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Abstract

While the literature on the theory of pool-
based active learning has seen much progress
in the past 15 years, and is now fairly mature,
much less is known about its cousin problem:
online selective sampling. In the stochastic
online learning setting, there is a stream of iid
data, and the learner is required to predict a
label for each instance, and we are interested
in the rate of growth of the number of mistakes
the learner makes. In the selective sampling
variant of this problem, after each prediction,
the learner can optionally request to observe
the true classification of the point. This in-
troduces a trade-off between the number of
these queries and the number of mistakes as a
function of the number T of samples in the se-
quence. This work explores various properties
of the optimal trade-off curve, both abstractly
(for general VC classes), and more-concretely
for several constructed examples that expose
important properties of the trade-off.

1 Introduction

One common setting arising in practical machine learn-
ing is online prediction, where we are faced with a
stream of test points X

t

, and for each we are tasked
with making a prediction ˆY

t

for the value of some
unobserved target variable Y

t

. In such tasks, we are
interested in achieving a small cumulative number of
mistakes, where ˆY

t

6= Y
t

, as the total number T of
rounds grows. To facilitate this, it is crucial that the
learner is able to access some information about the
Y
t

values. At the extreme end of this, the traditional
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setting of supervised online learning supposes that, af-
ter every prediction, the learner is informed of the
correct classification Y

t

(Littlestone, 1988; Haussler,
Littlestone, and Warmuth, 1994). However, there are
a vast number of learning scenarios such that signifi-
cant effort or resources would be required in order to
determine the target label Y

t

. For machine learning to
be most useful in such scenarios, it is worthwhile to
explore strategies that do not rely on access to Y

t

after
every prediction. In particular, in the present work, we
consider selective sampling strategies.

After each prediction, a selective sampling strategy
makes a decision about whether or not it wishes to
observe the target label Y

t

. A decision to observe Y
t

is
referred to as a “label query”, following the active learn-
ing literature. The fact that the learner might refrain
from querying some Y

t

values introduces a trade-off
between the number of queries and number of mistakes.
Clearly a selective sampling algorithm cannot make
fewer mistakes than a learner that observes every Y

t

.
But, for any larger number M

T

of mistakes, we are
interested in understanding how many queries Q

T

are
needed to guarantee at most that many mistakes, or
vice versa.

The formal setting we consider in this work is
the stochastic online setting, in which the sequence
X

1

, . . . , X
T

is sampled iid from an unknown distribu-
tion P on a space X . For simplicity, we also focus on
the realizable case, wherein there is a fixed hypothesis
class H, and it is assumed that there is some (unknown)
target function f? 2 H such that Y

t

= f?

(X
t

) for all
t. This problem has been studied in great detail in
the traditional supervised learning setting (Vapnik and
Chervonenkis, 1974; Blumer, Ehrenfeucht, Haussler,
and Warmuth, 1989; Ehrenfeucht, Haussler, Kearns,
and Valiant, 1989; Haussler, Littlestone, and Warmuth,
1994; Hanneke, 2016a). In particular, a very tight char-
acterization of the minimax optimal expected number
of mistakes was been established by Haussler, Little-
stone, and Warmuth (1994), who showed that if H
is infinite but has finite VC dimension (see definition
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below), then the optimal expected number of mistakes
in T rounds grows as ⇥(log(T )).

1.1 Definitions

Before proceeding, we introduce some notation. There
is an instance space X and a label space Y = {�1, 1},
and we assume that X is equipped with a �-algebra
defining the measurable subsets. A classifier is a mea-
surable function X ! Y. There is also a hypoth-
esis class H of classifiers, and we denote by d the
VC dimension of H: that is, d is the largest n s.t.
9x

1

, . . . , x
n

2 X with all 2

n possible classifications
realized by classifiers in H. Throughout, we assume
d < 1.

In the learning problem, there is a probability measure
P over X and an unknown target concept f? 2 H,
and a data sequence: independent random variables
(X

1

, Y
1

), (X
2

, Y
2

), . . . with X
t

⇠ P and Y
t

= f?

(X
t

);
for notational simplicity, we leave the dependence of
(X

t

, Y
t

) on the choice of P and f? implicit, as the
specific P and f? will always be clear from context.

A selective sampling rule A is an algorithm that pro-
duces two sequences: Q

t

2 {0, 1} and ˆY
t

2 Y . Both Q
t

and ˆY
t

may depend only on X
1

, . . . , X
t

and the subse-
quence {Y

t

0
: Q

t

0
= 1, t0 < t}, and possibly additional

random bits independent of the data sequence. We
interpret Q

t

as the indicator of whether the algorithm
queries for the true label Y

t

of X
t

, and we interpret ˆY
t

as the algorithm’s prediction for the label of X
t

.

