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Abstract

Recent years have witnessed the success
of adaptive (or unified) approaches in es-
timating symmetric properties of discrete
distributions, where the learner first ob-
tains a distribution estimator independent
of the target property, and then plugs
the estimator into the target property
as the final estimator. Several such ap-
proaches have been proposed and proved
to be adaptively optimal, i.e. they achieve
the optimal sample complexity for a large
class of properties within a low accuracy,
especially for a large estimation error € >
n~1/3 where n is the sample size.

In this paper, we characterize the high ac-
curacy limitation, or the penalty for adap-
tation, for general adaptive approaches.
Specifically, we obtain the first known
adaptation lower bound that under a mild
condition, any adaptive approach cannot
achieve the optimal sample complexity for
every 1-Lipschitz property within accu-
racy € < n~ /3. In particular, this result
disproves a conjecture in [Acharya et al.,
2017a] that the profile maximum likeli-
hood (PML) plug-in approach is optimal
in property estimation for all ranges of ¢,
and confirms a conjecture in [Han and Shi-
ragur, 2021] that their competitive analy-
sis of the PML is tight.

1 Introduction and Main Results

Given n i.i.d. samples drawn from a discrete distri-
bution p = (p1,- -, pr) of support size k, the prob-
lem of symmetric (or permutation-invariant) prop-
erty estimation is to estimate the following quantity

k

F(p) = Zf(]?i)

i=1

or its variants within a small additive error, for
a given function f : [0,1] — R. This is a fun-
damental problem in computer science and statis-
tics with applications in neuroscience [Rieke et al.,
1999], physics [Vinck et al., 2012], ecology [Chao,
1984, Chao and Lee, 1992, Bunge and Fitzpatrick,
1993, Colwell et al., 2012], and others [Plotkin and
Wyner, 1996, Porta et al., 2001].

Over the past decade, there are two main lines
of research towards the symmetric property esti-
mation. The first line of research aims to work
out the minimax estimation rate and construct
the minimax rate-optimal estimators for a given
property, including entropy [Paninski, 2003, 2004,
Valiant and Valiant, 2011a, Jiao et al., 2015, Wu
and Yang, 2016], support size [Valiant and Valiant,
2013, Wu and Yang, 2019], support coverage [Orlit-
sky et al., 2016, Zou et al., 2016], distance to unifor-
mity [Valiant and Valiant, 2011b, Jiao et al., 2018],
sorted ¢; distance [Valiant and Valiant, 2011b,
Han et al., 2018], Rényi entropy [Acharya et al.,
2014, 2017b], nonparametric functionals [Han et al.,
2020c,a], and many others. One of the main find-
ings in these work is that, plugging the empiri-
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of minimax rate-optimal estimators, while the de-
tailed construction crucially depends on the specific
property in hand (i.e. classify the smooth and non-
smooth parts of f, and apply different procedures).

The other line of research aims to achieve a more
ambitious goal: find an adaptive (or unified) esti-
mator that achieves the optimal sample complexity
for all (or most of) the above symmetric properties.
Specifically, the learner aims to obtain a unified dis-
tribution estimator p of the true distribution p inde-
pendent of the property F' in hand, and hopes that
the plug-in estimator F'(p) is minimax rate-optimal
in estimating F'(p) for a large class of properties F'.
This goal may sound too good to be true, for at
least two reasons:

e as shown above, the plug-in approach of the
empirical distribution, possibly the most nat-
ural choice of p, does not give the rate-optimal
estimator;

e the construction of the optimal estimator even
for known F' is typically quite involved.

However, surprising recent developments show that
there does exist such an estimator p, and there are
even multiple such estimators. One estimator is
the local moment matching (LMM) estimator in
[Han et al., 2018] (and its refinement in [Han and
Shiragur, 2021]), which is minimax rate-optimal in
estimating the true distribution p up to permuta-
tion. Moreover, plugging the LMM estimator into
the entropy, power sum function, support size, and
all 1-Lipschitz functionals attains the optimal sam-
ple complexity for the respective properties within
any accuracy € > n~ /3. Another estimator is
the profile mazimum likelihood (PML) estimator
proposed in [Orlitsky et al., 2004], whose statis-
tical performance was analyzed in [Acharya et al.,
2017a] via a competitive analysis with an ampli-
fication factor exp(3y/n) of the error probability;
this factor was later improved to exp(c¢'n'/3+¢) for
any ¢ > 0 in [Han and Shiragur, 2021]. Conse-
quently, for a large class of symmetric properties
F where there exists a sample-optimal estimator
with a sub-Gaussian error probability exp(—cne?),
the above analyses imply that the PML plug-in ap-
proach is also adaptively optimal within any accu-
racy parameter € > n~ /3.

These adaptive estimators, albeit promising, still
leave some questions. Specifically, we notice the

following discrepancy: the estimators constructed
in the property-specific manner could achieve the
optimal sample complexity for the entire accuracy
regime € > n~ /2, while both adaptive estima-
tors above are shown to be optimal only when
€ > n~ /3. This discrepancy leaves alone the fol-
lowing important question:

Is there a fundamental limit for general adaptive
approaches of property estimation in the
high-accuracy regime where n=/? < e < n=1/3¢

Note that there are three possible answers to this
question: first, this high-accuracy regime is uncov-
ered simply due to an artifact of the analyses for the
above adaptive estimators, and a better theoretical
guarantee may be possible. Second, there may ex-
ist another fully adaptive estimator which is cur-
rently missing. Third, this high-accuracy regime
may be a fundamental burden for any adaptive es-
timator. Specializing this question to the PML,
[Acharya et al., 2017a] conjectured that “the PML
based approach is indeed optimal for all ranges of
¢”, while [Han and Shiragur, 2021] conjectured that
£ > n~ /3 is the best possible range for the PML to
be adaptively optimal. However, even for the PML,
which is a specific choice of an adaptive estimator,
the lower bound analysis is missing.

