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Abstract

Many real-life applications involve simulta-
neously forecasting multiple time series that
are hierarchically related via aggregation or
disaggregation operations. For instance, com-
mercial organizations often want to forecast
inventories simultaneously at store, city, and
state levels for resource planning purposes.
In such applications, it is important that the
forecasts, in addition to being reasonably ac-
curate, are also consistent w.r.t one another.
Although forecasting such hierarchical time
series has been pursued by economists and
data scientists, the current state-of-the-art
models use strong assumptions, e.g., all fore-
casts being unbiased estimates, noise distribu-
tion being Gaussian. Besides, state-of-the-art
models have not harnessed the power of mod-
ern nonlinear models, especially ones based on
deep learning. In this paper, we propose us-
ing a flexible nonlinear model that optimizes
quantile regression loss coupled with suitable
regularization terms to maintain the consis-
tency of forecasts across hierarchies. The the-
oretical framework introduced herein can be
applied to any forecasting model with an un-
derlying differentiable loss function. A proof
of optimality of our proposed method is also
provided. Simulation studies over a range of
datasets highlight the efficacy of our approach.

1 Introduction

Hierarchical time series refers to a set of time series or-
ganized in a logical hierarchy with the parent-children
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relations, governed by a set of aggregation and dis-
aggregation operations (Hyndman et al., 2011; Taieb
et al., 2017). These aggregations and disaggregations
can occur across multiple time series or over the same
time series across multiple time granularities. An ex-
ample of the first kind can be forecasting demand at
county, city, state, and country levels (Hyndman et al.,
2011). An example of the second kind of hierarchy
is forecasting demand at different time granularities
like daily, weekly, and monthly (Athanasopoulos et al.,
2017). The need to forecast multiple time series that
are hierarchically related arise in many applications,
from financial forecasting (sas) to demand forecasting
(Hyndman et al., 2016; Zhao et al., 2016) and psephol-
ogy (Lauderdale et al., 2019). The recently announced
M5 competition1 from the International Institute of
Forecasters also involves hierarchical forecasting on
Walmart data with a $100K prize. A novel challenge in
such forecasting problems is to produce accurate fore-
casts while maintaining the consistency of the forecasts
across multiple hierarchies.

Related Works Existing hierarchical forecasting
methods predominantly employ linear auto-regressive
(AR) models that are initially trained while ignoring
the hierarchy. The output forecasts produced by these
AR models are reconciled afterward for consistency. As
shown in Figure 1(c), such reconciliation is achieved by
defining a mapping matrix, often denoted by S, which
encapsulates the mutual relationships among the time
series (Hyndman et al., 2011). The reconciliation step
involves inversion and multiplication of the S matrix
that leads to the computational complexity of O(n3h),
where n is the number of nodes, and h represents how
many levels of hierarchy the set of time series are or-
ganized into. Thus, reconciling hundreds of thousands
of time series at a time required for specific industrial
applications becomes difficult. Improved versions of
the reconciliation were proposed by employing trace
minimization (Wickramasuriya et al., 2015) and sparse
matrix computation (Hyndman et al., 2016). These

1https://mofc.unic.ac.cy/m5-competition/
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Figure 1: (a) Example of hierarchically related time series: state population growth forecast, the data is aggregated
by geographical locations; (b) corresponding graph structure as nodes and vertices; (c) corresponding matrix
representation with four bottom level time series and three aggregated levels; (d) time series forecast at each node.

algorithms assume that the individual base estimators
are unbiased, which is unrealistic in many real-life ap-
plications. The unbiasedness assumption was relaxed
in (Taieb et al., 2017) while introducing other assump-
tions like ergodicity with exponentially decaying mixing
coefficient. Moreover, all these existing methods try to
impose any reconciliation constraints among the time
series as a post inference step, which possesses two
challenges: 1. ignoring the relationships across time se-
ries during training can potentially lead to suboptimal
solutions, 2. additional computational complexity in
the inference step, owing to the inversion of S matrix,
which makes it challenging to use the technique when
a significant amount of time series are encountered in
an industrial forecasting pipeline.

