
the heterogeneous datatset we created using the MNIST dataset, we run a test on 20 different clients of this
dataset and the heterogeneous MNIST dataset (2 classes data per client). We give all the clients the same model
and perform a full batch gradient computation over that model. Then, we compute the cosine similarity of this
gradients using:

-
g 8j
djj = —=2—, (7)
T Nl - gl

Figure 7 shows the heatmap of these correlations among clients for two datasets. As it can be seen, in the
EMNIST dataset, each client’s data homogeneously correlates with all other clients’. However, in the MNIST
dataset (with 2 classes data per client), each client has high correlation with at most 4 clients and not correlated
or has a negative correlation with other clients’ data. This shows that the level of heterogeneity in the EMNIST
dataset is much lower than that of in the MNIST dataset, and hence, the result in the Figure 6 are in line with
our theoretical findings for the gradient tracking technique.
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Figure 7: Cosine similarity between full-gradients of different clients on the same model on EMNIST dataset
and the heterogeneous MNIST (with 2 classes per client) dataset. In the EMNIST dataset each client has a
homogeneous correlation with other clients, while the MNIST dataset is highly heterogeneous.
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Figure 8: The effect of sparsification with memory on the FedCOMGATE algorithm used for the training of the MNIST
and the Fashion MNIST datasets. We can achieve almost similar results as the algorithm without compression
(FedGATE) with some compression rates. Decreasing the size of communication will speed up the training, in the
cost of increasing a residual error as it is evident for the case with C,. = 0.1.

Compression via sparsification. Another approach to compress the gradient updates is sparsification. This
method has been vastly used in distributed training of machine learning models [2, 56, 62]. Using a simple
sparsification by choosing random elements or top, elements, some information will be lost in aggregating
gradients, and consequently, the quality of the model will be degraded. To overcome this problem, an elegant idea
is proposed in [55] to use memory for tracking the history of entries and avoid the accumulation of compression
errors. Similarly, we will employ a memory of aggregating gradients in order to compensate for the loss of
information from sparsification. This is in addition to the local gradient tracking we incorporated in FedCOMGATE,
however, despite the server control variate in SCAFFOLD, this memory is updated locally and is not required
to be communicated to the server. We denote the memory in each client 5 at round r with y;.r). Thus, in
Algorithm 2, we first need to compress the gradients added by the memory, using the topy operator as:

AYS) = topy, {(w(r) — w?’”) + V;T)} (8)

Then, we will send this to the server for aggregation, where the server decompresses them, takes the average, and
sends A" back to the clients. Each client updates its gradient tracking parameter as in Algorithm 2. Also, in
this case, we need to update the memory parameter as:

r+1 T 1 r 7 r
V;Jr)zug-)—&—a(w()—w; ))—A(), (9)
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Figure 9: Investigating the effects of quantization noise and local computations on the convergence rate. We
run the experiments on the MNIST dataset with a similar MLP model as before. In (a), we increase the noise of
quantization by increasing the range of noise added to the zero-point of the quantizer operator. Increasing ¢ can
degrade the convergence rate of the model. On the other hand, in (b), with the same level of quantization noise,
we can increase the number of local computations 7 to diminish the effects of quantization.

where it keeps track of what was not captured by the aggregation using the sparsified gradients. Note that, unlike
the quantized FedCOMGATE, in this approach, we cannot compress the downlink gradient broadcasting. However,
since the cost of broadcasting is much lower than the uplink communication, this is negligible, especially in lower
compression rates compared to quantized FedCOMGATE.

To show how the FedCOMGATE using sparsification with memory works in practice we will apply it to MNIST and
Fashion MNIST datasets. Both of them are applied to an MLP model with two hidden layers, each with 200
neurons. For this experiment, we use the compression ratio parameter of C,., which is the ratio between the
size of communication in the compressed and without compression versions. Figure 8 shows the result of this
algorithm by changing the compression rate. As it was observed by [56], in some compression rates we can have
similar or slightly better results than the without compression distributed SGD solution (here FedGATE), due to
the use of memory. However, to gain more from the speedup and decreasing the compression rate, we will incur a
residual error, as it can be seen in the results for the compression rate of 0.1.

Effect of local computations. Finally, we will show the effect of noise in quantization, characterized as ¢ in
the paper, on the convergence rate, and how to address it. As it can be inferred from our theoretical analysis,
increasing the noise of quantization would degrade the convergence rate of the model. This pattern can be seen
in Figure 9(a) for the MNIST dataset, where we add noise to quantized arrays by adding a random integer to the
zero-point of the quantization operator. By increasing the range of this noise, we can see that the convergence is
getting worse with the same number of local computations. On the other hand, based on our analysis, we know
that increasing the number of local computations will compensate for the quantization noise, which helps us to
achieve the same results with lower communication rounds. This pattern is depicted in Figure 9(b), where we
keep the quantization noise constant and increase the number of local computations.
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C Some Definitions and Notation

Before stating our proofs we first formally define Polyak-Lojasiewicz and strongly convex functions.

Assumption 6 (Polyak-FLojasiewicz). A function f(w) satisfies the Polyak-Fojasiewicz condition with constant
wif HIVF(w)I3 > p(f(w) — f(w*)), Vw € R with w* is an optimal solution.

Assumption 7 (u-strong convexity). A function f is p-strongly convex if it satisfies f(u) > f(v) +
(VI(),u—v)+4|lu—|? for all u,v € R

We also introduce some notation for the clarity in presentation of proofs. Recall that we use g, =
Vfi(w) £ Vfi(w;S;) and g; £ Vf(w;Z;) for 1 <i<m to denote the full gradient and stochastic gradient
at ith data shard, respectively, where Z; C S; is a uniformly sampled mini-bath. The corresponding quantities
evaluated at ith machine’s local solution at tth iteration of optimization wgt) are denoted by ggt) and gﬁt), where
we abuse the notation and use t = 7 + ¢ to denote the cth local update at rth round, i.e. (¢,r). We also define
the following notations

w(t) = {wg_t)ﬂ . wwgrtL)},

g(t) = {é-gt)7 e 757&2)}’

to denote the set of local solutions and sampled mini-batches at iteration ¢ at different machines, respectively.
Finally, we use notation E[-] to denote the conditional expectation E¢e) |y []-
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D Results for the Homogeneous Setting

In this section, we study the convergence properties of our FedCOM method presented in Algorithm 1. Before
stating the proofs for FedCOM in the homogeneous setting, we first mention the following intermediate lemmas.

