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A Further Discussion on Related Works

As we mentioned in Section (1), state-of-the-art hierarchical forecasting algorithms (Ben Taieb and Koo, 2019;
Hyndman et al., 2011, 2016; Wickramasuriya et al., 2015) involves computing the optimal P matrix to combine
the base forecasts under different situations linearly. We now summarize these methods as follows.

A.1 Generalized Least Squares (GLS) Reconciliation

Denote bt ∈ Rm, at ∈ Rk as the observations at time t for the m and k series at the bottom and aggregation
level(s), respectively. S ∈ {0, 1}n×m is the summing matrix. Each entry Sij equals to 1 if the ith aggregate series
contains the jth bottom-level series, where i = 1, ..., k and j = 1, ...,m. Denote IT = {y1, y2, ..., yT } as the time
series data observed up to time T ; b̂T (h) and ŷT (h) as the h−step ahead forecast on the bottom-level and all
levels based on IT .

Let êT (h) = yT+h − ŷT (h) be the h−step ahead conditional base forecast errors and βT (h) = E[b̂T (h) | IT ] be
the bottom-level mean forecasts. We then have E[ŷT (h) | IT ] = SβT (h). Assume that E[êT (h) | IT ] = 0, then a
set of reconciled forecasts will be unbiased iff SPS = S, i.e.,
Assumption A1:

E[ỹT (h)|IT ] = E[ŷT (h)|IT ] = SβT (h) (1)

The optimal combination approach proposed by Hyndman et al. (2011), is based on solving the above regression
problem using the generalized least square method:

ŷT (h) = SβT (h) + εh, (2)

where εh is the independent coherency error with zero mean and Var(εh) = Σh. The GLS estimator of βT (h) is
given by

β̂T (h) = (S′Σ′hS)−1S′Σ′hŷT (h), (3)

which is an unbiased, minimum variance estimator. The optimal P is (S′Σ′hS)−1S′Σ′h. The reconciled mean and
variance can therefore be obtained accordingly.

A.2 Trace Minimization (MinT) Reconciliation

Defining the reconciliation error as ẽT (h) = yT+h − ỹT (h), the original problem can also be formulated as

min
P∈P

E[‖ẽT (h)‖22 | IT ]

subject to E[ỹT (h) | IT ] = E[ỹT (h) | IT ] (4)

If the assumption A1 still holds, then minimizing Eq.(4) reduces to

min
P∈P

Tr(Var[ẽT (h) | IT ]) subject to A1, (5)

where Tr(.) denotes the trace of a matrix. In Wickramasuriya et al. (2019), the proposed optimal solution of P
obtained by solving this problem is given by

P = (S′W−1h S)−1S′W−1h , (6)

where Wh = E[êT (h)ê′T (h) | IT ] is the variance-covariance matrix of the h−step-ahead base forecast errors,
which is different from the coherence errors Σh in GLS reconciliation method given in Eq.(3). There are various
covariance estimators for Wh considered in Wickramasuriya et al. (2019), the most effective one is the shrinkage
estimator with diagonal target, and can be computed by

Ŵh = (1− α)Ŵs + αŴd, Ŵs =
1

T

T∑
t=1

êt(1)êt(1)′, (7)

where Ŵd = diag(Ŵs) and α ∈ (0, 1].
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A.3 Empirical Risk Minimization (ERM) Reconciliation

Most recently, Ben Taieb and Koo (2019) proposed a new method to relax the unbiasedness assumption A1.
Specifically, the objective function in (4) can be decomposed as

E[‖yT+h − ỹT (h)‖22 | IT ] (8)

= ‖SP (E[ŷT (h)|IT ]− E[yT+h|IT ]) + (S − SPS)E[bT+h|IT ]‖22 (9)
+ Tr(Var[yT+h − ỹT (h)|IT ], (10)

where (9) and (10) are the bias and variance terms of the revised forecasts ỹT (h). The assumption A1 in MinT
method renders (9) to 0. Obviously, directly minimize the objective in (8) provides a more general form of
reconciliation represented by following empirical risk minimization (ERM) problem:

min
P∈P

1

(T − T1 − h+ 1)n

T−h∑
t=T1

‖yt+h − SP ŷt(h)‖22, (11)

where T1 < T is the number of observations used for model fitting. Empirically, this method demonstrates better
performance than MinT according to Ben Taieb and Koo (2019), particularly when the forecasting models are
mis-specified.