A critical development in time series forecasting has
been the application of Deep Neural Networks (DNN)
(e.g., Chung et al., 2014; Lai et al., 2018; Mukherjee
et al., 2018; Oreshkin et al., 2019; Salinas et al., 2019;
Sen et al., 2019; Zhu and Laptev, 2017) which have
shown to outperform statistical auto-regressive or other
statistical models in several situations. However, no
existing method incorporates the hierarchical structure
of the set of time series into the DNN learning step.
Instead, one hopes that the DNN will learn the rela-
tionships from the data. Graph neural networks (GNN)
(e.g., Franceschi et al., 2019; Lachapelle et al., 2019; Wu
et al., 2020; Yu et al., 2017, 2019; Zhang et al., 2020;
Zheng et al., 2018) have also been used to learn inher-
ent relations among multiple time series; however, they
need a pre-defined graph model that can adequately
capture the relationships among the time series. Char-
acterizing uncertainty of the DNN forecast is another
critical aspect, which becomes even more complicated
when additive noise does not follow a Gaussian distribu-
tion (e.g., Blundell et al., 2015; Iwata and Ghahramani,
2017; Kuleshov et al., 2018; Lakshminarayanan et al.,
2017; Sun et al., 2019). If the observation noise model
is misspecified, then the performance would be poor
however complex neural network architecture one uses.
Other works like Salinas et al. (2019) use multiple obser-
vation noise models (Gaussian, Negative Binomial) and

loss functions. It is left to human experts’ discretion
to select the appropriate loss based on the time series’s
nature. This approach cannot be generalized and in-
volves human intervention; it is especially not feasible
for an industrial forecasting pipeline where predictions
are to be generated for a vast number of time series,
which can have a widely varying nature of observation
noise. Besides, Bayesian approaches also face problems
as the prior distribution and loss function assumptions
will not be met across all of the time series. One ap-
proach that does not need to specify a parametric form
of distribution is through quantile regression. Prior
works include combining sequence to sequence models
with quantile loss to generate multi-step probabilistic
forecasts (Wen et al., 2017) and modeling conditional
quantile functions using regression splines (Gasthaus
et al., 2019). These works are incapable of handling
hierarchical structures within time series.

Key aspects of multiple, related time series forecasting
addressed by our proposed model include:

1. introduction of a regularized loss function that cap-
tures the mutual relationships among each group
of time series from adjacent aggregation levels,

2. generation of probabilistic forecasts using quan-
tile regression and simultaneously reconciling each
quantile during model training,

3. clear demonstration of superior model capabili-
ties, especially on real e-commerce datasets with
sparsity and skewed noise distributions.

Background: Hierarchical Time Series Forecast
Denote bt ∈ Rm, at ∈ Rk as the observations at time t
for the m and k series at the bottom and aggregation
level(s), respectively. Then yt = Sbt ∈ Rn contains
observations at time t for all levels. Similarly, let b̂T (h)
be the h−step ahead forecast on the bottom-level at
time T , we can obtain forecasts in higher aggregation
levels by computing ŷT (h) = Sb̂T (h). This simple
method is called bottom-up (BU), which guarantees
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reconciled forecasts. However, the error from bottom-
level forecasts will accumulate to higher levels, leading
to poor results. BU also cannot leverage any training
data that is available at the more granular levels. A
more straightforward approach called base forecast is to
perform forecasting for each time series independently
without considering the structure at all, i.e., compute

ŷT (h) =
[
âT (h)

> b̂T (h)
>
]>

, but this will apparently
lead to irreconciled forecasts. Therefore, imposing con-
straints to revise the base forecasts is a natural choice
to accommodate the hierarchical relationships. More
specifically, the goal is to obtain some appropriately
selected matrix P ∈ Rm×n to combine the base fore-
casts linearly: ỹT (h) = SP ŷT (h), where ỹT (h) is the
reconciled forecasts which are now coherent by con-
struction. The role of P is to map the base forecasts
into the forecasts at the most disaggregated level and
sum them up by S to get the reconciled forecasts. The
previously mentioned approach (Ben Taieb and Koo,
2019; Hyndman et al., 2011, 2016; Wickramasuriya
et al., 2015) involves computing the optimal P under
different situations. A more detailed introduction can
be found in Appendix A.

2 Simultaneous Hierarchically
Reconciled Quantile Forecasting

We propose a new method for hierarchical time-series
forecasts. Our approach fundamentally differs from
others in that we move the reconciliation into the train-
ing stage by enabling the model to simultaneously learn
the time series data from adjacent aggregation levels,
while also integrating quantile regression to provide
coherent forecasts for uncertainty bounds. We call our
method Simultaneous HierArchically Reconciled Quan-
tile Regression (SHARQ) to highlight these properties.

2.1 Problem Formulation

Graph Structure Figure 1(b) shows a hierarchi-
cal graph structure where each node represents a
time series, which is to be predicted over a horizon.
The graph structure is represented by {V,E}, where
V := {v1, v2, . . . , vn} are the vertices of the graph and
E := {ei1,j1 , ei2,j2 , . . . , eip,jp} are the set of edges. Also,
ei,j ∈ {−1, 1} is a signed edge where i is the parent
vertex and j is the child. An example of the negative-
signed edge can be forecasting surplus production,
which is the difference between production and demand.
The time series for vertex i at time t is represented as
xvi(t). For sake of simplicity, we assume the value of a
time series at a parent level will be the (signed) sum
of the children vertices. This constraint relationship
can be represented as xvi(t) =

∑
ei,k∈E ei,k xvk(t). We

can later extend these to set of non-linear constraints:
xvi(t) = Hvi

(∑
ei,k∈E ei,k xvk(t)

)
, where Hvi ∈ C1.