Lemma D.1. Under Assumptions 2 and 3, we have the following bound:

m T7—1
" —(r 1 r T2
Eg.eo |I85)17] = B Eo 185 12] < 7(a+1)= 3 D ™I + (¢ +1) - (10)
j=1c=0
Proof.
1 m T—1
o mall 30 (S ) 1]
j=1 c=0
g "
1
1 m T— e
=E¢o EQ[HEZQ gj(-’) ||2}
7j=1 c=0
5(m)
L Qj J
® 1 & . 1 &
=Eeo [Eq | |1 & “"’JZEQ 51|+ IEq EZ &) | II?
L - j:1 :
@ 1 = r r ~(r
2o 20 [ 5 e - ]| |2 55
| =1 ] j=1
- 2
° o)L LN a0
< Eeor ZﬁHgJ’ + gzga‘
Jj=1 Jj=1
) 2
_ q 5(r) ™|? L e (o) 1 (r)
=30 [ver (&) + ] + fvar 2 oa ) + o S
j=1 j=1 j=1
] -
m m m
_N ¢ 5(r) ™| 1 5(r) 1 (r)
=5 v (&) + ]+ | v (&) + |2 D
j=1 j=1 j=1
4 <) ] 1\ NN I SN IRGIE
<3 [ver (87) + 7 ] + | 2o v (8 mzugj i
Jj=1 L j=1 j=1 ]

where @ holds due to E {||x||2} = Var[x] + |[E[x]||?, @ is due to Eq [% > Q(T)} ™ &) and ® follows

j=19Qj

[
3|~

i\
G3

from Assumption 2.

Next we show that from Assumptions 4, we have

Eer HHQY) - g;T)HzH < 70? (12)
To do so, note that

2

) -1
] 2 Eeem HZ {Q;C’T) - g§c T)}

Eco [H@Y) g
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T—1
=Var (Z g§c”")>
c=0
T—1
23 var(g")
c=0
T7—1 2
-3 [Hg@ ) _ glon }
c=0

< 70? (13)

where in @ we use the definition of gg") and gy), in @ we use the fact that mini-batches are chosen in i.i.d.

manner at each local machine, and ® immediately follows from Assumptions 3.
P

Replacing E¢ ) [ngm -8 ] in (11) by its upper bound in (12) implies that

m T—1 m
]- ~(C,T q 2

E&'(T)‘w(r)EQ[ EZ (Z ( )> ||2} < ZW |: :| + (14)

J=1 =0 j=1

Further note that we have
O _ S e e
e = 1> e <> gl (15)
c=0 c=0

2
where the last inequality is due to HZ?ZI af| <nX, llas||?, which together with (14) leads to the following

bound:

m T—1 m T—1
1 (e 1 - T2
FowotelI 350 (S8 ) 1] s+ 0SS W e o

j=1c¢=0
and the proof is complete. O

Lemma D.2. Under Assumption 1, and according to the FedCOM algorithm the expected inner product between
stochastic gradient and full batch gradient can be bounded with:

E [(vi®),&")] < £ %Z [V — 195l + 2 w8 (7

c=0

Proof. We have:

_ E{ggt)’m’&(;)‘wgt)’m’w%)}EQ [<Vf(w(r))’ gg)ﬂ

j=1c=0
T—1 m
=3 S (V)8
c=0 7j=1
T—1

g %Z {*”Vf( NB~ IV (w3 + IV F () = Vw3
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T—1 m
@1 1 T r C,T
<502 = 3 |1V — [V @) + L2 —wl 3] (18)
c=0 j=1
where @ is due to 2(a,b) = ||a||? + ||b||? — |la — b||?, and @ follows from Assumption 1. O

The following lemma bounds the distance of local solutions from global solution at rth communication round.

Lemma D.3. Under Assumptions 3 we have:

E [|lw® —w”||}<nrzug<”>

+n?ro? (19)

Proof. Note that

2
e [ - wie”

1 —E | |lw® ( nzg(’”)>

2

=E nzg(k”

2

2o 6 ) |

(G >u] % e
S [ "“)H]WZU ]
g B o]
e s S

2

T]Zg(k ,r)

k=0

|

(20)

where ® comes from E [x?] = Var [x] + [E [x]]* and @ holds because Var (Z?Zl xj) = > i_y Var (x;) for iid.

vectors x; (and i.i.d. assumption comes from i.i.d. sampling), and finally ® follows from Assumption 3. O

D.1 Main result for the non-convex setting

Now we are ready to present our result for the homogeneous setting. We first state and prove the result for the
general nonconvex objectives.

Theorem D.4 (Non-convex). For FedCOM(T,n,7v), for all 0 <t < Rt — 1, under Assumptions 1 to 3, if the
learning rate satisfies

1> 720 + (% + 1) nyLT (21)

and all local model parameters are initialized at the same point w(®), then the average-squared gradient after T
iterations is bounded as follows:

R-1 0)y — ()
LS [ostwtny| < 2@ S ot 1)

< — + L*n?ro? (22)

where w™*) is the global optimal solution with function value f(w™)).
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Proof. Before proceeding to the proof of Theorem D.4, we would like to highlight that
T—1
w® — w{™ =n > glen. (23)

From the updating rule of Algorithm 1 we have

<Tzl & ”) (24)

In what follows, we use the following notation to denote the stochastic gradient used to update the global model
at rth communication round

> a7 - w(T)_ ETT) _n - « 1~(cr
g _E; _E;Q Z .

c=0

w) =™ —~p ZQ( Z ~(Cr)) =w — %i@
j=1

c=0,r

and notice that w( = w1 — ~4g("),

Then using the Assumption 2 we have:

-3

Jj=1

—nEq

) P T

From the L-smoothness gradient assumption on global objective, by using g(") in inequality (23) we have:

2
Flawl™ )~ Flw) < (V7 ),g0) + T g0 (26)

By taking expectation on both sides of above inequality over sampling, we get:

E [Bo [ f(w) - f(w)]] < —1E [Eq [(7/(0).85")]] + LEE [Eolig§ 1]
Qg [[(vr), 6] + 5 & [Eo 1817 "
el

) (1)

We proceed to use Lemma D.1, Lemma D.2, and Lemma D.3, to bound terms (I) and (II) in right hand side of
(27), which gives

E [Eq| /() — (w®)]]

m T7—1
1 1
—n— _ (7‘) (CT) 2,2 (e,r)
<ot 25 |- st - e+ 2 S [
j=1c=
2 q m 7—1 2 9 2
Y L(E+1) 777' (e;r) 12 vn*Lg+ 1) To
+ 1 ;;ng] 2| + Loat Do
® ’YT] m 7—1 2 ) 2
03|, - e e sl
j=1c=
2Ll+1 A c,r 2 2L +1 7'0'2
Pt |7 S teny +777f(‘1)?