In this paper, we show that the latter conjecture is
true even for general adaptive estimation: there is
a phase transition for the performance of adaptive
estimators at the accuracy parameter e =< n~1/3,
while beyond this point, there is an unavoidable
price that any adaptive estimator needs to pay on
the sample complexity. In other words, for a rea-
sonable family of symmetric properties, although
property-specific approaches are optimal for the full
accuracy range € > n~ /2, any adaptive approach
fails to achieve the optimal sample complexity for
at least one of the properties if ¢ < n=1/3. Specif-
ically, our main contributions are as follows:

1. We prove the first tight adaptation lower
bound for the class of all 1-Lipschitz proper-
ties. We show that although the sample com-
plexity for each 1-Lipschitz property is at most
O(k/(e?logk)) for any ¢ > n~1/2 under a
mild assumption, any adaptive estimator must
incur a sample complexity at least Q(k/e?) for
every € € n~ /3,

2. As a corollary, we obtain a tight competitive
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analysis for the PML plug-in approach. Specif-
ically, we show that the amplification factor of
the error probability in the PML competitive
analysis is at least exp(Q(n'/37¢)) for every
¢ > 0, resolving the tightness conjecture of the
upper bound exp(O(n'/3+¢)) for every ¢ > 0
in [Han and Shiragur, 2021].

3. We consider a new class of adaptive estimation
problems, where we aim to adapt to a family
of loss functions instead of the parameter sets
in the traditional setting. We propose a gener-
alized Fano’s inequality to establish the adap-
tation lower bound for the new problem, which
could be of independent interest.

1.1 Notations

Throughout the paper we adopt the following no-
tations. Let N be the set of all positive integers,
and for n € N, let [n] £ {1,2,...,n}. For a finite
set A, let |A| be the cardinality of A. For k € N,
let My be the set of all discrete distributions sup-
ported on [k]. For random variables X and Y with
joint distribution Pxy, let

I(X;Y)= | dPxy log —————
( 5 ) / XY OgdPX®dPy

be the mutual information between X and Y. For
p € My, let P, and E, denote the probability and
expectation taken with respect to the i.i.d. samples
X1,---, X, ~ p, respectively. For non-negative se-
quences {a,} and {b,}, we write a,, < b, (or a, =
O(by,)) to denote that limsup,, . an /b, < 00, and
an 2 by (or a, = Q(by,)) to denote b, < a,, and
an, < b, (or a, = ©(b,)) to denote both a,, < b,
and b, < a,. We also write a,, < b, to denote that
lim sup,_,( limsup,,_, . n°ay /b, = 0, and a,, > b,
to denote b, < a,.

1.2 Organization

The rest of the paper is organized as follows. Sec-
tion 2 presents the main adaptation lower bound,
together with its implication on PML. In particu-
lar, Section 2.3 introduces the new adaptive estima-
tion problem and a generalized Fano’s inequality.
Section 3 compares our setting and results with an
extensive set of prior work. Conclusions and open
problems are drawn in Section 4, and the detailed
proofs are relegated to the supplementary material.

2 Main Results

This section presents the main results of this paper.
In Section 2.1, we introduce the problem setup and
state the main adaptation lower bound. In Section
2.2, we review the background and obtain the tight
statistical analysis of the PML. In Section 2.3, we
introduce the general adaptive estimation problem
and present the high-level idea behind the adapta-
tion lower bounds.

2.1 Adaptation Lower Bound

To state the main adaptation lower bound, we first
need to define the family of adaptive estimators as
well as the family of symmetric property estimation
problems in which we aim to achieve adaptation. In
this paper, we are interested in characterizing the
following adaptive minimazx risk:

n, k) 2 inf sup sup E,|F(p) — F(p)l,
P FGFLip pEMy
(1)

where Fi,ip denotes the class of all 1-Lipschitz prop-
erties F expressed as F(p) = Zle f(p;) with
some 1-Lipschitz function f : [0,1] — R, ie.
|f(z) — f(y)|] < |z —y]| for all z,y € [0,1]. Specifi-
cally, (1) requires the learner to obtain a single dis-
tribution estimator p = (p1,--- ,Dk) solely based
on the observations X", and then use the plug-
in estimator F(p) to estimate the property F(p).
This is exactly the adaptive estimation framework
used in [Acharya et al., 2017a, Han et al., 2018].
To measure the performance of the adaptive esti-
mator, we consider the expected estimation error
E,|F(p)—F(p)| for the worst-case discrete distribu-
tion p € My and the worst-case 1-Lipschitz prop-
erty F' € Frip. In other words, we aim to find a sin-
gle plug-in estimator to perform well on estimating
all 1-Lipschitz properties.

R*

adaptive(

Before characterizing the adaptive minimax risk
(1), we need the following mild technical assump-
tion on the single distribution estimator p.

Assumption 1. For each n,k € N, we assume that
the distribution estimator p(X™) = (p1, - ,Dk)
satisfies (where Sy denotes the permutation group
over [k])

< A@m) /5

sup E
p Ly n

PEMy

k
‘;IEHST]{ ; |po(i) - pil
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with A(n) < n® for every § > 0. We will use P to
denote the class of all such estimators p.