But linear hierarchical aggregation has already covered
most real-world applications. The graph has hierar-
chies L := {l1, l2, . . . , li, . . . , lq}, where li is the set of
all vertices belonging to the ith level of hierarchy. Note
that the graph representation using {V,E} is equivalent
to the S matrix in defining a hierarchical structure.

Data Fit Loss Function We now formulate the
learning problem for each node. Let {xvi(t) | t =
0, . . . , T} be the training data for vertex vi, w be the
window of the auto-regressive features, and h be horizon
of forecast. Based on the window, we can create a
sample of training data in the time stamp m as:

{(Xi
m, Y

i
m) | Xi

m = [F (xvi(m), . . . , xvi(m− w + 1))],

Y im = [xvi(m+ 1), . . . , xvi(m+ h)]},

where F : Rw+1 → Rnf is the featurization function,
which will generate a set of features; nf is the size of
feature space, h is the horizon of the forecast. It can
be noted that nf ≥ ω. In this fashion, we transform
the forecasting problem to a regression one, where nf
and h capture the size of the feature space and the
response. For instance, we can create a set of features
for an ARIMA(p, d, q) model based on the standard
parameterization, where auto-regressive window size
w = p and the other features corresponding to the d, q
parameters will form the rest of the features.

We represent a forecasting model that learns the mean
as a point estimate. Denote function gi : Rnf ×Rnθ →
Rd, where nθ represents the number of model parame-
ters which are represented as θi ∈ Rnθ . The estimate
from the model for Xi

m will be Ŷ im := gi(X
i
m, θi). We

can define a loss function for the mth sample at the
ith vertex as L(Ŷ im, Y im) = L(gi(Xi

m, θi), Y
i
m). We

would assume the noise in training samples are of
i.i.d. nature. As a consequence, the loss for the
entire training data will be sum for each sample, i.e.,∑
m L(gi(Xi

m, θi), Y
i
m). Noted that this formulation

will work for neural networks or ARIMA but not for
Gaussian Processes, where we need to model the co-
variance of the uncertainties across the samples.

Reconciled Point Forecast We then describe how
to incorporate reconciliation constraints into the loss
functions for the vertices. The constraints at different
levels of hierarchy will have different weights, which we
denote as a function wc : L → R. We define another
function that maps any vertex to the hierarchy level,
LM : V → L. For any vertex vi, the corresponding
weight for the constraint is given by λvi := wc◦LM(vi).
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The constrained loss for vertex vi will be

Lc(gi(Xi
m, θi), Y

i
m, gk(X

k
m, θk)) := L(gi(Xi

m, θi), Y
i
m)

+ λi ‖ gi(Xi
m, θi)−

∑
ei,k∈E

(
ei,k gk(X

k
m, θk)

)
‖2 . (1)

Note that the data fit loss and the reconciliation, as
described thus far, are catered to the point estimate of
the mean forecasts.

2.2 Reconciling Probabilistic Forecast using
Quantiles

Generating probabilistic forecasts over a range of time
is significant for wide-ranging applications. Real-world
time series data is usually sparse and not uniformly
sampled. It is unreasonable to assume that the un-
certainty or error distribution at every future point
of time as Gaussians. A standard approach to solve
this problem is using quantile loss, which allows one
to model the error distribution in a non-parametric
fashion. The estimator will aim at minimizing a loss
directly represented in terms of the quantiles. Simulta-
neously, quantile can be used to construct confidence
intervals by fitting multiple quantile regressors to ob-
tain estimates of upper and lower bounds for predic-
tion intervals. The quantile loss ρτ (y) is defined as
ρτ (y, Qτ ) = (y −Qτ ) .(τ − I(y<Qτ )), where Qτ is the
τ th quantile output by an estimator. We will adopt
quantiles in our framework, and pre-specified quan-
tile ranges will represent the forecasting distribution.
For simplicity, we denote Qτi = Qτi (X

i
m, θi) as the τ th

quantile estimator for node i. Eq.(2) demonstrates a
quantile version of the probabilistic estimator; it aims
to produce multiple forecasts at different quantiles
while maintaining a coherent median forecast which
will be used to reconcile other quantiles:

Lc(Qi, Y im, Qk) :=
τq∑
τ=τ0

ρτ (Q
τ
i , Y

i
m) + λi ‖ Q50

i −
∑
ei,k∈E

ei,kQ
50
i ‖2, (2)

where [τ0, . . . , τq] are a set of quantile levels, and
Qi = [Qτ0i , . . . , Q

τq
i ]. To further guarantee that estima-

tion at each quantile is coherent across the hierarchy,
the straightforward solution is to add consistency regu-
larization for each quantile like Eq.(2). However, too
many regularization terms would not only increase the
number of hyper-parameters, but also complicate the
loss function, where the result may even be worse as
it is hard to find a solution to balance each objective.
Moreover, a quantile estimator does not hold the addi-
tive property. As an example, assume X1 ∼ N(µ1, σ

2
1),

X2 ∼ N(µ2, σ
2
2) are independent random variables, and

define Y = X1 +X2. Then QτY = QτX1
+QτX2

is true

Algorithm 1 SHARQ
Input: Training data I1 = {Xi, Yi}T1

i=1, testing data
I2 = {Xi, Yi}T2

i=1.
Process:
train each leaf node (e.g., v4 to v7 in Figure 1(b)) inde-
pendently without regularization
for each vertex v at upper level l (e.g., l = 2 for v3, v2,
then l = 1 for v1) do

train vertex v at level l using Eq.(2)
end for
Reconciled Median Forecast MF ← Models(I2)
for each vertex v at upper level l do

train vertex v at level l using Eq.(3) and MF
end for
Output: Reconciled forecasts at pre-specified quantiles.

only if X1 = C × X2, where C is arbitrary constant.
This requirement cannot be satisfied. But for any τ ,
we have (QτY − µY )2 = (QτX1

− µX1
)2 + (QτX2

− µX2
)2,

the proof of above properties can be found in Appendix
B. Given these properties, we can formulate a new
objective to make an arbitrary quantile consistent:

Lq(Qi, Y im, Qk) := (3)f (Qτi −Q50
i

)
−
∑
ei,k∈E

ei,k f
(
Qτk −Q50

k

)
+Var(ε)

2

,

where ε is the mean forecast’s inconsistency error, which
is mostly a much smaller term for a non-sparse dataset,
and f is the distance metric. Eq.(3) is zero when f is
a squared function and the given data satisfies i.i.d.
Gaussian assumption. Therefore, optimizing Eq.(3)
“forces” this additive property in non-Gaussian cases
and is equivalent to reconcile the quantile estimators,
which can also be interpreted as reconciliation over the
variance across adjacent aggregation levels. Empirically,
this approach calibrates multiple quantile predictions
to be coherent and mitigates the quantile crossing issue
(Liu and Wu, 2009).

2.3 SHARQ Algorithm

Our formulation can be combined with a bottom-up
training approach to reconciling forecasts for each quan-
tile simultaneously. Since the time series at the leaf (dis-
aggregated) level are independent of higher aggregation
levels, we can use the lower-level forecasting results to
progressively reconcile the forecasting models at higher
levels without revisiting previous reconciliations, till
the root is reached. In contrast, if top-down training is
applied, one needs to reconcile both higher (previously
visited) and lower-level data at an intermediate vertex,
since other time series at that intermediate level may
have changed. Algorithm 1 describes our procedure.
We now address the remaining aspects.
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Beyond Gaussian Noise Assumption. Noise dis-
tributions for many real-world datasets (e.g., e-
commerce data) are heavily skewed, so a Gaussian
model may not be appropriate. For multi-level time
series, data at the most disaggregated (lowest) level is
more likely to be sparse, which makes the quantile rec-
onciliation in Eq.(3) less accurate. In such situations,
one can substitute median with the mean estimator
as in Eq.(1) for training lower-level time series. One
can also mix-and-match between mean and median
estimators at higher aggregation levels depending on
the data characteristics. Finding a suitable function f
for quantile reconciliation as in Eq.(3) is an alternative
way to tackle non-symmetric errors (Li and Zhu, 2008).

Efficient Training and Inference SHARQ is time
and memory efficient, scaling well in both aspects with
large datasets. One can simultaneously train multiple
time series and keep a running sum for reconciliation.
Since coherent probabilistic forecasts are enforced dur-
ing training, no extra post-processing time is needed
(see Appendix E for details). Besides, SHARQ does not
force one to use deep forecasting models or to use the
same type of model at each node; in fact, any model
where gradient-based optimization can be used is allow-
able, and one can also mix-and-match. For cases where
the time series at a given level are structurally very
similar (Zhu and Laptev, 2017), they can be grouped
(e.g., by clustering), and a single model can be learned
for the entire group.