j=1c=0
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2
=~y ||Vr )]
q T o= (o) Lryn?
—1—L22——1L>— er)y2 2T g 1)) 02
( TLA’T = (- + )myL7) 5 ;C:()Hg I+ =5 = (mLrn+(a+1))o
L
< HVf H ”’7 (mLty+ (g + 1)) 0 (28)

where in @ we incorporate outer summation EZ;& , and @ follows from condition
2,2 q
1>7Ln*t + (— + L)nyLr. (29)
m

Summing up for all R communication rounds and rearranging the terms gives:

1= > 2 (f(w®) — f(w™®)) L 1
EZva(w(r))H < (f (w anRf(w ) n 777(7(711+ )02+L2772702 (30)

From above inequality, is it easy to see that in order to achieve a linear speed up, we need to have ny =

0(\/%). 0

Corollary D.5 (Linear speed up). In Eq. (22) for the choice of ny = O (i«/lﬁ(zlm)’ and v > m the

convergence rate reduces to:

Rszf ,wm)HzSO L (Q+1)(f(w(0))—f(w*))+( (q+1))02 o a
r=0

+
vmRT vmRT Ry?

Note that according to Eq. (31), if we pick a fized constant value for «y, in order to achieve an e-accurate solution,
R=0 (%) communication rounds and T = O (’Hl) local updates are necessary. We also highlight that Eq. (31)
also allows us to choose R = O (%1) and 7= 0O (me) to get the same convergence rate.

Remark 7. Condition in Eq. (21) can be rewritten as

L7 (L +1) + \/72 (L (£ +1))° + 41272

<
n= 2272
L7 (L 4+ 1) + L/ (L +1)° 2 +4
B 21272
(£+1)° 7 +4-(L+1)y .
B 2LT (32)
So based on Eq. (32), if we set n = O (Ll7 RT(TZH)> , it implies that:
R> Tm . (33)
(q+1)~? < (L 4+1)% 42 +4— (;{L+1)y)
2
We note that > ( (g+ 1)2 Y+4—(¢+ 1)7) = O(1) < 5 therefore even for v > m we need to have
™m ™m
R>——=0 34
“5(g+1) <q+1) (34

Therefore, for the choice of 7= 0 (£}), due to condition in Eq. (34), we need to have R =0 (2).
Simalarly, we can have R = O (%1) and =0 (i)

me
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Corollary D.6 (Special case, v =1). By letting v =1, ¢ = 0 the convergence rate in Eq. (22) reduces to

2 (f(w?) = f(w™))
nRT

1 R-1 ) 9 L’I7
4 r < 2 2,2 2
= ;:0: V)| < + Zlo? + Lyiro (35)

which matches the rate obtained in [60]. In this case the communication complexity and the number of local

updates become
m 1

This simply implies that in this special case the convergence rate of our algorithm reduces to the rate obtained
in [60], which indicates the tightness of our analysis.

D.2 Main result for the PL/strongly convex setting

We now turn to stating the convergence rate for the homogeneous setting under PL condition which naturally
leads to the same rate for strongly convex functions.

Theorem D.7 (PL or strongly convex). For FedCOM(t,n,7), for all 0 <t < Rt — 1, under Assumptions 1 to 8
and 6,if the learning rate satisfies

1>720%0% + (g + 1) nyLT (37)
m

and if the all the models are initialized with w®) we obtain:

11 Lo?
E[f(w®) = fw)] < (1 = mun) (F@®) - f)) + - [L%%ﬂ 1+ (3)
w2 2m
Proof. From Eq. (28) under condition:
1> 701 + (% + 1)nyLt (39)
we obtain:
(r+1) (r) T o |? L LT )
E[f(w" ) = fw)] < =T [V @O)| |+ =225 (mLrn+4+ 1) o
2 2m
Ltyn?
< —npyr (F(w) = f(w)) + =22 (mLrn +y(g +1)) o (40)

which leads to the following bound:

B[ f(w*0) — )] < (1 = mym) [£) = )] + LI (i (L4 1p0) et @)

By setting A = 1 — nuyT we obtain the following bound:

E[/(w ™) - f(w )]

1— AR Lryn?
< AR[f®) - f(w)| + T2 (mLrn + (g +1)7) o
1 Lryn?
< AR[fw®) - fw™)| + 75 T (mLrn + (g +1)7) o
1 Lrtyn?

(mLtn + (¢ +1)7) o® (42)

=(1- WWT)R[f(w(O)) - f(w(*))} + T 2m
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Corollary D.8. If we let nyur < %, n= A{ and kK = % the convergence error in Theorem D.7, with

v > m results in:
E[f(w™) - f(w®)]

< e~mMmTR (f(w(o)) _ f(w(*))) + i |:;7‘L277202 +(1+q)

ynLo?
2m

1 T0? Lo?
12 1 -
2 L2(%+1)27272+( +q)2(%+1)L7'm

1
"

=0 (6_”}11)“ (Fw®) — () + ——Tp—— ¢ D )
)

(L + 1)272,[” p(L+1)mm

___ =R 2 2
< +1)o
—0 (e 2GEH) ( w®) — fw™)) + -2 (g 43
( ) g )+ F T (13)
which indicates that to achieve an error of €, we need to have R = O ((% + 1) K log (%)) and T = %.

Additionally, we note that if v — oo, yet R =0 ((q + 1) klog (%)) and T = (i(%ll))m will be necessary.

D.3 Main result for the general convex setting

Theorem D.9 (Convex). For a general convex function f(w) with optimal solution w™), using FedCOM(t,1,~)
(Algorithm 1) to optimize f(w,$) = f(w) + % ||wH2, for all 0 <t < Rt — 1, under Assumptions 1 to 3, if the
learning rate satisfies

1>72L%% + (2 + 1) nyLT (44)
m
and if the all the models initiate with w(®), with ¢ = \/}W and n = Wll‘*‘i) we obtain:
R
E[f(w ™) - fw™)] < e AT (fw®) - fw))
Vmo? (1+q)oc? 1 H o2
+ + + w 45
Lg\ﬁVQ (1 + %)2 4 (1 + %) vmt 2v/mTt (45)

We note that above theorem implies that to achieve a convergence error of ¢ we need to have R =

O (L(1+q) tlog(})) and70<,m>'

Proof. Since f(w™, ¢) = f(w™) + % ||w(’”)||2 is ¢-PL, according to Theorem D.7, we have:

)

1
[2L2T772U2 +(1+4q)

~ ™) + % me * (f(w<*>) n g me

1
¢

Next rearranging Eq. (46) and replacing p with ¢ leads to the following error bound:
Fw'™) - f*

< (1—mypr)” (f(w(o)) - f(w(*))) + é BLZW%Q +(1+q)

(46)

< (1= myon)" (F®) - f®)) + e

2m

fynLUQ
2m
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+ % (I? = Jwt”

)

< TR () - f(w) + 5 |52 + (14 0) :

Lo ?H )
om }+2 v

Next, if we set ¢ = —2= and n = 2 1 , we obtain that

1+%)L'y'r

§

f®) = f*

<e 2(+&)evmr (f(w(o)) _ f(w(*))> + T l ? G ') o

thus the proof is complete.