We are interested in quantifying the total number
of mistakes and queries for initial segements of
the data sequence. Specifically, for the sequences
ˆY
t

and Q
t

produced by an algorithm A, define
M

T

(A; f?,P) = E
h

P

T

t=1

1[ ˆY
t

6= Y
t

]

i

(the expected

number of mistakes) and Q
T

(A; f?,P) = E
h

P

T

t=1

Q
t

i

(the expected number of queries). Also define worst-
case values of these: for distribution-free analy-
sis, define M

T

(A) = supP sup

f

?2H M
T

(A;P) and
Q

T

(A) = supP sup

f

?2H Q
T

(A;P); for distribution-
dependent analysis, for any distribution P, define
M

T

(A;P) = sup

f

?2H M
T

(A; f?,P) and Q
T

(A;P) =

sup

f

?2H Q
T

(A; f?,P).

For sequences x
1

, x
2

, . . ., we let x
1:t

= {x
1

, . . . , x
t

}, and
with a slight abuse we sometimes write (x

1:t

, y
1:t

) to
denote {(x

1

, y
1

), . . . , (x
t

, y
t

)}. Throughout, we write
a . b or b & a to indicate that there exists a nu-
merical constant c such that a  cb. Also, we use
big-O (and little-o) notation, interpreted strictly as
indicating asymptotic dependence on the number of
rounds (data points) T , considering any dependence
on H (e.g., VC dimension) or other parameters of the

relevant function as constant: for instance, in the state-
ment “M

T

(A; f?,P) = O(log(T )),” the big-O may
hide constants depending on H, A, f?, and P.

1.2 Related Work

We briefly survey the related work on selective sampling.
The reader is referred to (Hanneke, 2014) for a more-
comprehensive summary of much of this literature.

Pool-Based Active Learning. In the pool-based
active learning setting, the learner observes the full data
set X

1

, . . . , X
T

at once, and may sequentially query for
any of the labels Y

t

without regard to their index order.
Rather than number of mistakes, this setting is only
concerned with the number of queries sufficient to learn
a classifier ˆh with low error rate: P(x :

ˆh(x) 6= f?

(x)).
The literature on the theory of pool-based active learn-
ing is vast, and we do not attempt a full summary here
(see Hanneke, 2014). Instead, we briefly mention a few
works particularly relevant to the present article. A
classic approach to pool-based active learning is the
disagreement-based strategy proposed by Cohn, Atlas,
and Ladner (1994), known as CAL after these authors.
The basic strategy is to query points for which there
is some disagreement among classifiers in H consistent
with previously queried labels. We discuss CAL in
detail in Section 2.2 below. The number of queries suf-
ficient for CAL to achieve a given error rate has been
tightly characterized in terms of various related com-
plexity measures such as the disagreement coefficient,
version space compression set size, and star number
(Hanneke, 2007, 2009, 2011, 2012, 2016b; Wiener, Han-
neke, and El-Yaniv, 2015; Hanneke and Yang, 2015).
Some refinements of the CAL algorithm have also been
proposed, with a general approach of querying points
in a well-chosen subregion of the region of disagreement
(Dasgupta, Tauman Kalai, and Monteleoni, 2009; Bal-
can, Broder, and Zhang, 2007; Zhang and Chaudhuri,
2014). A more-sophisticated general technique, known
as splitting, was proposed by Dasgupta (2005). One im-
portant advantage of splitting over the above methods
is that it allows for a trade-off between the number of
queries and the number of unlabeled samples. We dis-
cuss this technique in detail in Section 4, and we adapt
the pool-based active learning strategy to be suitable
for the online selective sampling setting. Another rele-
vant thread of the pool-based active learning literature
is on asymptotic improvements over passive learning in
a distribution-dependent and target-dependent analysis.
Specifically, Hanneke (2009, 2012); Balcan, Hanneke,
and Vaughan (2010) proved that, if d < 1, then for
any passive learning algorithm (i.e., querying all T la-
bels), there exists an active learning algorithm such
that the number of queries sufficient to achieve error
rate ✏ has a strictly slower rate of growth (as ✏ ! 0)
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compared to the number of samples the passive algo-
rithm would require to achieve the same error rate ✏.
In particular, this implies there is an active learning
algorithm that achieves ✏ error rate using a number of
queries that is o(1/✏), something known to be impossi-
ble for passive learning algorithms Antos and Lugosi
(1998); Schuurmans (1997). Section 5 discusses the
natural corresponding question for the online selective
sampling setting: namely, whether it is possible to use
a number of queries growing sublinearly in T , while
still making a number of mistakes competitive with a
fully-supervised online prediction algorithm (namely,
O(log(T )) mistakes).