Assumption 1 essentially requires that the single
distribution estimator p used in the adaptive ap-
proach must be a reasonably good estimator of the
true distribution p up to permutation, where the
term reasonably means that the estimator cannot
be much worse than the empirical estimator. We
provide three reasons why we believe this assump-
tion to be mild. First, it is very natural to expect or
require that a good distribution estimator used in
the adaptive approach should be sound not only af-
ter being plugged into various properties, but also
before the plug-in in terms of the (sorted) distri-
bution estimation. In other words, Assumption 1
could be treated as an additional requirement for
any sound adaptive approach. Second, Assump-
tion 1 holds for all known estimators. For exam-
ple, the empirical distribution satisfies Assumption
1 with A(n) =1 (see, e.g. [Han et al., 2015]), and
both known adaptive estimators, i.e. LMM and
PML, also belong to P with A(n) = polylog(n)
(cf. [Han et al., 2018] for the LMM, and the proof
of Theorem 2 for the PML). Hence, restricting to
the estimator class P still leads to novel and in-
teresting lower bounds for these known estimators.
Third, a larger quantity A(n) in Assumption 1 only
shrinks the accuracy regime from ¢ < n~'/3 to
£ < (nA(n))~/3, but does not affect the claimed
minimax lower bound in the new accuracy regime.
In addition, we remark that Assumption 1 is mostly
a technical assumption, and conjecture that the fol-
lowing Theorem 1 still holds without it.

Restricting to the estimator class P, the following
theorem characterizes the tight adaptive minimax
rate for 1-Lipschitz property estimation.

Theorem 1. For each n,k € N, it holds that

inf sup sup E,|F(p) — F(p)|
PEP FeFLip pEMy,

,/nk’fgn if n'/3 < k < nlogn,

\/g if 1< k< nl/3,

Theorem 1 can also be equivalently formulated in
terms of the optimal sample complexity.

Corollary 1. It is sufficient and necessary to have
n = O(k/(e2logk)) samples for the existence of an
adaptive estimator in P to estimate all 1-Lipschitz
properties within error € if € > n~'/3, and it is

sufficient and necessary to have n = ©(k/e?) sam-
ples for the existence of an adaptive estimator in P
to estimate all 1-Lipschitz properties within error
ifn Y2 e n /3,

Let us appreciate the result of Theorem 1 via some
comparisons with following known results. First,
there is no phase transition in the high-accuracy
regime if we do mot require an adaptive estima-
tor. Specifically, the following non-adaptive mini-
max risk was shown in [Hao and Orlitsky, 2019b]:!

~ k
sup inf sup E,|F(p) — F(p)| < ,
o b sup »|F'(D) — F(p)] nlogn

1<k Snlogn. (2)

Comparing Theorem 1 and (2), we observe that af-
ter a simple swap of the infimum and supremum,
the adaptive minimax risk becomes different from
the non-adaptive minimax risk and exhibits an el-
bow effect at k =< n'/? (or equivalently € =< n~=1/3).
In particular, there is a strict separation between
the best achievable errors for adaptive and non-
adaptive approaches, and the learner need to pay
a strict penalty on the estimation error to achieve
adaptation below the accuracy level & < n~1/3.

Second, we also compare Theorem 1 with the prob-
lem of estimating sorted distribution, where [Han
et al., 2018] shows that

sup |F(p) — F(p)|
FeFrip

inf sup E,
P peMy

E_if nl/3 < k <nlogn,

nlogn

\/% if 1< k< n'/3,

~
~

As E[sup,, X,,] > sup,, E[X,,], the quantity in (3) is
no smaller than our adaptive minimax risk in (1),
and thus implies the upper bound in Theorem 1.
However, the lower bound of Theorem 1 is the most
challenging part and stronger than what (3) gives.
Comparing the results of Theorem 1 and (3), we
remark that the phase transition in (3) character-
izes a shift in the estimation difficulty of a specific
problem, while the phase transition in Theorem 1
characterizes the same shift only for adaptive ap-
proaches. Therefore, the former transition could be

'The original paper did not require to use a plug-in
estimator, but any estimator F' could be clipped to the
range of F'(-) and written as F'(p) for some p € M.



Yanjun Han

derived by studying different regimes of the prob-
lem, while the latter transition crucially requires
to also take into account the special nature of the
adaptive approach. Technically, we remark that af-
ter exchanging the expectation and supremum, the
lower bound argument will become fundamentally
different, and the traditional approaches fail to give
the tight adaptive lower bound (cf. Section 2.3 for
more details).

2.2 Lower Bound of PML

The general adaptive lower bound of Theorem 1
also gives tight and non-trivial lower bounds for
some known adaptive approaches. For example,
for the LMM adaptive approach, Theorem 1 shows
that the condition ¢ > n~!/3 required in [Han
et al., 2018] for its optimality in property estima-
tion is not superfluous, but in general unavoidable.
The implication for the PML adaptive approach
[Orlitsky et al., 2004] is even more surprising; to
fully describe it we provide a brief review of PML.

Given n i.i.d. observations Xi,--- , X,, drawn from
a discrete distribution p supported on the domain
[k], the profile of the observations is defined as a
vector ¢ = (¢g, - , ¢n) with ¢; being the number
of domain elements j € [k] which appear exactly 4
times in the sample. For example, ¢g is the number
of unseen elements, and ¢; is the number of unique
elements, i.e. appearing exactly once. Let ®,, ; be
the set of all possible profiles with n observations
and support size k. Note that for any ¢ € ®,, 1, and
p € My, we could compute the probability that the
resulting profile is ¢ under true i.i.d. distribution p,
denoted by P(p, ¢). The profile mazimum likelihood
(PML) distribution estimator is then defined as

p"M(¢) = arg max P(p, ).