1
(%)
8772 (1+%)2 4(14+ 1) Tm] - 2y/mt Hw

Cs)

O



Federated Learning with Compression

E Results for the Heterogeneous Setting

In this section, we study the convergence properties of FedCOMGATE method presented in Algorithm 2. For this
algorithm recall that the update rule can be written as:

T—1 T—1
w2 S50 (S ) cut o LS e (S (w0 -ar))
j=1 c=0 j=1 c=0

Before stating the proofs for FedCOMGATE in the heterogeneous setting, we first mention the following intermediate
lemmas.

Lemma E.1. Under Assumptions 2, 4 and 5, for the updates of FedCOMGATE we have the following bound:

2

m T—1
£ 5o || 2350 (Ta - o)
j c=0

2

(q+1)777* q+17772 fzg(”) +1°Gy (50)

Proof. First, note that the expression on the left hand side of (50) can be upper bounded by

m

EgEQ[H—ZnQ (Zgﬁ - ) 2]

2 PEcEq [II Q %Z

~(r)
gq
=B [Eq [lIg5) - Eq [85] I7] + IEq [&5)] 17] + n°G,
S IEQ {Hg(r) G }Jng(r) }Jrnzaq
2 a(r) = (r) 2 2
<n Eg q||g + g +n°Gy
B 2
=(q+1)n2Eg Hg(?“) :|+7]2Gq
2 :~(> = |I° 2 ey 1.
= (g +1)n"Ee ng —E¢ [g}H } +(g+1)n HEE [grm +n°Gy (51)

where @ comes from Assumption 2.
Moreover, under Assumption 4, we can show following variance bound from the averaged stochastic gradient:
2 2

E HIIQ(") —g(")II2H < (52)

m
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To prove this claim, note that
2

e

{Hgm g

2} E %i -Sg(CT) Zg(c r)}
j=1 Le=0

2

T—1
‘ |:g;c,r) - g§c,r)j|

[l®

3 -

=
1

j=1 c=0
1 m T7—1 2
=]
j=1c=0
®@ 1 m T7—1
< oz Z o? (53)
j=1c¢=0
2
TO
_T10” 54
i (54)

where in @ we use the definition of g* and g?, in @ we use the fact that mini-batches are chosen in i.i.d. manner
at each local machine, and ® immediately follows from Assumptions 4.

Now replace the upper bound in (52) into the last expression in (51) to obtain

EEEQ[H—ZnQ (Z*C” “) 1]

o? 1112
<(q+ 1)7727% +(¢+ 1)n° HEs [g( )} H +1°Gy (55)

Next, note that i.i.d. data distribution implies E[gf’)] =g; (r) , from which we have

e ey

In©
3|~
[
B
o
2

IN®

ﬂ
D
2

2 n 2
< an:1 llas]”

where @ follows from convexity of ||.|| and @ is due to szzl a;

Applying this upper bound into (55) implies that

EcEol - chz (Z g - Al ) I?]

2
<(g+ 1)’ T* q+1nTZ Zg(” +1°Gy, (57)
j 1

and the proof is complete. O
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Lemma E.2. Under Assumptions 1, for the updates of FedCOMGATE we can show that the expected inner product
between stochastic gradient and full batch gradient can be bounded as

—E [<Vf(w“)), )]
Z [V F )3~ ||Z — Ll )E + 12D ) — w3 (58)
c=0 j=1

Proof. This proof is relatively as we state in the following expressions:

"B 0w w0y Ee {<Vf(w(r))7§(r)>]

m 17—1
T 1 ~\C,T
= “Ereo ey [ V@037 g )>

— <Vf(w“")),77; iiﬂi [gﬁ-“’”>]>

j=1
T—1 1 m
= <v,f(w“>>, —~> g T>>
c=0 j=1
0l 2 (e ) (e
£ | SIS Zm B+ 19 f(w ij I3
T—1 m m
<512 | IV - |;Z VI + I 3 ) w1 (59)

where @ is due to 2(a, b) = ||a||? + ||b||?> — ||a — b||?, and @ follows from Assumption 1.

O
Lemma E.3. Under Assumptions 2, 4 and 5, with 30n>L?>12 < 1 we have:
R—-1 7-1 m
1 2
XS e e
m
r=0 ¢=0 j=1
8772 m T7—1 T7—1 ( ) 2
2.2 2 ¢0) _ _(0)
et 3 DN LD
j=1 c=0 [|c=0,r=0
7_4 R—1 71-1 1 ) 0_2
2 Clas 1 3
SUEARI L i S o aa FERSARED
20 27_2 R—171-1
- ZZH% (60)

r=0 c¢=0

The proof of this intermediate lemma is deferred to Appendix F.
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E.1 Main result for the nonconvex setting

Theorem E.4 (General Non-convex). For FedCOMGATE(T,n,7), for all 0 <t < Rt — 1, under Assumptions 1, 2,
4 and 5 and if the learning rate satisfies

1—1002(ny)*(¢ + V) L*7* — Lyyr(g+1) >0 & 30n°L*7? <1 (61)

and all local model parameters are initialized at the same point w® = w©), we obtain:

R—1
1 2 (f(w®) = f(w®™))  (g+1)vLno? o’
— MY]12 < 27252 1 101243 2 ne
RZIIVf(w Mz < p— + - + 36" L7ro” + 10" L7 (1) (g + 1) —
94 2, o 32N LA T ) ) 16031272
1072 LA 72 ()% (0 + DGy + = 3 () = fw)] + = o
j=1
S (P ) - fw)) + g, (62)

Proof. Before proceeding to the proof we need to review some properties of our algorithm:

1) 6 =0
2) Al = ((w® - ™) /1)
) AP = L5, A
DIEEES S UNCEYN Y
B) Ly o) =o.