3 Statistical Analysis of SHARQ

In this section, we theoretically demonstrate the ad-
vantages of SHARQ. We begin by showing the op-
timality of our formulation (1) in contrast to post-
inference based methods, which solves the matrix P
for ỹT (h) = SP ŷT (h). We emphasize our advantage
in balancing coherency requirements and forecasting
accuracy. We then present some desirable statistical
properties of SHARQ.

Theorem 1. (Global Optimum) For Lc ∈ C1,
for an arbitrary parameterized smooth regressor model
asymptotically,

Lc(gi(Xi
m, θ

?
i ), Y

i
m, gk(X

k
m, θ

?
k))

≤ Lc(gi(Xi
m, θ

recon
i ), Y im, gk(X

k
m, θ

recon
k )) (4)

where θ?, θrecon are the parameters for SHARQ, and
post inference reconciled solution, respectively.

Proof. By definition, SHARQ directly minimize
Eq.(1),

θ? = argmin
θ
Lc(gi(Xi

m, θi), Y
i
m, gk(X

k
m, θk)), (5)

where θ = {θi, θk}.

Since Ben Taieb and Koo (2019); Hyndman et al. (2011,
2016); Wickramasuriya et al. (2015) are performing the
reconciliation as a post-processing step, those solutions
are bound to be sub-optimal in comparison with θ?.

Proposition 2. (Hard Constraint) For post-
inference based methods, P ŷT (h) is the bottom level
reconciled forecast. In other words, it requires that

gi(X
i
m, θ

?
i ) =

∑
ei,k∈E

gk(X
k
m, θ

recon
k ). (6)

Had we only considered the point forecast reconcilia-
tion, i.e. E[gi(Xi

m, θ
?
i )] =

∑
ei,k∈E E[gk(Xk

m, θ
recon
k )],

the post inference processing still might have worked.
However, due to the probabilistic nature of the vari-
ables gi(Xi

m, θ
?
i ) = E[gi(Xi

m, θ
?
i )] + εi, where εi is the

observation noise, reconciling the mean won’t suffice.

Remark To satisfy Eq.(6), it is required that εi =∑
ei,k∈E εk, which is not a realistic property to be

satisfied in real-life problems. Intuitively, when a rec-
onciliation matrix P is applied, the original, unbiased
base forecasts with variation are “forced” to be summed
up. However, our method does not impose this hard
constraint, leading to different properties.

Proposition 3. (Unbiasedness Property) Con-
sider a hierarchical structure with n nodes where the
first κ nodes belong to aggregation levels, assume that
the bottom level forecasting is unbiased:

E[gk(Xk
m, θk)] = Y km, k = κ+ 1, ..., n (7)

and the bottom level forecasting models are well opti-
mized:

Var
(
‖gk(Xk

m, θk)− Y km‖
)
= ε, ε = O( 1

m
). (8)

Then we have that

E[gi(Xi
m, θi)] = E[

∑
ei,k∈E

gk(X
k
m, θk)]

=
∑
ei,k∈E

E[gk(Xk
m, θk)]

= Y im, i = 1, ..., κ

Therefore, we claim that given the unbiased base fore-
cast at the most disaggregated level, as well as well-
specified models, our method can provide unbiased
estimation at all aggregation levels.

Proposition 4. (Variance Reduction) Assume
we are minimizing a quadratic loss function using our
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(a) Log-normal error (b) Gamma error (c) Gaussian error

Figure 2: Forecasting results of simulated sequential data under different error distributions. The original function
of (a) is sinusoidal with varying frequency; (b) and (c) are discontinuous step functions. Note that our baseline
forecasts in (b) and (c) are overconfident (Lakshminarayanan et al., 2017; Li and Hoiem, 2020) and their prediction
intervals are too small to be shown.

Error distribution Log-normal Gamma Gaussian

MAPE
Quantile 32.72 62.20 70.29

Baseline 49.88 73.69 73.36

LR
Quantile 0.2218 0.5649 0.8634

Baseline 0.5661 0.7489 1.025

ht−2

Forecasting model

ht−1 ht ot

xt−2 xt−1 xt

dense layer 1

dense layer 3

dense layer 2 ŷτt+1

Table 1: Left: Quantitative results for simulation experiments. We use Mean Absolute Percentage Error (MAPE)
(Makridakis and Hibon, 2000) to measure forecasting accuracy and Likelihood Ratio (LR) to evaluate uncertainty
intervals. Right: A schematic of the multi-quantile forecaster used for simulation.

formulation, where

Lc(gi(X
i
m, θi), Y

i
m, gk(X

k
m, θk)) = ‖gi(Xi

m, θi)− Y im‖2

+ λi ‖ gi(Xi
m, θi)−

∑
ei,k∈E

(
ei,k gk(X

k
m, θk)

)
‖2 .