In other words, upon observing the profile ¢, the
PML estimator is the discrete distribution which
maximizes the probability of observing the given
profile ¢. This estimator is interesting in several as-
pects. From the optimization side, the probability
P(p, ¢) is a highly non-convex function of p, and it
is very challenging to compute the exact or approx-
imate PMLs. From the statistical side, as P(p, ¢)
does not admit an additive form even under i.i.d.
models (unlike the traditional log-likelihood), even
first-order asymptotic properties are challenging to
establish for the PML. After 13 years of its inven-
tion, a useful statistical property of the PML was

established in [Acharya et al., 2017a] in terms of an
interesting competitive analysis: for every property
F' and accuracy parameter ¢, it holds that

sup P (|F(p"™b) — F(p)| > 2)
PEM,

<exp(3v/n) -inf sup P,(|F — F(p)| > ¢), (4)
F peMy

where the infimum is taken over all possible esti-
mators F' depending only on ¢, which is a natu-
ral class as the label information of samples is not
needed in symmetric property estimation. Specif-
ically, (4) gives an indirect statistical analysis of
the PML plug-in approach which depends on the
performance of another estimator. For many prop-
erties (such as all 1-Lipschitz properties), the mini-
max error probability in the RHS of (4) behaves as
exp(—Q(ne?)) when n exceeds the optimal sample
complexity, thus (4) shows that the PML plug-in
approach is adaptively optimal for e > n~=1/4. The
proof of (4) used only the defining property of PML
in a delicate way, and the error amplification factor
exp(3y/n) follows from a simple union bound over
the profiles with cardinality |®,, x| < exp(3y/n).

The paper [Acharya et al., 2017a] asked whether
the above error amplification factor exp(3y/n)
could be improved in general; three years later [Han
and Shiragur, 2021] provided an affirmative answer.
Specifically, using a chaining property of the PML
distributions, [Han and Shiragur, 2021] showed the
following improvement

sup Py(IF(p™™Y) = F(p)| = (2 + o(1))e)

1—c
< exp(cd/nt/3te). <i11f sup Pp(|ﬁ - F(p)| > s))
F peMy
(5)

for any absolute constant ¢ > 0 and some ¢’ > 0
depending only on ¢. Using (5), the accuracy range
for the optimality of PML could be improved to
e > n~ /3 for the aforementioned properties. It
was also conjectured in [Han and Shiragur, 2021]
that the new amplification factor in (5) is tight,
but little intuition was provided.

Surprisingly, without directly analyzing the PML
adaptive approach, Theorem 1 implies the tightness
of the error amplification factor in (5), as summa-
rized in our next main theorem.

Theorem 2. For any given constants C > 0,c¢; €
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(0,1/3) and cz € (0,1), it holds that

lim inf n~(1/3=¢1) .
n— o0

sup sup
FeFrip k,e>0

sup, e aq, Pp(IF(p"ME) — F(p)| > Ce)

log -
. e 62
(inf55upyen, Bo(IF = Fp)] = 0))

After some algebra, it is clear that Theorem 2 rules
out the possibility that the exponent O(n!/3+¢) of
the amplification factor in (5) could be improved
to O(n'/37¢) in general. Therefore, Theorem 2 im-
plies that the general competitive analysis of the
PML in [Han and Shiragur, 2021] is essentially
tight, thereby resolves the conjecture therein.

We provide two additional remarks on Theorem 2.
First, the validity of Theorem 2 is irrelevant to As-
sumption 1, as the PML estimator is an instance
which satisfies Assumption 1. Second, the lower
bound in Theorem 2 does not rule out the possibil-
ity that the PML adaptive approach could be fully
optimal for some property. For example, it was
shown in [Charikar et al., 2019] that the PML plug-
in approach is fully optimal in estimating the sup-
port size. It will be an understanding open question
to provide a tight analysis of the PML estimator for
specific properties; see also Section 4.

2.3 Generalized Fano’s Inequality

The idea to establish the adaptation lower bound in
Theorem 1 is useful for a general class of adaptive
estimation problems, which we present in this sec-
tion. We first recall the general decision-theoretic
setup [Wald, 1950]. Let (Py)oco be a generic sta-
tistical model with parameter set ©, and A be the
space of all possible actions the learner could take.
In other words, the learner obtains an observation
X ~ Py with some unknown 6, and then maps X
to a random action a(X) € A. Let L: ©x A — R,
be any (measurable) loss function, the problem of
manimaz estimation is to characterize the following
minimax risk:

R*(0,A,L) =infsupEg[L(0,a(X))].  (6)
@ geoe
Similarly, the problem of adaptive minimaz estima-
tion with respect to a class of loss functions L is to
characterize the following adaptive minimax risk:

R*(0©, A, L) = inf sup sup Eg[L(0,a(X))]. (7)
@ 9ece Lel

= +o00.

To see how our problem (1) is a special instance of
(7), we could set Py to be the distribution of n i.i.d.
samples from the discrete distribution 6, with © =
My, Moreover, A = My, Lp(6,a) = |F(0)—F(a)|,
and £ = {Lp : F is a 1-Lipschitz property}.

There are several well-known tools to establish the
lower bound of (6), where a standard and promi-
nent tool is the reduction to hypothesis testing
problems; see, e.g. [Yu, 1997, Tsybakov, 2009]. The
main step is to find 6y, - , 0 € © such that both
the separation condition and the indistinguishabil-
ity condition hold: the separation condition typi-
cally requires that inf,c 4[L(6;,a) + L(0;,a)] > A
for some separation parameter A > 0 and all
i # j, and the indistinguishability condition essen-
tially states that any learner could not determine
the true parameter 6; based on her observations
if the truth ¢ € [M] is chosen uniformly at ran-
dom. Then it might be tempting to think that one
only needs to replace L(,a) by sup;c, L(6,a) in
the above arguments to lower bound (7). How-
ever, this approach will place the supremum in
L inside the expectation in (7), and thus pro-
vide a lower bound for a larger quantity like (3).
An alternative way is to use the trivial inequality
R*(©,A,L) > sup;c, R*(©, A, L) and then lower
bound the latter quantity. Although this gives a
valid lower bound, it is not strong enough in our
problem where R*(0, A, L) > sup;, R*(0, A, L)
in view of Theorem 1 and (2).