6) We have:

m T—1
o () < S (S e -4
= c=

which is equivalent to the update rule of the global model of Algorithm 2.
7) We have:

Therefore, we have

m T—1 T—1 m
my_1( 1 ~(er—1) 5(er=1) 1 (r=1)
Eo o] =~ (-2 + 2 g el e DL
j=1c=0 c=0 j=1
m T7—1 T—1
1 1 ~(c,r— ~ (c,r—
ol GrrP DL AR IL T (64
j=1c¢=0 c¢=0

8) From item (7), for R > 1 we obtain:

5o 8] <Balg o] a7 2 (2SS w - S i
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We would like to also highlight that

w(T) — w('r,?“) ! ~(c,r)
-1Q (nf =0 (Y

Towards this end, recalling the notation

and using the Assumption 2 we have

£ 6] - 232 | -ma

Jj=1

oG ml B e

Then following the L-smoothness gradient assumption on global objective, by using g(") in inequality (66)
have:

2
_(r L.
Ft ) fa®) < —y(V).g6)) + 57 gg |1

(68)
By taking expectation on both sides of above inequality over sampling, we get
E [Eq [f(w™+D) - f(w™)]] < —E [Eq [(Vf(w™), é}>ﬂ + TLE [Eqllgh 1]
2 e [[(vrw).g)]] + LEE [Eo[Igs1?]] (69)
—_

@ (Im)
where @ follows from Eq. (67). Next, by plugging back the results in Lemma E.1, Lemma E.2, and Lemma E.3
we obtain
E[ £ ) — f(w)]

T—1

n > |- IV ||2—||Z —Vfj(w))

c=0,r

<

DN | =

L2

S (er) _ .
+m§:1[]Eij —w™
o

I3

2:|]
2
an q+1nTZ Zg(”) +17°Gy

‘ =,
o

which leads to

(70)
1 Bl
= > E[fw ) = fw)]
r=0
VUTRI ,yan—lr—l m_ 4
< 1 (7") 2 — —
< -T2 S IV - 2 DA EIC R
r=0 r=0 c=0,r j=1
R—1 7—1 m
m L? 1 (e,r) (r) 2
+ = —ZEHwJ w\"
2 R r=0 c:O,rmj:I
27,2, 2 2,2 27,2 BR-17-1 m
Y Ln*to*(g+1)  ¥n°L (¢ + )y "Lt 1 () 12
+ om + 2 Gg+ 2R Z Z I Z I
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R—1 R—1 7—1 m
9 mrT r 7771 r
<5 R X IV I Vsl
r=0 r=0 c¢=0,r j=1
2
yn L? 22,2 Y 8L & ( c0) (0))
12 36
i 2 R e 2 mR ]Z].C 0 COZTO 8

4 R-

L?yn T " 1 o2 .
10 2 2 1 L2 o I:Hi (C T) ] 4Y dG
+ =5 107* (1) (¢ + 1) RT:oc:oZ;:o ng +ri— TG,

L7n20n7 r
Tt ZZHg()

r=0 ¢=0
2,2 27,2 2 R—1 7-1
an (q+1)y°Ln°to (q+17LnT (er) )2
+ Gy + o + ZO_ZO:H*Z» I

yn T L Yn 207’] 7 Z s
R—-1 7—1 m

)1 1
- 72*77 (1= L2100 (1m)*(g + L7 = Lig + )m7) D2 1D —V(w, N3

r=0 c=0,r j=1

Z ((00) g(o)) i

c¢=0,r=0

ﬂ£ 2,252 4 778L77 -
Ty R R ;ZO

L? o?
+ =100 (1) (a + 1)L [T“m + Tqu] +

(g+ Dy*LPro® | *n*L
2m 2

IN®

R—-1
o (L= 2220077) 37 g3

2

Z ( ;c,o) _g(o)>

L2, 2,2 i 8L —
12 36n
t9 R O TR Z;} D

L2 2 . +1 2L 2 2 2 2L
N 277710n2(n7)2(q+1)L2 {74;+730q] N (¢ + 1)y’ Ly’to Ll

2m 2

where @ comes from Lemma E.3 and @ follows by imposing the following condition:
1—10m%(ny)*(g + 1) L*7* — (¢ + 1)Lyt > 0.
Rearranging Eq. (71) we obtain:

R—1
1 T
(1=207°L%7%) 5 > VS ()3
r=0

2 (f(w®) = f(w* 1)yLno? 2
™YR m m
8?’] L2 m 7—1]||7—1 2 'Y’l]L
c,0)
+ 107 L% (117)* (g + 1 =22 |1 (g~ &) +——Gy,
7j=1¢=0 || c=0

(v)
and the claim follows.

The final step is to simplify the term (IV). To this purpose, first notice that
2

T—1

S (e -s0)

c=0,7r=0

m 7—1

ZZ

=1 c¢=0
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T—1 2

(g§_c,0) _ g(o)>

c=0

8772L27'

mTR

j=1

S
167’]2.[/2 " c,0
=55 e+ e
].6772L27'2 m 1 H (Cvo)H2‘| 16772L2 m T— 1H (O)H
= — g g
mR Z T ; ! ;cz%

Jj=11

IN©

I /\

16n2L272 X 2 [fﬂ( (O)) fj(wj* ):| 1672272 9
R 40| + 16n~L7T~ Hg(o) H
mR < nT R

IN®

32L*T - 0 . 167 L 7? 167> L 7? 2
- > [£iwl) - )] + =0+ = 6

IN®

)i| 16773R{127'2 0_2 + 32772le37'2 (f(w(o)) _ f('w(*))) (74)

IS Al - £ ()
where @ comes from || Y1, a;]|? < nd ", [la;]|?, in @ we used the standard convergence proof of gradient

descent for non-convex objectives [8], where 'w;-*) is the local minimizer of objective function f;(.), and finally, ®

follows from (smoothness assumption) inequality ||g® H2 < 2L (f(w@) — f(w™)) (see [13,57] for more details).
This completes the proof.

O
Remark 8. If we let ny = %, /%, and want to make sure that the condition in Eq. (61) is satisfied
simultaneously, we need to have
10m?272 1
mAT mt (¢+1) (75)
v2R?(qg+1) R

This inequality is a polynomial of degree 4 with respect to R, therefore characterizing exact solution could be
difficult. So, by letting v > v/20m we derive an necessary solution here as follows:

R>mr (T) (76)

We note that if we solve this inequality such as Eq. (33) we are expecting to degrade the dependency on q. This

condition requires having R = (%ﬁl) and T = (i)

Corollary E.5 (Linear speed up with fix global learning rate). Considering the condition 30n?L*7? < 1, we

have 1 —20n%L? = © (1). Therefore, in Eq. (62) if we set ny = O ( RT(ZL-H)) , ¥ > m leads to:
R-1
1 2
— ()
18 fosu
O(L\/m (f('w(o)) — f('w(*))) N Vq+ 10?2 mo? n mo?r N m2G,
vmRT mRT R(g+1)v*>  (¢g+1)72R%2  (¢+1)7%R?