By solving the quadratic objective, we get

gi(X
i
m, θi) =

Y im + λi
∑
ei,k∈E ei,k gk(X

k
m, θk)

λi + 1
. (9)

Note that if we fit linear models that generalize in the
bottom level, we have Var(

∑
ei,k∈E ei,k gk(X

k
m, θk)) =

O( 1
m ) (for other models, the variance should be at least

in a smaller scale than O(1), which is the variance of
observed samples). Therefore, by alternating λi:

• Var(gi(X
i
m, θi)) = Var(Y im) = O(1),when λi → 0.

• Var(gi(X
i
m, θi)) = Var(

∑
ei,k∈E

ei,k gk(X
k
m, θk))

= O( 1
m
),when λi →∞. (10)

This tells us that by alternating the coefficient λi, the
amount of estimator variance at higher aggregation

levels can be controlled. If lower-level models are ac-
curate, then we can improve the higher-level models
by this method. Instead of adding a hard coherency
requirement like the post-inference methods, SHARQ
provides more flexibility for controlling the variations.

4 Experimental Results

In this section, we validate the performance of SHARQ
on multiple hierarchical time series datasets with dif-
ferent properties and use cases. The experiments are
conducted on both simulated and real-world data. Re-
sults demonstrate that SHARQ can generate coherent
and accurate forecasts and well-capture the prediction
uncertainty at any specified level.

4.1 Simulation Experiments

We first demonstrate that quantile loss can handle
various kinds of error distributions and thus provide
more stable and accurate uncertainty estimation than
methods under Gaussian error assumption. We trained
vanilla RNN models on three different sequential data
with distinct error distributions. We implemented a
model that has multiple quantile estimators with shared



Xing Han, Sambarta Dasgupta, Joydeep Ghosh

Table 2: Performance measured by MAPE (Makridakis and Hibon, 2000) on Australian Labour (755 time series),
and M5 competition (42840 time series), lower values are better. Level 1 is the top aggregation level, and 4 is the
bottom level.

Algorithm RNN Autoregressive LST-Skip N-Beats

Reconciliation
Level Level Level Level

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
BU 15.23 15.88 19.41 17.96 19.29 20.14 21.09 22.13 16.13 17.59 16.88 17.17 14.23 14.75 15.67 15.84
Base 12.89 14.26 16.96 17.96 17.59 19.86 20.98 22.13 14.99 12.31 15.12 17.17 12.18 13.32 14.32 15.84

MinT-sam 14.98 15.94 17.79 19.23 18.82 19.98 21.59 22.26 15.12 14.41 16.42 18.62 13.11 14.63 14.86 15.96
MinT-shr 14.46 15.43 16.94 18.75 18.54 19.98 21.22 22.01 15.06 13.89 16.31 17.56 12.76 14.41 14.77 15.87
MinT-ols 15.01 15.96 18.75 19.21 19.14 20.02 21.74 22.34 15.12 14.41 16.41 18.74 13.29 14.49 14.85 16.83
ERM 14.73 16.62 19.51 20.13 17.89 20.11 20.33 21.93 16.61 16.84 18.75 19.21 14.52 15.26 17.02 17.29

SHARQ 12.55 13.21 16.01 17.96 17.65 19.72 20.01 22.13 11.97 12.24 15.64 17.17 11.86 12.35 14.53 15.84

BU 11.42 12.04 12.32 11.72 12.77 14.59 16.11 16.56 10.11 12.69 10.78 10.94 11.01 11.05 12.43 11.34
Base 10.63 10.15 11.23 11.72 11.64 13.91 15.67 16.56 8.96 11.38 10.59 10.94 9.64 9.88 11.11 11.34

MinT-sam 11.25 11.67 11.87 12.99 12.34 14.09 15.97 17.54 9.64 12.31 11.02 11.01 9.97 10.82 11.89 12.77
MinT-shr 10.76 11.03 11.49 12.81 11.92 13.85 15.76 17.33 9.19 11.97 10.71 10.99 9.78 10.69 11.56 12.63
MinT-ols 11.75 11.56 12.06 13.05 12.32 14.21 15.97 17.56 9.63 12.54 10.98 11.02 10.41 11.01 12.02 12.71
ERM 11.86 12.01 12.42 13.54 12.61 14.02 15.41 17.14 10.35 13.01 13.15 13.56 10.44 11.22 13.42 13.96

SHARQ 9.87 9.68 10.41 11.72 11.23 13.84 15.69 16.56 8.68 9.49 10.23 10.94 9.67 9.76 10.75 11.34

features, which enables more efficient training. The
bagging method (Oliveira and Torgo, 2014) is used as
a baseline where we utilize model ensembles to produce
confidence intervals. Figure 2 shows the advantage of
quantile estimators on simulated sequential data, and
Table 1 compares forecasting results as well as demon-
strates our model structure. Although it is difficult to
capture the trend of discontinuous functions in Figure
2 (b) and (c), the quantile estimators are accurate and
stable under both skewed and symmetric error distri-
butions, where it also outperforms the baseline for all
types of error distributions.