B Non-Additive Property of Quantile Loss

Here we prove the non-additive property of quantile loss as mentioned in Section (2.2).

Theorem 1. (Non-additive Property) Assume two independent random variables X1 ∼ N(µ1, σ
2
1) and

X2 ∼ N(µ2, σ
2
2), and define Y = X1 +X2. Then QY (τ) 6= QX1

(τ) +QX2
(τ).

Proof. The τ th quantile of X1 is given by:

QX1
(τ) = F−1X1

(τ) = inf{x : FX1
(x) ≥ τ}, (12)

where FX1
(x) is 1

2

[
1 + erf

(
x−µ1

σ1

√
2

)]
, and erf(x) = 1√

π

∫ x
−x e

−t2dt. Therefore, we can further get:

QX1
(τ) = µ1 + σ1Φ−1(τ) = µ1 + σ1

√
2 erf−1(2τ − 1)

QX2
(τ) = µ2 + σ2Φ−1(τ) = µ2 + σ2

√
2 erf−1(2τ − 1)

According to the additive property of Gaussian distribution, we have Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2), and

QY (τ) = µ1 + µ2 +
√
σ2
1 + σ2

2 Φ−1(τ) = µ1 + µ2 +
√
σ2
1 + σ2

2

√
2 erf−1(2τ − 1). (13)

Therefore, even if we have i.i.d.normal distribution with Y = X1 + X2, it still doesn’t imply QY (τ) =
QX1(τ) + QX2(τ). The only case that the addition property hold true in any quantile is when X1 = C ×X2,
where C is arbitrary constant. Obviously, this is not applicable.

In fact, under Gaussian assumption, we have the following additive property holds for any τ :

(QτY − µY )2 = (QτX1
− µX1

)2 + (QτX2
− µX2

)2. (14)

Since by Eq.(13), the left hand side of Eq.(14) is 2(σ2
1 + σ2

2)
[
erf−1(2τ − 1)

]2
, and the right hand side of Eq.(14)

is 2σ2
1

[
erf−1(2τ − 1)

]2
+ 2σ2

2

[
erf−1(2τ − 1)

]2
. Therefore, the additive property holds for any τ assume the RVs

follow Gaussian distribution.
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Table 1: Details of four hierarchical time-series datasets. Note that hierarchical levels mean the number of
aggregation levels from bottom to top in the hierarchical structure used in the experiments.

Dataset Total number of time series Total length of time series Hierarchical Levels
FTSE 73 2512 4
M5 42840 1969 4
Wiki 145000 550 5

Labour 755 500 4

(a) FTSE (b) M5 (c) Labour (d) Wikipedia

Figure 1: Visualization of hierarchical time series data. (a) Bottom level time series of FTSE (the open stock
price of Google); (b) bottom and top level of unit sales record; (c) Australian Labour Force data at all aggregation
levels; (d) Wikipedia page views data at all aggregation levels.

C KKT Conditions

An alternative way of solving the optimization problem defined in Section (2.1) Eq.(1) is to obtain the KKT
conditions (Boyd and Vandenberghe, 2004). For notational simplicity, we express the constrained loss for ith
vertex and mth data point as Lc(i,m). As the optimization problem is unconstrained, the KKT conditions will
lead to:

∂

∂[θi,Θi]
Lc(i,m) = [

∂

∂θi
Lc(i,m) ,

∂

∂Θi
Lc(i,m) ] = 0.

which will further imply that

λi

[
∂

∂gi
L(gi(X

i
m, θi), Y

i
m)

]> gi(Xi
m, θi)−

∑
ei,k∈E

ei,k . gk(Xk
m, θk)

+
∂

∂gi
L(gi(X

i
m, θi), Y

i
m) .