£ (*))} n 16m+/m+/To> Lm

w! w®) — (™
’ Ly*R*(g+ 1)y/R(g +1) PR+ (f( il ))

%/qT\FR“’ Z::{
mGy
+ Rrv? (q—l—l))’
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then by letting v > m we improve the convergence rate of [26] and [}7] with tuned global and local learning
rates, showing that we can archive the error € with R = © ((1+¢)e™ ') and 7 = © (#), which matches the
commaunication and computational complexity of [26] and [36], which shows that obtained rate is tight. We highlight
that the communication complexity of our algorithm is better than [26] in terms of number of bits per iteration as

we do not use additional control variable.

Remark 9. We note that the conditions in Eq. (61) can be rewritten as
1—1002(n)*(q+ D) L*m* = Lg+ )pyr >0 & 30p°L%72 <1 (77)

which implies that the choice of n < satisfies both conditions for v > m.

1
Ly(g+1)7v/30
E.2 Main result for the PL/strongly convex setting

Theorem E.6 (Strongly convex or PL). For FedCOMGATE(T,n,7), for all0 <t < Rt — 1, under Assumptions 1,
2, 4, 5 and 6 and if the learning rate satisfies

10 1 2 4L4 2
(g + Dt L () _>0 & 30n°L%r2<1 (78)
1 — pryn + 20py P LT3

1—(qg+1)Lyyr —

and all local model parameters are initialized at the same point w(®), we obtain:
E[f(w™) - f(w)]
pyT\ B ) ()
< =t _
< (1-20) (@) = fw))

3 ra1g 0 o SEMP T2 SN 000 NP L 167502, ( £ap® )
—|—;{L 18n“to —|—m;H('wj —w; )HQ—I—16L7'17 (f('w ) — fw ))

(¢ + Dyl o? anGq}

2
54023 2 11 5L2n2L2+2 2 e
+ 5L () (g + 1)+ SLA Lo () (g + 1) G + 5 - o7

(79)

Proof. To prove our claim we use the following lemma. The proof of this intermediate lemma is deferred to
Appendix F.

Lemma E.7. With 30n2L?72 < 1, under Assumptions 1, 2, 4 and 5 we have:

18 Sl ]
m j=1c=0,r !
1 m T—1 T—1 ~(c,r) 2
=2 2 B> d
j=1c=0,r c=0

m 7—1 T—1 2

<3022+ S Y| Y (g @)
j=1¢c=0 ||c=0,r=0

T—1 m
1 c,r— 2
+107° L2 (m7)* (¢ + 1) =
j=1

c=0,r—1

2

2 T7—1
ag .
+ 1007 LA (1) 2(q + 1) 2 + 100 L2 (1) (q + 1)Gy + 207272 Y Hg“)
=0

Now we proceed to prove the claim of Theorem E.6. Note that

E[f(wD) — f(w)]
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c=0,r
2
2 m
'L 1 o
+T (q+ )n? T— q+1nTZ EZgJ( ) +n*G,
j=1

which leads to the following:

E[f(w+0) — f(w)]
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E
VA w3 - 3

777 Z IIZ —Vfj(w

c=0,r

Lol §; 5 E fufe - w0

=1c=0,r
2
2 m
v°L 1
+ 5 |+ T— q—i—lnTZ EZgg "N +n2a,
j=1
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IV £ (w™)]3 - fvn Z ||Z —V fi (w3
c=0,r
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m 2
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1 1 (CEONT- I 274 _4 2
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0
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2
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m T—1 2

+ L218fy777727202 + L2777 Z Z
j=1 =0

—1

Z ( (¢,0) _ 0))

=0,r

*v?L (¢4 1)70? N Ln?+?G,

+ 5L T () (g + 1)% + 5L L8 () (g + 1)Gy + 5 — 5 (82)
where @ follows from
1—(¢+1)LyyT 20 (83)
Next Eq. (82) leads us to
E[f(w"D) = f(w™)] = ars
< (1 — prym + 20py°L*7°) (f('w(’”)) - f(w(*))) + %1077%474(777)2((1 +1) 5 [ i %ij(’wﬁc’r_l))lli
S i c=0,r—1 j=1
+ L18ymPr20? + L2l Z SIS ( (0 0))
j=1¢=0 |[e=0,r=0

+ 1 2 2L 2 L 2 2G
+ 5L T (117)* (¢ + 1)% + 5Ly L3 () (¢ + 1) Gy + la+ UnyL ;n i % + =7 ; .
2 Aa, + ﬂ10n2L4T4(n7)2(q +1)e,_1+c

2
(@) Mo YN n 274 47 N2 L oo 974 4, 2
< Al + 5 (U= (g + DIny) epmy + 71007 L7 (07) (g + Der—z + ¢ ) + 597" 100° L7 (07) (¢ + 1)er—1 + ¢
_ A2 my . _ 274 4 2 AyPn? 274 4 2
= Aap1 4 5 (A= Alg + D Liyr = 100" L (017) (g + 1)) er1 + —5— 100" L4 (7)* (g + D)er—

+(A+1)c

(b) A
< A%q,_q1 + %10772[/474(777)2@ +1)ep_a+cA+c

=A (Aa,._l + ﬂ10n2L4T4(n’y)2(q + 1)ep—g + c) +c

(d)

<A (A (Aar 2 i 5 10772L4 )2 (g + Deq_3 + c) + c) +c

(e)

< ATag + AT‘1¥10n2L4T4(n7)2(q Fl)e 1+ (A AT 4 1) e

) Ar 1-A"
—Aa0+(1_A)c

LA (Fw®) = fw))

2

1— r 4772 m T—1 T—1 00
T+ [Pyt e L2 3OS S (857 -8 )
7j=1 ¢=0 ||c=0,r=0

2 2.2 2 2.2
+1 L L G
+ 5L P ()2 (q + 1) T+ B2y L2 ()2 (q + 1)Gy + lax Dot ;77 s g :
< A7 (f('w(o)) - f(w(*)))