Stream-based Active Learning. A setting inter-
mediate between pool-based active learning and online
selective sampling is the stream-based active learning
setting (e.g., Dasgupta, Tauman Kalai, and Monteleoni,
2009; Freund, Seung, Shamir, and Tishby, 1997; Sabato
and Hess, 2018). In this case, the learning algorithm
observes the X

t

samples in sequence, and for each
one must decide whether to query or not (as in online
selective sampling). However, as in the pool-based
setting, the objective in the end is to produce a clas-
sifier ˆh of low error rate, and there is no requirement
to make predictions for the X

t

samples. Many of the
above pool-based active learning strategies have also
been expressed and studied in the stream-based set-
ting. Generally, Sabato and Hess (2018) showed that
stream-based active learning is essentially equivalent
to pool-based active learning, in that any pool-based
method can be converted to a stream-based method
with roughly the same query complexity, though with a
potential increase in the necessary number of unlabeled
samples.

Online Selective Sampling. In contrast to pool-
based and stream-based active learning, the existing lit-
erature on online selective sampling is relatively sparse.
In some cases, analyses of the stream-based expressions
of certain active learning algorithms (such as CAL)
reveal bounds on the error rate one can guarantee if
the algorithm were stopped at any sample size T . Such
guarantees trivially lead to results for these methods
in the online selective sampling setting, expressing an
expected number of queries (based on the analysis from
the stream-based setting) and an expected number of
mistakes (based on summing the error rate guarantees
over the T rounds); see e.g., (Yang, 2011) for an explicit
expression of such a result. There have been several
works proposing various online selective sampling al-
gorithms, each accompanied by specific bounds on the
number of mistakes and queries under various special-
ized contexts, conditions, and assumptions (e.g., Cesa-
Bianchi, Gentile, and Zaniboni, 2006; Dekel, Gentile,

and Sridharan, 2012; Yang, 2011; Hanneke, Kanade,
and Yang, 2015). These results are all interesting and
valuable, and taken altogether we may get a partial pic-
ture of the mistakes-vs-queries feasible region. In the
present work we are interested in initiating the direct
study of the optimal trade-off curve itself, with the aim
of leading toward a general theory applicable to any
hypothesis class H. Our main approach at this stage
is to examine general principles, in combination with
specially constructed examples that demonstrate that
certain important behaviors are sometimes possible.
We also provide some more-speculative stabs toward a
general theory, proposing one approach to the design
of abstract selective sampling strategies, and offering
a conjecture about achievable asymptotic behaviors:
both of these presented with the aim of stirring future
work in this direction.

1.3 Summary of Main Results

This paper represents a first step toward a general
theory of online selective sampling, exploring the trade-
off between number of mistakes vs number of queries.
We specifically study three levels of dependence in the
analysis: distribution-free, distribution-dependent, and
distribution- and target-dependent. In these contexts,
we make the following contributions:

• We identify a family of algorithms, termed the
trivial modifications of CAL, which serves as a key
baseline for comparison throughout.

• In distribution-free analysis, we prove that the op-
timal points (M

T

(A),Q
T

(A)) are always (nearly)
achieved by trivial modifications of CAL.

• In contrast, in a distribution-dependent anal-
ysis, we show that there exist spaces H and
distributions P where there are feasible points
(M

T

(A;P),Q
T

(A;P)) achievable by some A, yet
no A0 trivial modification of CAL can achieve
(M

T

(A0
;P),Q

T

(A0
;P)) close to it.

• In a distribution-dependent and target-dependent
analysis, we pose the question of whether there al-
ways exists a selective sampling algorithm A with
M

T

(A; f?,P) = O(log(T )) so that it is asymptot-
ically competitive with fully-supervised learning,
yet Q

T

(A; f?,P) = o(T ) so that asymptotically it
very rarely needs to query for a label.

• We define a general flexible online selective sam-
pling strategy applicable to any hypothesis class H,
a variant of the splitting active learning strategy.

Altogether, these results reveal that online selective
sampling is an interesting and rich subject to be ex-
plored, which is not fully addressed (even implicitly)
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by the existing general theories of active learning, es-
pecially when the analysis depends on the distribution
P or target function f?.