∂gi
∂θi

= 0,

and

(
ei,j . gj(X

j
m, θj)

)T gi(Xi
m, θi)−

∑
ei,k∈E

ei,k . gk(Xk
m, θk)

 = 0, ∀j|ei,j ∈ E.

However, we found that SHARQ performs better and more efficiently than the KKT approach during our empirical
evaluation. Solving the KKT conditions requires matrix inversion in most situations. Besides, SHARQ is more
flexible in incorporating various forecasting models and performs probabilistic forecasts.

D Dataset Details

We first describe the details (dataset generation, processing, etc.) of each dataset used in the experiment. A
summary of each dataset is shown in Table 1. Visualizations for some raw time series can be found in Figure 1.

D.1 FTSE Stock Market Data

The FTSE Global Classification System is a universally accepted classification scheme based on a market’s division
into Economic Groups, Industrial Sectors, and Industrial Sub-sectors. This system has been used to classify
company data for over 30,000 companies from 59 countries. The FTSE 100 (Doherty et al., 2005) is the top 100
capitalized blue-chip companies in the UK and is recognized as the measure of UK stock market performance
(Russell, 2017). Base on the FTSE classification system, we formulate a 4-level hierarchical structure (Economic
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Figure 2: Hierarchical structure of the M5 dataset.

Groups, Industrial Sectors, Industrial Sub-sectors, and companies) of 73 companies in Doherty et al. (2005).
Our task is to model the stock market time series for each company. The stock market data of each company is
available from the Yahoo Finance package1. Since the stock market time series starting time of each company is
not the same, we use a common time window ranging from January 4, 2010, to May 1, 2020.

D.2 M5 Competition Data

The M5 dataset2 involves the unit sales of various products ranging from January 2011 to June 2016 in Walmart.
It involves the unit sales of 3,049 products, classified into 3 product categories (Hobbies, Foods, and Household)
and 7 product departments, where the categories mentioned above are disaggregated. The products are sold
across ten stores in three states (CA, TX, and WI). An overview of how the M5 series are organized is shown in
Figure 2. Here, we formulate a 4-level hierarchy, starting from the bottom-level individual item to unit sales of all
products aggregated for each store.

D.3 Wikipedia Webpage Views

This dataset3 contains the number of daily views of 145k various Wikipedia articles ranging from July 2015 to
Dec. 2016. We follow the data processing approach used in Ben Taieb and Koo (2019) to sample 150 bottom-level
series from the 145k series and aggregate to obtain the upper-level series. The aggregation features include the
type of agent, type of access, and country codes. We then obtain a 5-level hierarchical structure with 150 bottom
series.

1https://pypi.org/project/yfinance/
2https://mofc.unic.ac.cy/wp-content/uploads/2020/03/M5-Competitors-Guide-Final-10-March-2020.docx
3https://www.kaggle.com/c/web-traffic-time-series-forecasting
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D.4 Australian Labour Force

This dataset1 contains monthly employment information ranging from Feb. 1978 to Aug. 2019 with 500 records
for each series. The original dataset provides a detailed hierarchical classification of labor force data, while we
choose three aggregation features to formulate a 4-level symmetric structure. Specifically, the 32 bottom level
series are hierarchically aggregated using labor force location, gender, and employment status.

E Additional Experiments

In this section, we demonstrate our additional experiment results, including the full results on FTSE and Wiki as
well as additional simulation experiments under unbiasedness and Gaussian assumptions. Reconciliation error is
also measured for each method. We start by discussing our evaluation metrics.

E.1 Evaluation Metrics

We denote ŶT (h) and YT (h) as the h−step ahead forecast at time T and its ground truth, respectively. To
construct confidence intervals, we use the 95th, 50th, and 5th quantiles as upper, median and lower forecasts.