The main idea to fix the above difficulty is that in

addition to choose M points 01, --- ,0p € © corre-
sponding to different statistical models, we also find
M different loss functions Lq,--- , Ly € L tailored

for the respective models. Specifically, the indistin-
guishability condition is unchanged as it depends
only on 6y, --- ,0;, while the separation condition
could be replaced by inf,e 4[L;(0;,a) + L;(6;,a)] >
A for all i # j. Motivated by this idea, we propose
the following version of the Fano’s inequality.

Lemma 1 (Generalized Fano’s Inequality). In
the above decision-theoretic setup, suppose that
Or1,--- ,0p € © and Ly,---,Ly € L are chosen.
Assume that there exists Ag C A such that

inf [L;(6;,a)+ Lj(ej,a)] >A>0,

Jnf Vi # j € [M],

and an estimator a(X) satisfies that

Pel(a(X) € AO) > Pmin > 0
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for all i € [M]. Then for this estimator we have

sup sup Eg[L(0, a(X))]
0eO Lel

=
=9 Pmin

I(U7 X) + Pmin 10g2
log M ’

where I(U; X) denotes the mutual information be-
tween U ~ Uniform([M]) and X | U ~ Py, .

Lemma 1 gives a general lower bound on the adap-
tive minimax risk under a soft separation condition,
where the inequality L;(6;,a)+L;(6;,a) > A holds
with a positive probability rather than everywhere.
Note that when L; = L and ppnin = 1, Lemma 1
reduces to the traditional Fano’s inequality [Cover
and Thomas, 2006]. Despite the simplicity of the
idea underlying Lemma 1, we show in the supple-
mentary material that it gives the desired lower
bound for adaptive property estimation.

3 Related Work

3.1 Property Estimation

There has been a rich line of research towards the
optimal estimation of properties (or functionals)
of high-dimensional parameters, especially in the
past decade. Starting from some early work [Lep-
ski et al., 1999, Paninski, 2003, 2004, Cai and Low,
2011, Valiant and Valiant, 2011a,b, 2013], the fully
minimax rate-optimal estimators in all accuracy
regimes were obtained for the Shannon entropy
in [Jiao et al., 2015, Wu and Yang, 2016]. They
also provided general recipes for both the estima-
tor construction and tight minimax lower bounds.
Specifically, the crux of the optimal estimator con-
struction lies in the classification of smooth and
non-smooth regimes and the usage of polynomial
approximation to reduce bias in the non-smooth
regime, and the minimax lower bound relies on the
duality between moment matching and best poly-
nomial approximation. Since then, these general
recipes together with their non-trivial extensions
have been applied to various other properties, e.g.
the Rényi entropy [Acharya et al., 2014, 2017b],
support size [Wu and Yang, 2019], support coverage
[Orlitsky et al., 2016, Zou et al., 2016, Polyanskiy
and Wu, 2019], distance to uniformity [Jiao et al.,
2018], general 1-Lipschitz property [Hao and Orl-
itsky, 2019a,b], Ly distance [Jiao et al., 2018], KL
divergence [Bu et al., 2018, Han et al., 2020b], and

nonparametric functionals [Han et al., 2020a,c]. We
refer to the survey [Verdd, 2019] for an overview
of these results. There is also another line of re-
cent work on estimating a population of parame-
ters or distribution under a Wasserstein distance, a
problem closely related to property estimation, via
projection-based methods without explicit polyno-
mial approximation [Kong and Valiant, 2017, Tian
et al., 2017, Han et al., 2018, Rigollet and Weed,
2019, Vinayak et al., 2019b,a, Wu and Yang, 2020,
Jana et al., 2020]. While the above work com-
pletely characterized the complexity of many given
problems in property estimation, the complexity of
adaptive estimation in a family of such problems is
largely missing. For example, the Q(1/k/(nlogn))
lower bound for large k£ in Theorem 1 simply fol-
lows from the complexity of estimating a particular
1-Lipschitz property, but the main Q(1/k/n) lower
bound for small k£ becomes the crucial complexity
of adaptive approaches and thus does not follow
from the above set of results or tools.

3.2 Adaptive Property Estimation.

More recently the problem of adaptive, or unified,
property estimation has drawn several research at-
tention. As reviewed in the introduction, possi-
bly the most well-known adaptive approach is the
PML plug-in approach, with early statistical de-
velopments in [Orlitsky et al., 2004, 2011, Anevski
et al., 2017]. Since [Acharya et al., 2017a] provided
the first competitive analysis of the PML plug-in
approach, there have been several follow-up papers
on the statistical analysis of the PML. Some work
focused on the application of the competitive anal-
ysis and the construction of the estimator achiev-
ing the minimax error probability in (4), e.g. [Hao
and Orlitsky, 2019a]. Some work focused on proper
modifications of the PML to achieve better adapta-
tion, e.g. [Hao and Orlitsky, 2019a, Charikar et al.,
2019]; however, these modified distribution estima-
tors will depend on the target property and are
thus not fully unified. Other work aimed to im-
prove the competitive analysis in [Acharya et al.,
2017a]; for example, [Hao and Orlitsky, 2020] ob-
tained a distribution-dependent amplification fac-
tor without changing the worst-case analysis, and
[Han and Shiragur, 2021] improved this factor to
exp(O(n'/3+¢)) in general. However, none of the
above work studied the limitation of the PML plug-
in approach, even for concrete examples. There-
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fore, the lower bound analysis, especially the possi-
ble separation compared with the optimal estima-
tor, of the PML is missing.