2

Z ((co g(o)>

) _
+ — A {L218’y777727'202 + L2”y17 Z Z
j=1 =0 ||e=0,r

(g+ D)n*y?L1o®  Ln*+*G,

- 7/ @ _l’_ [
2 m 2

where @ holds because of A = 1 — puryn + 20uyn®L273, and the following short hand notations:

a, = E|f(w ) = f(w)

2
g
+ 5Ly (n)* (g + —+ S5L2ymn* L7 (n7)* (¢ + 1)Gq +
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Z [ Z — V(w3

c=0,r
4772 m T—1 T—1 2
c,0
c= L2187777727'202 + LQ’W?W Z Z Z (g§ ) _ g(o))
j=1 c¢=0 [|c=0,r=0
o2 2.2 2 2.2
v“L (g + 1)T0 Ln*~*G
+ 5L 7 (1) (q + 1) = + 5L L7 (1) (a + )Gy + = ( m) + 0= (®)
(a) comes from reapplying the recursion. (b) is due to the condition
10(q + 1) L (1y)? 10(q + 1) L (1y)?
|~ (g+ D) Inyr — (¢ )nA (m)* _ (g + 1) Lyr — (g+1)n m)”® <, (86)

1= pryn + 20pyn3 L273

(d) comes from one step reapplying of recursion. (e) holds by repeating the recursion under the same condition of
learning rate for r — 1 times. Finally, (f) follows from e_; = 0, which leads the following bound:

[ Flw®) - wm)}
§(1 — unyT ( —20n°L2T 2)) (f(w(o)) - f(w(*)))
1 1218 2,2,2 4 12 4 e | (c,0) (0) 2
+w7w(1*20772L272)[ e Wm;czz; Z_:( e )

(g+Vn*y?Lro®  Lu*y*Gy
2

+ 5Lyt (n)* (g + 1) + S5L2ymm? LT (ny)?(q + 1)Gq + - 5

= (1= pyr (1 —209%L%7%))" (f(w(o)) - f(’w(*)))

m 7—1]||r—1
1
121872702 ( (e:0) _ <0>)
+ T [+ T g: 2 (5" s

+1UnyLo?  LiyG
+ 5Ly )(q+1)——|—5L2 2L2r2 ()2 (g + 1)Gy + LT DT 2)’” e

£ (1Y - )
T—1

+ 3 [L2187727'02 + 12— An? i i
I mr

j=1c=0

T—1 2

> (&0 — )

c=0

V)
o? +1)nyLo?  LiyG
4 SLAE () + 1) + SLPRLA ) + 1), + TR DGl (57)
m 2 m 2T
where in @ we used the condition 30n%2L?72 < 1.
Finally we continue with bounding term (V):

2
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(s -e)

c=0

AL S| (e () 4 4)
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= LIS I (5 -8 +8)7 - )
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=1c=0

2

m
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™
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=0
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8L2 2 m ||7—1 (c.0) (%) LQT 77 m 2
_ c, _ * (0)
== B2 (e &) s -8

j=1|lc=0
L2 2 m T—1 (c.0) 2 LQT 77 m 0 2
< E:X:gj g E]ky 2|
j=1 c=0
® SL41%T — = (¢,0) ]2 8L2T T] -
c,0) * * (0)
<D ) |w - Z Hg] —8 H
7j=1c=0
m 17—1
o SL*n’r e o2 8L27%n? 2
22 2:21¢M—@>-%—g*§wéw
7j=1c=0 j=1

L4 2 m T— X
_ 8L n*T Z [Hw(c ,0) —w!

2 2
[ szt o0

m S e=o
T o (R | T Y
S )] s
L oM S e ()
j=1

where @ comes from Assumption 1, @ holds because at the optimal local solution w} of device j we have

2
g§-*) §_t,0) _ w;_*) <

= 0, @ comes from strong convexity assumption for local cost functions where Hw

(12 (1 = L))"
that (1 —2un(1—nL))° < 1, and finally ® is due to smoothness assumption which implies Hg(O)H2 <
2L (f(w®) — f(w™)) holds at global optimal solution w*).

( (0.0 _ )H 1 nL [44], @ holds due to the choice of learning rate n such

Corollary E.8 (Linear speed up). To achieve linear speed up we set n = m and v > \/m7 in Eq. (79)
which incurs:

E[ £ ™)~ fw™)] < (F®) - fw)) et

é[ 4.502 N 2,2 i H (,w(_ovo) - w(.*)) H2 . 27, (f(w(o)) _ f(w(*)))
plry2(g+1)2  (¢+1)*y*m / A (q+1)*2
ko2 5 o2 5
* 242 + 52 575504
(¢ + 1) v2 ((g+ D)yr —0.5)  16(g+1)37y2m  16(qg+ 1)372y
1 o2 G,
T 4(q + 1)72} (89)

From Eq. (89) we can see that to attain an e-accurate solution we can choose

r=0(sa e (1)) r=0 ().

as desired.
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E.3 Main result for the general convex setting

Theorem E.9 (Convex). For a conver function f(w), applying FedCOMGATE(T,n,~) (Algorithm 2) to optimize
f(w,¢) = f(w) + % Hw||2, for all 0 <t < Rt — 1, under Assumptions 1,2, 4, 5 if the learning rate satisfies

10(q 4+ 1)n*7* L* (1n)? 272 2
>0 & 30n°L <1 90
1 — pryn + 20pyn3 L3273 — e (90)

1—(q+1)Lyyr —

we obtain:

_ 1
and n= 2L~7(14q)

3
ﬂ

and all the models are initialized with w'®, with the choice of ¢ =
E[/(w™) - f(w)]
< e (fw®) - fw))
13.5y/mo 6/m7L? O\ 12 12L/mT .
[y * e sl )+ 37 (1) s).