E.1.1 Mean Absolute Percentage Error (MAPE)

The MAPE is commonly used to evaluate forecasting performance. It is defined by

MAPE =
100

H

H∑
h=1

|YT (h)− ŶT (h)|
|YT (h)|

. (15)

E.1.2 Likelihood Ratio

We compute the likelihood ratio between the quantile prediction intervals versus the trivial predictors, which
gives the specified quantile of training samples as forecasts. Specifically, define N (N = 3 in our case) as the
number of quantile predictors. Then the likelihood ratio at h−step forecast is:

α =

∑N
i=1 ρτi(YT (h)−QYT (h)(τi))∑N
i=1 ρτi(YT (h)−QIT (τi))

. (16)

Ideally, we should have α < 1 if our estimator performs better than the trivial estimator.

E.1.3 Continuous Ranked Probability Score (CRPS)

CRPS measures the compatibility of a cumulative distribution function F with an observation x as:

CRPS(F, x) =

∫
R

(F (z)− I{x ≤ z})2 dz (17)

where I{x ≤ z} is the indicator function which is one if x ≤ z and zero otherwise. Therefore, CRPS attains its
minimum when the predictive distribution F and the data are equal. We used this library2 to compute CRPS.

E.1.4 Reconciliation Error

We compute the reconciliation error of forecasts generated by each method on each dataset to measure the
forecasting coherency. More specifically, assume a total of m vertices in the hierarchy at time T , the reconciliation
error for the mean forecast is defined as

1

H

H∑
h=1

m∑
i=1

‖Ŷ iT (h)−
∑
ei,k∈E

Ŷ kT (h)‖1. (18)

1https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6202.0Dec%202019?OpenDocument
2https://github.com/TheClimateCorporation/properscoring
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Table 2: MAPE for small and large simulation dataset. The likelihood ratios are given in parentheses.

MAPE Simulation Small Simulation Large
Top level Level 1 Level 2 Top level Level 1 Level 2 Level 3

Base 1.29 (.69) 1.50 (.77) 2.41 (.91) 2.08 (.43) 2.20 (.61) 1.41 (.75) 0.72 (.85)
BU 2.14 (.73) 1.76 (.79) 2.41 (.91) 4.19 (.46) 3.48 (.64) 1.48 (.76) 0.72 (.85)

MinT-sam 0.54 (.66) 1.48 (.77) 2.24 (.89) 1.48 (.42) 2.55 (.65) 1.38 (.74) 0.63 (.83)
MinT-shr 0.45 (.65) 1.47 (.77) 2.23 (.89) 1.28 (.39) 2.31 (.63) 1.35 (.74) 0.59 (.81)
MinT-ols 0.20 (.64) 1.72 (.78) 2.41 (.91) 1.69 (.41) 2.15 (.60) 1.41 (.75) 0.71 (.85)
ERM 1.23 (.69) 1.73 (.78) 2.55 (.93) 2.78 (.44) 2.86 (.69) 1.50 (.76) 0.75 (.86)

SHARQ 1.54 (.41) 1.42 (.45) 2.41 (.73) 2.16 (.23) 2.13 (.49) 1.44 (.67) 0.72 (.82)

Table 3: MAPE results on FTSE dataset, lower values are better. Level 1 is the top aggregation level, and 4 is
the bottom level.

Algorithm RNN Autoregressive LST-Skip N-Beats

Reconciliation
Level Level Level Level

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

BU 6.11 8.48 9.41 9.54 10.01 12.15 11.77 12.43 7.48 8.96 9.29 9.49 6.63 8.04 8.23 8.41

Base 4.82 6.27 8.55 9.54 8.65 10.46 10.88 12.43 6.02 7.79 8.76 9.49 5.86 7.56 8.01 8.41

MinT-sam 4.68 8.53 8.77 10.13 9.72 11.25 11.57 12.26 6.47 8.24 8.93 10.62 5.94 7.89 8.35 8.86

MinT-shr 4.43 8.46 8.59 9.75 9.23 10.91 11.02 12.13 6.12 8.11 8.81 10.57 5.67 7.74 8.22 8.54

MinT-ols 4.71 8.92 8.74 10.31 9.96 11.01 11.25 12.32 6.31 8.56 8.74 10.88 5.87 8.12 8.41 9.84