Another adaptive approach plugs in the LMM esti-
mator proposed in [Han et al., 2018]. Different from
the general competitive analysis of PML, the per-
formance of the LMM approach could be directly
analyzed for given properties based on its moment
matching performance in each local interval. Built
on the LMM performance analysis in estimating
entropy, power sum function, and support size, the
authors of [Han et al., 2018] commented that the
LMM pays some penalty for being a unified ap-
proach. However, this comment was only an in-
sight, and there was no lower bound to support it
rigorously. The current work fills in this gap and
shows that the price observed for the LMM is in fact
unavoidable even for general adaptive approaches.

3.3 Adaptation Lower Bound

We also review and compare with some known tools
to establish adaptation lower bounds, mainly taken
from the statistics literature. Adaptation is an im-
portant topic in statistics; for example, in nonpara-
metric estimation one may aim to design a den-
sity estimator adapting to different smoothness pa-
rameters, or in hypothesis testing one may wish to
propose an adaptive test procedure against several
different alternatives. However, for some problems
the adaptation could be achieved without paying
any penalty (e.g. density estimation [Lepskii, 1992,
Donoho et al., 1995], L, norm estimation with non-
even r [Han et al., 2020a]), while for others some
adaptation penalties are inevitable (e.g. estimat-
ing linear [Efromovich and Low, 1994] or quadratic
[Efromovich and Low, 1996] functional of densi-
ties). The main technical tool to establish tight
penalties of adaptation is the constrained risk in-
equality originally developed in [Brown and Low,
1996] and generalized in [Cai and Low, 2011, Duchi
and Ruan, 2018]. Roughly speaking, this type of in-
equality asserts that if an estimator achieves a too
small error at one point, it must incur a too large
error at another point; therefore, adaptation may
incur a penalty as it might be required to adapt to
easier problems and achieve a too small error. For
testing, there is also another approach to establish
adaptation lower bounds, where the key is to use a
mixture of different alternative distributions which
could be closer to the null than any fixed alterna-

tive; see [Spokoiny, 1996] and also [Giné and Nickl,
2016, Chapter 8] for examples.

However, we remark that our adaptive estimation
problem in (7) is fundamentally different. In the
previous work, the target of adaptive estimation
is to adapt to different (usually a nested class of)
parameter sets, e.g. Holder balls with different
smoothness parameters. Mathematically, the tar-
get is to characterize the following optimal penalty
for adaptation:

Pen*({©n,}°_ 1, A, L)

2 nf sup oo, BolL(0,a(X))]
a m>1 infam SupPgca,, EQ[L(Q, am(X))] ;

where {0,,}7°_, is the class of parameter sets to
which one aims to adapt. In contrast, in (7) we con-
sider a fixed parameter set, but wish to adapt to dif-
ferent loss functions for the final estimator. Estab-
lishing adaptation lower bounds for different losses
is novel to our knowledge, and the previous tools
are not applicable in this problem. Consequently,
we aim to provide useful tools (e.g. Lemma 1) for
this new adaptation problem, and expect them to
be a helpful addition to the literature on adaptive
estimation.

4 Conclusion and Open Problems

In this paper we showed that there is a high-
accuracy limitation for general adaptive approaches
of property estimation, which in turn implied tight
lower bounds for the known adaptive approaches
such as the PML and LMM. A number of directions
could be of interest. First, we believe that Assump-
tion 1 is an artifact of our proof and unnecessary for
Theorem 1 to hold, and a better choice of the loss
functions in Lemma 1 could remove this assump-
tion. Second, the adaptation lower bound for PML
does not rule out the possibility that PML could
be fully optimal for certain properties. However, to
show this, one need to go beyond the competitive
analysis of the PML and seek for additional prop-
erties. Third, our current lower bound for PML
only shows the existence of a property requiring
e > n~'/3 for the PML to be optimal, and it is
interesting to construct such a property explicitly.
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A Proof of Lemma 1

First, as the maximum is no smaller than the average, we have
sup sup Ey[L(6,a(X))] > — Z]Eg i(0;,a(X))]. (8)
00 LeLl

For each i € [M], let Q; be the conditional distribution of a( ) with X ~ Py, conditioning on the event
a(X) € Ag. Then by the non-negativity of each L; and definition of puyin,

Eo, [Li(0i, a(X))] = P, (a(X) € Ao) - Eang, [Li(0i; a)] = Pumin - Eanq,[Li(0:, a)],
and therefore (8) gives
M
sup sup Eo[L(0, a(X))] > pmin - L ZEQNQZ [L;(0;,a)]. 9)
0€0 LeL M~

The next few steps are similar to the proof of the traditional Fano’s inequality. For each a € A, define a
test W(a) = argmin;eas) Li(0;, a). Then by the separation condition, we have

Li(05,a) + Ly(a)(Pu(a),a) _ A

L;(6;,a) > 5 > 5 1(¥(a) #£1i), Vie[M],ae Ay,
and therefore (9) gives
Apmln . Apmin ( I(U7 Y) + 10g 2)
sup sup Ey[L(0, a(X))] > . i >—(1-—=), 10
eeg LGIZ ol L0 alX))] 2 ZQ 2 log M (10)

where the second inequality is due to the traditional Fano’s inequality [Cover and Thomas, 2006], with
U ~ Uniform([M]) and Y | U ~ Qu. To proceed, we introduce a few notations: let R; be the distribution
of a(X) with X ~ Pp,, R be the distribution of a(X) with X ~ M~! Zf\il Py,, and @ be the restriction
of the distribution R to the set Ag. Then

I(U;Y) (S) Ev[DkiL(QullQ)]
YE ! D
< Bl B e e Ay kL(Ru||R)
(© 1
<
Pmin
@ I(Usa(X)) © I(U; X)
Pmin ~  Pmin
where (a) is due to the variational representation of the mutual information I(U;Y) =
ming, Ey[DxL(Pyu||Qy)], (b) follows from the data-processing property of the KL divergence
DxL(P||Q) > P(A) - Dxr(PallQ.14), (c) is due to the assumption of Lemma 1, (d) is the definition
of the mutual information, and (e) is the data-processing property of the mutual information. Now com-
bining the above inequality with (10) completes the proof of Lemma 1.