4.2 Hierarchical Time Series

We validate the performance of SHARQ on multiple
real-world hierarchical time-series datasets, which in-
clude Australian Labour, FTSE (Doherty et al., 2005),
M5 competition, and Wikipedia webpage views dataset
(see Appendix D for details). This type of data usually
contains categorical features (e.g., locations, genders)
that can be used to aggregate across time series to con-
struct hierarchical structures. We compare our method
with state-of-the-art reconciliation algorithms MinT
(Wickramasuriya et al., 2019) and ERM (Ben Taieb
and Koo, 2019), along with other baselines, including
bottom-up (BU) and base forecast. To have a fair
comparison, we first pre-process each dataset using
information from categorical features. The bottom-up
training procedure in Algorithm 1 is then used for each
method except for BU. Specifically, the model training
settings of the base forecast, MinT and ERM are by
default the same as SHARQ, except that they do not
have mean and quantile reconciliation. As for MinT
and ERM, extra reconciliations are performed after
model training. In this case, the algorithm has access

to the hierarchical information about the dataset. We
also incorporate different time series forecasting algo-
rithms into our framework, which ranges from linear
auto-regressive model and RNN-GRU (Chung et al.,
2014) to advanced models such as LSTNet (Lai et al.,
2018) and N-Beats (Oreshkin et al., 2019). Although
these models are not originally designed for hierarchical
time series problems, we show that the performance on
this task can be improved under our framework.

Table 2 and 3 shows forecasting results across all rec-
onciliation methods and models on Australian Labour
(upper) and M5 (lower) dataset, the results are aver-
aged across 3 runs. Specifically, MAPE (Makridakis
and Hibon, 2000) measures accuracy for point forecast
by Eq.(1), and Continuous Ranked Probability Score
(CRPS) (Matheson and Winkler, 1976) measures the
holistic accuracy of a probabilistic forecast, using mul-
tiple quantiles. Overall, SHARQ outperforms other
reconciliation baselines, resulting in much lower MAPE
and CRPS over all four models, particularly at the
higher aggregation levels. Specifically, although the
bottom-up training of SHARQ leads to the same bot-
tom level performance as BU and Base method, the
error accumulation and inconsistency across the hier-
archy leads to higher error in other aggregation levels.
More importantly, the better performance of SHARQ
over Base and BU in multiple datasets validates the
necessity of hierarchical construction in DNN training.
Besides, comparing the autoregressive model results
with others, SHARQ tends to perform better when the
forecasting model is less parsimonious for the dataset.
Figure 3 presents multi-step forecasting results, which
possess the advantage of coherent estimation at multi-
ple quantile levels.
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(a) Labour (SHARQ) (b) FTSE (SHARQ) (c) M5 (SHARQ) (d) Wiki (SHARQ)

(a) Labour (MinT-shr) (b) FTSE (MinT-ols) (c) M5 (MinT-shr) (d) Wiki (MinT-sam)

Figure 3: Top and bottom level forecasts on four datasets using the LSTNet skip connection model. For each
dataset, we plot the results of SHARQ and the second-best reconciliation method. P5 and P95 forecasts are the
lower and upper boundaries of the forecast band. We use mean as the point estimator (also complement of P50)
for all bottom-level data and other aggregation levels of Australian Labour and FTSE data.

Algorithm RNN Autoregressive LST-Skip N-Beats

Reconciliation
Level Level Level Level

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
BU 0.244 0.221 0.186 0.149 0.401 0.367 0.303 0.231 0.241 0.222 0.193 0.142 0.232 0.211 0.196 0.154
Base 0.119 0.135 0.143 0.149 0.174 0.203 0.221 0.231 0.124 0.139 0.142 0.142 0.122 0.141 0.141 0.154

MinT-sam 0.106 0.135 0.139 0.152 0.167 0.191 0.214 0.227 0.106 0.125 0.133 0.156 0.106 0.119 0.141 0.153
MinT-shr 0.103 0.129 0.137 0.158 0.162 0.189 0.206 0.232 0.101 0.113 0.132 0.153 0.103 0.114 0.137 0.155
MinT-ols 0.109 0.133 0.142 0.159 0.167 0.194 0.215 0.233 0.109 0.124 0.133 0.154 0.111 0.123 0.142 0.155
ERM 0.126 0.147 0.152 0.156 0.164 0.178 0.192 0.201 0.132 0.145 0.149 0.162 0.121 0.138 0.143 0.158