ERM 5.74 9.52 9.54 12.41 9.92 10.61 12.03 13.23 8.12 9.38 9.76 13.01 6.19 8.89 9.26 10.22

SHARQ 4.51 8.28 8.08 9.54 9.13 9.35 10.61 12.43 5.01 7.14 8.52 9.49 5.44 7.83 7.93 8.41

E.2 Simulation under Unbiased Assumption

We follow the data simulation mechanism developed in Wickramasuriya et al. (2019); Ben Taieb and Koo
(2019), which satisfies the ideal unbiased base forecast and Gaussian error assumptions. The bottom level series
were first generated through an ARIMA(p, d, q) process, where the coefficients are uniformly sampled from a
predefined parameter space. The contemporaneous error covariance matrix is designed to introduce a positive
error correlation among sibling series, while moderately positive correlation among others. We simulate a small
and a large hierarchy with 4 and 160 bottom series, respectively. The bottom series are then aggregated to obtain
the whole hierarchical time series in groups of two and four. For each series in the hierarchy, we generate 500
observations, and the final h = 8, 16 observations are used for evaluation for both the large and small hierarchies.
We run the above simulation 100 times and report the average results. Table 2 shows the average MAPE by
fitting an ARIMA model followed by reconciliation on two simulation datasets. We can see that the MinT
methods generally perform the best, particularly for MinT methods with shrinkage estimators. This confirms the
statements from Ben Taieb and Koo (2019); Hyndman et al. (2011) that under ideal unbiasedness assumption if
the forecasting models are well specified, the MinT methods will provide the optimal solution. Simultaneously,
the results of SHARQ are also satisfactory. In fact, it outperforms MinT methods at some levels.

E.3 Additional Results

Table 3 and 4 show the MAPE results of FTSE and Wiki dataset. Moreover, table 5 is the average likelihood ratio
of each reconciliation method across four algorithms. The reported results are average across three random runs.
We can see that SHARQ performs better overall in providing accurate probabilistic forecasts. Table 6 compares
the average training and inference time across all forecasting models. Overall, the training time of SHARQ and
base forecast are roughly the same, but the inference time of SHARQ is ignorable relative to MinT, and ERM
approaches. Since both these methods require matrix inversion to compute the weight matrix. Even if ERM
could calculate the weight matrix on a separate validation set before inference, additional matrix computations
are required to obtain the results.
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Table 4: MAPE results on Wiki dataset, lower values are better. Level 1 is the top aggregation level, and 5 is the
bottom level.

Algorithm RNN Autoregressive LST-Skip N-Beats

Reconciliation
Level Level Level Level

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

BU 11.71 12.36 14.47 16.45 16.74 15.67 15.99 16.67 18.99 20.32 11.44 11.88 13.31 14.76 15.77 11.92 12.57 14.45 15.22 16.21

Base 11.12 11.52 14.06 16.11 16.74 15.04 15.23 16.02 17.83 20.32 11.21 11.24 12.88 14.35 15.77 11.84 12.02 14.17 15.16 16.21

MinT-sam 11.65 12.02 14.19 16.23 17.66 15.22 15.65 16.33 18.12 19.87 11.38 11.46 13.13 14.57 16.22 11.96 12.26 14.29 15.25 16.45

MinT-shr 11.32 11.86 13.87 16.07 17.54 15.17 15.12 15.98 17.69 19.54 11.24 11.15 12.91 14.32 16.14 11.75 12.19 14.03 15.02 16.39

MinT-ols 11.48 12.11 14.52 16.34 17.59 15.37 15.74 16.23 18.01 20.21 11.42 11.52 13.05 14.78 16.59 11.88 12.39 14.21 15.16 16.45

ERM 12.08 13.62 15.96 18.11 18.97 15.29 15.85 16.12 17.58 21.56 12.08 12.85 14.56 15.96 17.42 12.14 12.83 15.49 16.17 17.41

SHARQ 10.84 11.07 13.54 16.08 16.74 15.07 15.05 15.87 17.79 20.32 11.07 11.09 12.65 14.41 15.77 11.64 11.67 13.81 15.02 16.21

Table 5: Average likelihood ratio across forecasting horizons and models.