-Ey[Dkr(Ru||R)]
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B Proof of Theorem 1

Notations: For two probability measures P, () on the same probability space, let

1P~ Qlrv =5 [ 1aP - dQ

Dun(PIQ) = [ apPos
dP — dQ)?
el - [HEEE

be the total variation (T'V) distance, the Kullback—Leibler (KL) divergence, and the y?-divergence between
P and @, respectively.

This section is devoted to the proof of Theorem 1. Note that the upper bound is achieved by the LMM
estimator for & > n'/3 and the empirical distribution for & < n'/3 [Han et al., 2018]?, and the lower
bound for k > n'/? follows from the minimax lower bound for estimating a specific 1-Lipschitz property,
i.e. the distance to uniformity F(p) = E?zl |p; — 1/k| [Jiao et al., 2018]. Therefore, it remains to prove
the following adaptation lower bound:

k
inf sup sup E,|F(p) — F(p)| = \f 1< k<nl/3 (11)
PEP FeFrip pEMy, n

Recall that to formulate our adaptive property estimation problem in the general framework of (7), we
identify # € © and a € A with the distributions p,p € My, and © = A = M, . Moreover, the loss
function is the absolute difference in the property value Lp(p,p) = |F(p) — F(p)|, and the family of
losses is £ = {Lr : F is a 1-Lipschitz property}. In this section, we apply Lemma 1 to a suitable choice
of distributions p1,--- ,pypr € My, and 1-Lipschitz properties Fi,---, Fas € Frip, and prove the target
adaptation lower bound in (11).

Without loss of generality we assume that k = 2kq is an even integer. Consider the following distribution
po = (Po.1, - »Pok) € My serving as the “center” of all hypotheses:

_(rr . 1. 2 3
Po= ook Tkk—D) 2%k TRG—1) 2% )

Fix a parameter

5e (o, %(;_1)) (12)

to be chosen later, for each u € U = {£1}*0 we also associate a distribution p, = (pu,1, " ,Puk) € Mg
with

Puyi = D0 + b,  Dukoti = Pokot+i — Uib, Vi € [kol.

Clearly each p, is a valid probability distribution, and this is known as the Paninski’s construction [Panin-
ski, 2008]. By the Gilbert—Varshamov bound, there exists Uy C U such that the minimum pairwise
Hamming distance between distinct elements of Uy is at least ko/5, and |Uy| > exp(ko/8). We will set
{Pu}tucu, as the parameters 61, , 603 in Lemma 1, with M = |Up| > exp(ko/8).

*Note that [Han et al., 2018] shows that both the LMM and empirical distributions belong to P.
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For each u € Uy, we also need to specify the associated loss, or equivalently the choice of the 1-Lipschitz
property F,, € Frip. The detailed choice of F), is given by

k k

Fu(p) = qu(pi) = ;Ielblﬂl] Ipi = Pujls = (p1,-+  pk),u € Up.
i=1 i=1

As the map © — |z — x| is 1-Lipschitz for any xy € R, and the pointwise minimum of 1-Lipschitz functions
is still 1-Lipschitz, each F, is a valid 1-Lipschitz property.

Finally, to apply Lemma 1, it remains to specify the subset 4. For each ¢ € [k], let I; be the open interval

(po;i — 1/(2k(k — 1)), po: + 1/(2k(k — 1))); clearly Iy, --- , I} are disjoint intervals by the definition of pq.
Now we define Aq as

k k
k
Ao Q= (ara) €M Y [ e ¢ 1) < 5

i=1 j=1

In other words, the subset Ag consists of all probability vectors which intersect with at least 9/10 of the
intervals I, - - -, Ig.

With the above construction and definitions, we are about to use Lemma 1 for the adaptation lower bound.
Specifically, we are left with three tasks: to lower bound the separation parameter A, to lower bound the
minimum probability pmi, for all estimators p € P, and to upper bound the mutual information I(U; X™).

Lower bound of A. First, we aim to find a lower bound of |F,(q) — Fy(py)| + |Fur (q) — Fy (pu)] for all
q € Ap and u # v’ € Uy. By construction of F,, it is clear that F,(p,) = 0 for all u € Uy, and the above
quantity can be written as

F. = Fu(pu)| + [Fuw — Fy(puw)| = min |q; — Py.i| + min |g; — pur | | -
) = Fupu) 1P (@) = Futpu)] = 3 (s o~ pusl + il —pos )

One could check the following simple fact: if ¢; € I;(;) for some j(i) € [k], then

min |g; — pu.i| + min |g; — puri| = |Pu. i) — Pur )| € {0,26}.
100 [6i = Pus| + min g = purs| 2 [Puji) = Pwj] € 10,203
By the definition of ¢ € Ay, we know that the set {j(i)};cx) contains at least 9k/10 elements of [k].
Moreover, by the minimum distance property of Uy, for any u # u' € Uy, there are at least k/5 indices
J € [k] such that [p, j —pw ;| = 26. By an inclusion-exclusion principle, there are at least 9k/10+k/5—k =
k/10 elements in the set {j()}iepr) such that [p, i) — Pur j5)] = 20, and therefore

k ké
[Fu(q) = Fu(pu)| + [Fur(q) — Fur(pw)| 2 == 20 = —, Vu#u €Uy, q € A.
10 5

In other words, A > k6/5 in Lemma 1.