+
G+ 12T mlg+ 1) 2 7(g+1)°

N 3v/mtro? N 1502 N 15G4v/m - 302 3\/>G ]
(@+ 272 (g + Dyr — 05)  16(g + 1P72y/mr  16(q + 1371592 | d/mr | 4(q + )71

(91)

1
(%)
* 2v/mT Hw

Proof. Since f(w(T'), #) = f(w™) + % Hw(")H2 is ¢-PL, according to Theorem E.6, we have:

)

Fwt™, )~ Fw®,6) = ) + 2 )] - (f(w(*)) 4 [t

<(1- T)R (0 ®) = s()

2

[L218n B szi‘i TZ‘j( <0>)
¢ mT c=0 || c=0
4.2 3/ \2 ‘L 2,272 2/ \2 (Q+1)777Li2 LG,
LR )2+ D%+ SR LPTA )2 (g + DG, + =T 2T
(92)
Next rearranging Eq. (92) and replacing p with ¢, and using the short hand notation of
4772 m T7—1 ( ) 2
A(n) & |L?18p*10” 4 L? Z Z ¢0) _ g0
mT]lcOcO,TO( )
2 2
4.2 37 N2 o 2,272 2/ \2 (g+DnyLo®  LinG,
+ 5L (7)™ (q + 1) + 5L%" L™ (n7) (g + 1)Gq + 5 5 } (93)
leads to the following error bound:
. R 2 2
Fr®.0) - 5 < (1= BE0) () - f<w<*>>) v %A(n) 2 (H“’(*) - [w])
<R (1) — ) + 2 am) + & [w® (99)
¢
Next, if we set ¢ = \/% and n = m, we obtain the following bound:

Fla ™) = £ < e (Fw®) = fwt) + 3V A o)+ 5=

= e e (fw®) - fw®))
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T—1 2

[(13.5\/>02 5Zm: Z ( c,0) g(0))

_l’_
q+ 1221 f(q+1 )" Y228 S 20 || e=0mmo
. 1502 L 15Gy/m 302 3ymG, }
16(q + 1)3v2y/m7  16(q + 1)3715~42 ~ 4y/m7 = 4(q¢+ 1)715

(95)

me

1
+ 2/mTt

Finally, using Eq. (88) we obtain the bound:

Fw®,6) - < e mmEvm (fw®) - fw))
[(13 5y/ma? 6\/7L ZH( (0,0) w’*))HQJ” 12L\/mT (f('w(o))ff('w(*))>

eV 2 (¢ +1)?
N 3\/17?/%;’ + 1502 15G4v/m N 30?2 n 3vmG, ]
@+ 1292 (q+ D77 —05) | 16(g+ 1572 /mr | 16(q+ 1)°7i57? | dymr  a(g+ D)ris
+ 2\/17rTT Hw<*> (96)
O

Corollary E.10. As a result of Theorem E.9, for general convexr functions with v > /mt, to achieve the
convergence error of € we need to have T = O (mleg) and R =0 (M log (%))
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F Deferred Proofs

F.1 Proof of Lemma E.3

We prove Lemma E.3 in two steps. First, we prove the following lemma:
Lemma F.1. Under Assumption 1 and 4, and the condition over learning rate 30n*72L? < 1, we have the
following inequality:

1 L r c,r 2 1 _ = ~(c,r)
];Z > EH(“’() wj ))H ZI;Z 2 B> d;
7j=1 r=0 c=0,r j=1 r=0 c¢=0,r c=0,r
R—171—-1
< 36Rn*r%0? 4 8n*C + 20m° 72 Z Z Hg (r)
r=0 c=0

+MZZ Z > [t _w<r—1)H2 (97)

p
whereCz% 120 0,r= QHZk =0,r= O(ij( kr) — Vf(w™ >H2

2
First, we bound the term Ly s LsTd 0 E H( (“)) H for r > 1:
Lemma F.2. Forr > 1:
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Ly s S| <asote e S e[ 5w w4 LY S fut —we)
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$> |
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1 S e 1 1EE e 2
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= 2B g2 28
7j=1 c=0 j=1c¢=0 c=0
1 P T—1
S (e )
pj:l c=0
T—1
1 1 ~(c,r— c,r c,r c,r— c,r ~ (c,r— 2
S ) e g )|
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2 = 1~ (1 1 1 1 1 2
< *ZEH [(gﬁc,'r) 50,7")) + Z 72 (g;c,rf ) gj(c,r )) +g§c,r ) g(c,'rf ) :|H
rim V= T \Pi=
¢9)
2 P T—1 . 27'71 1 P o . 2
93 DIILEEE-D Dl D D e ] (99)
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O
We first bound the term (I) in Eq. (99) with the following lemma:
Lemma F.3.
er ey, 1o [1v gler ) _gler D) 4 gler—t) _gler—n) | (1
c,r cr c,r— c,r— c,r— ~(c,r— 2
*ZEHZ[( g )+ |, (8 ) el —g | || <18t (o)
c= c=0 j=1
Proof.
E cr) (c,T) ]-T71 1 - ~(c,r—1) (e,r—1) (e,r—1) ~(c,r—1) 2
Z &; +;Z 52 g & T8 ~8
c=0 j=1
(s gle) L L ye (s g! (er—1) )
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© _'r—l 2 7— 1 2 T—1
=3 (g g ) [+ 2 EH( g ) [+ T ()|
_c:O 070 c=0
<T(02+O'2+02)
= 9077 (101)
where @ follows from Assumption 4. O
We bound the term (IT) in Eq. (99) as follows:
Lemma F.4. For r > 1 we have:
T—1 T—1
c,r 1 1 c,r—1 2
|5 st 3 (e e )| a0
c=0,r Tc:07r p
T—1 2 T—1 T—1 2
PP Y lu —uOf+ 2 3 et -t
c=0,r c=0,r c=0,r
T 2
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+Tc_0§;_1’wj —w H +TﬁC:§;_ Hg ‘H (103)

Proof. Adopting the notation g( "=V fi(w (1), we have:

HTZ[ ) Z Zg(w D _gler— ”‘2

:H [gj(m g 4+ gt

T—1

1 r— = c,r— 1 1 c,r— (r— r— 2
S e L5 oo (AR
7-c:0 Tczopjzl
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T—1 —
) T
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where ® holds due to + 37—/ 0. (gjc ) _1 LS 0.1 gﬁ”) DD ( j(r) gy_l)). We continue
with bounding Eq. (104):
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<o § s
17 Z H (er=1)

where @ is due to the fact that

(gJ(-C7T_1) .

| (& -
(") _ =1

as g, — &, ! depends on argument in round r — 1.

c¢=0,r ¢c=0,r—1
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Lemma F.5. For r =0, we have:
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where @ comes from i.i.d. mini-batch sampling.
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The rest of the proof comes from plugging both Lemmas F.4 and F.5 in Eq. (99) as shown below.
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Now we can write:
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Now we continue with bounding Eq. (110) with further simplification as follows:
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Lemma F.6. Under Assumptions 1, 2, / and 5 we have:
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where @ comes from Assumption 5, @ is due to the definition of variance, ® holds because of Assumption 2 and
@ is because of % Z§:1 §(m™) = 0. We continue from Eq. (114) as follows:
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Finally, by plugging Lemma F.6 into Eq. (112), we obtain the following bound:
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F.2 Proof of Lemma E.7

Similarly, using Lemmas F.2 and F.5 for every communication round we can write:
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where @ follows from Lemma F.6 without summation over r.
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