Likelihood Ratio Labour M5 FTSE Wiki

BU 0.36 0.48 0.50 0.66

Base 0.36 0.48 0.51 0.66

MinT-sam 0.36 0.47 0.50 0.66

MinT-shr 0.35 0.49 0.51 0.68

MinT-ols 0.34 0.48 0.51 0.66

ERM 0.35 0.48 0.51 0.67

SHARQ 0.07 0.25 0.32 0.65

Table 6: Training and inference time (in second) comparison for each data set.

Time (s) FTSE Labour M5 Wikipedia
training inference training inference training inference training inference

Base 115.96 0.01 68.35 0.00 181.58 0.00 205.47 0.01
BU 65.83 0.03 57.06 0.00 105.45 0.00 142.53 0.01

MinT-sam 106.55 1,784.77 72.24 430.42 172.11 1,461.81 208.26 1,106.70
MinT-shr 104.35 1,148.49 60.83 317.02 175.83 1,039.53 198.16 788.31
MinT-ols 103.23 1,129.45 64.14 310.13 163.24 977.88 196.88 702.02
ERM 547.66 0.05 497.88 0.01 551.60 0.01 1,299.30 0.04

SHARQ 121.84 0.01 99.96 0.00 201.40 0.00 241.97 0.01

Table 7: Average forecasting coherency on each dataset across 4 forecasting models. Bottom-level λ = 3.0,
higher-level λs are decreased gradually.

Reconciliation Dataset
FTSE Labour M5 Wiki

Base 28.01 5.59 12.56 20.71
BU 0 0 0 0

MINTsam 4.21E-15 4.60E-12 0 5.46E-10
MINTshr 2.50E-15 4.19E-12 0 6.40E-11
MINTols 6.22E-15 6.10E-12 0 1.08E-10
ERM 6.48E-12 2.27E-08 5.86E-12 2.40E-07

SHARQ 1.59 0.53 0.22 2.63

E.4 Forecasting Coherency

Table 7 compares the forecasting coherency of each reconciliation method. We use the metric defined in (18) to
compute the forecasting reconciliation error generated by previous experiments. As expected, the MinT and ERM
approach give almost perfect coherent forecasts, as these methods can directly compute the close form of weight
matrix P to optimally combine the original forecasts. Even though MinT and ERM can give perfectly coherent
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forecasts, the accuracy can sometimes be worse than the base method, which coincides with Proposition 2 (Hard
Constraint). Although SHARQ could not give the most coherent results, there is still a significant improvement
compared to incoherent base forecasts. Note that this can be further improved by increasing the penalty of the
regularization term.

F Hyper-parameter Configurations

Table 8: Common Hyper-parameters for all experiments.
Train/Valid/Test Epoch Learning Rate Batch Size Window Size Horizon

Quantile Simulation 0.6/0.2/0.2 300 1.00E-03 64 128 1

Unbiased Simulation 0.6/0.2/0.2 100 1.00E-03 128 10 1-8

Real-world Data 0.6/0.2/0.2 1000 0.1 128 168 1-8

We present hyper-parameters for all the experiments mentioned above. Table 8 lists the common hyper-parameters
used on each experiment. Model-specific hyper-parameters are as follows.

Quantile Simulation Experiment We simulate 500 samples for both step function and sinusoidal function;
the data is trained on a vanilla RNN model with hidden dimension 5, layer dimension 2, and tanh nonlinearity.
We used 10 ensembles of estimators for bagging, and each model is trained using random 64 samples.

LSTNet The number of CNN hidden units: 100; the number of RNN hidden units: 100; kernel size of the CNN
layers: 6; window size of the highway component: 24; gradient clipping: 10; dropout: 0.2; skip connection: 24.
Note that to enable LSTNet to produce multi-quantile forecast, we add the final layer of each quantile estimator
after the fully connected layer of the original model. The same linear bypass then adds the obtained quantile
estimators to produce the final results.

N-Beats We use the same parameter setting as shown in the GitHub repository1. PyTorch is used to train the
model.
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