SHARQ 0.097 0.124 0.133 0.149 0.157 0.187 0.199 0.231 0.089 0.096 0.126 0.142 0.092 0.115 0.136 0.154

BU 0.247 0.231 0.226 0.208 0.397 0.375 0.316 0.297 0.219 0.211 0.194 0.164 0.199 0.171 0.152 0.135
Base 0.162 0.167 0.193 0.208 0.231 0.257 0.265 0.297 0.146 0.152 0.175 0.164 0.079 0.128 0.136 0.135

MinT-sam 0.147 0.158 0.154 0.211 0.257 0.262 0.271 0.279 0.112 0.141 0.175 0.189 0.091 0.124 0.142 0.149
MinT-shr 0.134 0.142 0.146 0.213 0.256 0.248 0.268 0.288 0.096 0.137 0.134 0.171 0.083 0.112 0.147 0.166
MinT-ols 0.143 0.161 0.154 0.215 0.259 0.261 0.272 0.283 0.109 0.154 0.156 0.191 0.086 0.117 0.139 0.162
ERM 0.152 0.154 0.188 0.226 0.213 0.229 0.241 0.267 0.124 0.166 0.168 0.194 0.098 0.129 0.151 0.172

SHARQ 0.071 0.063 0.114 0.208 0.189 0.225 0.279 0.297 0.069 0.074 0.108 0.164 0.067 0.069 0.096 0.135

Table 3: Performance measured by CRPS (Matheson and Winkler, 1976) on Australian Labour (755 time series),
and M5 competition (42840 time series), lower values are better. Level 1 is the top aggregation level, and 4 is the
bottom aggregation level.

We pre-define the hyper-parameter λi for vertex vi
from Eq.(1) level-wise, where we use the same λs for
all time series at the same level, and gradually decrease
this value at higher aggregation levels. This is because
time series at the same level possess similar magnitudes.
With more vertices at lower levels, the chances of having
consistency issues are higher, and error can accumulate
to higher levels.

We then evaluate the effect of regularization strength

on forecasting coherency across the hierarchical struc-
ture; we summarize the result in Figure 4.2, where the
coherency loss drops dramatically after incorporating
the hierarchical regularization at each level. Note that
we mainly compare SHARQ with the Base method
(SHARQ without regularization), as other reconcili-
ation approaches generate absolute coherent results
at the cost of sacrificing forecasting accuracy. More
detailed evaluations can be found in Appendix E.
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Figure 4: Coherency loss of SHARQ compared with the
Base method on four datasets. Results are averaged
across all the forecasting models.

4.3 Comparison with Baseline Methods

Learning inter-level relationships through regulariza-
tion helps SHARQ generalize better while mitigating
coherency issues. It also provides a learnable trade-
off between coherency and accuracy. From a compu-
tational perspective, MinT and ERM require one to
compute matrix inversion explicitly. Note that the
ERM method could compute the weight matrix on a
validation set, but additional matrix computations are
required during inference. Crucially, they depend on
the Gaussian and unbiasedness assumptions, as stated
in Ben Taieb and Koo (2019); Hyndman et al. (2011);
Wickramasuriya et al. (2015) and their performance
degrades noticeably when faced with actual data that
do not match these assumptions well.

5 Conclusion

This paper has proposed a distributed optimization
framework to generate probabilistic forecasts for a set
of time series subject to hierarchical constraints. In
our approach, the forecasting model is trained in a
bottom-up fashion. At any stage, the model training
involves simultaneously updating model parameters at
two adjacent levels while maintaining the coherency
constraints. This enables manageable information ex-
change at different levels of data aggregation. Our
framework can incorporate any forecasting model and
the non-parametric quantile loss function to gener-
ate accurate and coherent forecasts with pre-specified
confidence levels. We have analytically demonstrated

that by training the model with our modified objective
function, the variance of time series data at higher
aggregation levels can be reduced. We also compared
our method empirically with the state-of-the-art hier-
archical forecasting methods with cutting-edge base
forecasters. The results show that our method produces
relatively robust with accurate and coherent forecasts.
Our proposed method reduces the inference complex-
ity compared to the state-of-the-art algorithms, which
perform a computationally expensive matrix inversion
operation during the inference to achieve the reconcili-
ation.

As for future work, we plan to extend our method to
multi-variate time series to be forecast at different time
granularities while obeying hierarchical relationships.
Besides, we also plan to investigate incorporating ex-
ogenous variables and related metadata.
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