Lower bound of pyin. Next, we lower bound the probability P, (p(X) € Ag) for all p € P and
u € Uy. Here we need to use the definition of P in Assumption 1. Assume without loss of generality that
p1 < -+ < Dg, as any permutation of p does not affect the validity of Assumption 1. Also, by the definition
of p,, and the choice of § in (12), the entries of each p,, are monotonically increasing as well. Consequently,

choosing p = p,, in Assumption 1 gives
k
<A —.
</

k
Z ‘i)\z - pu,il

i=1

Ep,
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On the other hand, if the event p ¢ A occurs, there are at least k/10 indices ¢ € [k] such that p; ¢ I, for
all j € [k]. Consequently, for such an index %, one has |p; — pyi| > 1/(2k(k — 1)) — 6 > 1/(4k(k — 1)) by
the choice of ¢ in (12). Therefore,

k

~ k 1 R 1 -
i~ Puil 2 T > . ‘
ZZ::llpz pu,1| =10 4]41(]{1 — 1) Il(p ¢ .A()) Z 10k ]]_(p ¢ AO)

Combining the above two inequalities, we conclude that
k3
supmax P, (p(X) ¢ Ag) <40A(n) -4/ —,
peP u€Uy n
which is far smaller than 1 as k < n'/3 and the assumption A(n) < nf for all § > 0. Consequently, we

may choose ppin > 1/2.

Upper bound of I(U; X™). The upper bound of the mutual information could be established in a similar
way as [Han et al., 2018]. Specifically, the following chain of inequalities holds:

(a)
I(U; X™) < Ey[Dki(pg"lIps™)]

b
® . Ey [Dkw(pulipo)]

(©) Zk: (pu,i — Po,i)Q]

<n-Ey
i1 Po,i

(d) 9o
< 2nk*6=,

where (a) is due to the wvariational representation of the mutual information I(U;X) =
ming Ev[Dkr(Px|v||@x)] and the fact that Pxnjy = pg", (b) follows from the chain rule of the KL
divergence, (c) uses the inequality Dky,(P||Q) < x*(P||Q), and (d) follows from min;ep po; > 1/(2k) and
simple algebra. Consequently, the mutual information could be upper bounded as I(U; X") < 2nk?§2.

Combining the above analysis, Lemma 1 gives that

inf sup sup E,|F(p) — F(p)

> ké (1 2nk252 —|—10g2)
PEP FeFrip peM,, — 10

2 k/20

Consequently, choosing 6 = ¢/v/nk for a small enough constant ¢ > 0 completes the proof of the target
lower bound (11) (note that the condition (12) on § is also fulfilled as k < n'/3).

C Proof of Theorem 2

This section is devoted to the proof of Theorem 2. The proof consists of two steps: first, we show that the
PML distribution belongs to the class P in Assumption 1, and therefore the adaptation lower bound of
Theorem 1 holds for the PML estimator; second, we argue by contradiction that if Theorem 2 is false, then
the PML plug-in approach will also achieve the rate-optimal minimax rate for all 1-Lipschitz properties
for some k < n'/3, a contradiction to Theorem 1.

Step I: show that p"™L € P. First, for the empirical distribution p, [Han et al., 2015] shows that

LI k
S b —pil| <4/~
i=1 n

sup E,
PEMy
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Moreover, a single perturbation of the observations X1, -, X,, only changes the quantity Ele |pi — pil
by at most 2/n. Hence, by McDiarmid’s inequality, we have
2
ne
<2e ——
<20 (- )

k
sup P, [min » [Py pi>\/7+€
e Xl
for every € > 0. As for the PML distribution, the competitive analysis of [Acharya et al., 2017a] shows
that

sup P, | min |pa —pi| > 2¢
s B |y 32

k
< |® . P i Doy — | >
< |®y, sup plfég}cgma(z) pz|_€]7

where |®,, 1| is the cardinality of all possible profiles with length n and support size k. Note that trivially
|®,, k| < (n+ 1)F holds, the above two inequalities lead to

2
k

sup P, lmm Z |pPML —pi| > 251 <min< 1,2exp | klog(n+1) — % <5 - ) . (13)

pPEMy n

Now integrating the RHS of (13) over ¢ € (0, 00) gives that pPML' € P with A(n) = O(\/logn).

Step II: proof by contradiction. Assume by contradiction that Theorem 2 is false, i.e. there exists an
absolute constant ¢y such that for some large enough n, it holds that

1 C2
sup P, (|F(p™") = F(p)| = Ce) < exp(con'/*~1) - (if}f sup Pp(|F' — F(p)| = 5)) (14)
pEMy F peMy

for all k € N,e > 0 and F' € Fi;p. For any € > n=1/2 and k > 1, it was shown in [Hao and Orlitsky,
2019b] that the minimax error probability for any 1-Lipschitz property estimation is at most

2
~ k
inf sup P,(|F — F(p)| >¢) < 2exp | —csn'™° (s —ds ) ,

F peMy nlogn

for an arbitrary constant § > 0 and constants ¢s,ds > 0 depending only on §. Consequently, (14) implies
that
2

: k
sup sup P,(|F(p"™Y) — F(p)| > Ce) < 2exp | con'/37 — (1 — ¢)esn ™ [ e — ds
FeFrip peMy nlOgn

Choosing 6 < ¢;/4, € = 2ds\/k/(nlogn) and k =< n'/3=¢1/2 the above inequality shows that there exists
an absolute constant ¢, > 0 depending only on (¢, ¢1, c2, C) such that

1 k
sup sup By | [F(pPE) = F(p)| = — | —=— | < 2exp (—cpn'/*=).
FeFrip peEM Co || nlogn

Hence, using that E|X| < t 4| X ||oe - P(|X| > t) for any ¢ > 0 implies that for k < n'/37¢/2 and n tending
to infinity (possibly along some subsequence), we arrive at

k
sup sup E,|F(p™MY) — F(p)| < ,
QP sup | F(p ) — F(p)] nlogn

a contradiction to Theorem 1 as p*™U € P. Therefore, the inequality (14) does not hold, and the proof of
Theorem 2 is completed.
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