2 Distribution-Free Analysis

As a starting point, we first present a distribution-
free analysis. It turns out that the optimal trade-off
between distribution-free guarantees on mistakes and
queries is always nearly achieved by certain trivial
modifications of the CAL active learning algorithm.
We note that this fact is not particularly surprising,
since CAL is known to be nearly optimal in the pool-
based setting as well (for distribution-free analysis),
and yet guarantees a number of mistakes comparable
to a fully-supervised learning algorithm. However, this
family of modifications of CAL will serve as the base-
line for comparison in later sections where we discuss
distribution-dependent analysis (in which we will find
more-interesting non-trivial trade-offs are possible).

2.1 Trivial Modifications

For any given selective sampling algorithm, one can
trivially generate an entire spectrum of different behav-
iors for the number of mistakes and queries, simply by
arbitrarily preventing the algorithm from querying at
certain times. As a simple illustrative example of this,
consider the fully-supervised learning method of em-
pirical risk minimization (ERM), which simply queries
every label and chooses any ˆh

t

2 H with h(X
t

0
) = Y

t

0

for all t0 < t, and predicts ˆY
t

=

ˆh
t

(X
t

). We can trivially
modify this algorithm to reduce the number of queries
from T to T/2 simply by only querying every second
label, and predicting each ˆY

t

based on choosing any
ˆh
t

2 H with h(X
t

0
) = Y

t

0 for every t0 < t for which Y
t

0

was queried. In this way, though the number of queries
is reduced by a factor of 2, the expected number of
mistakes would correspondingly increase by a factor
of 2. We refer to this as a trivial modification of the
algorithm.

More generally, for any selective sampling rule A, we de-
fine the trivial modifications of A, denoted by TM(A),
as a family of algorithms A0 given by defining any
deterministic set I ✓ N, and running A with the sub-
sequence {(X

i

, Y
i

) : i 2 I}: that is, for each t, values
of Q

t

and ˆY
t

are produced as if the data sequence so
far is {(X

i

, Y
i

) : i < t, i 2 I}; in particular, the values
of Q

t

and ˆY
t

will only depend on {X
i

: i < t, i 2 I},
X

t

, and the values {Y
i

: Q
i

= 1, i < t, i 2 I}. We will
also only query Y

t

if t 2 I (and Q
t

= 1), so that we
generally force Q

t

= 0 if t /2 I.

The point here is that there is a screening process that
is independent of the X

t

example, which determines

whether we will even feed the example X
t

into the
base selective sampling algorithm A (besides for the
purpose of generating a prediction ˆY

t

). These trivial
modifications allow us to vary the trade-off between
the number of queries and number of mistakes via
the specification of I, without actually significantly
changing the general strategy of the algorithm.

2.2 Baseline: Trivial Modifications of CAL

In the theoretical active learning literature, one of
the earliest-proposed general methods for realizable-
case active learning is a disagreement-based technique
proposed by Cohn, Atlas, and Ladner (1994), usually
referred to as CAL after its authors. The algorithm
is particularly interesting for the fact that it loses no
information compared to passive learning: that is, it
only elects not to query Y

t

if the value of Y
t

can be
perfectly inferred based on the examples observed so far.
Formally, the algorithm is defined as follows. Let A

p

:

(X ⇥ Y)⇤ ⇥ X ! Y be a (passive) supervised learning
algorithm: that is, A

p

takes a labeled training set, and
a test point x, and returns a prediction y for the label of
x. For our present purposes, we specifically take A

p

as
any minimax-optimal passive learner (i.e., guaranteeing
P(A

p

(X
1:t

, Y
1:t

, X
t+1

) 6= Y
t+1

) . d

t

), such as the one-
inclusion graph predictor of Haussler, Littlestone, and
Warmuth (1994) or the optimal PAC learner of Hanneke
(2016a).

Algorithm: CAL
0. For t = 1, 2, . . .
1. Predict ˆY

t

= A
p

(X
1:(t�1)

, ˜Y
1:(t�1)

, X
t

) for Y
t

2. Let V
t�1

= {h 2 H : h(X
1:(t�1)

) =

˜Y
1:(t�1)

}
3. If 9h, h0 2 V

t�1

with h(X
t

) 6= h0
(X

t

)

4. Set Q
t

= 1 (query for Y
t

) and define ˜Y
t

= Y
t

5. Else set Q
t

= 0 and
define ˜Y

t

= h(X
t

) agreed by all h 2 V
t�1

There is a significant body of work on the analysis of
CAL and related methods (see Hanneke, 2009, 2011,
2012, 2014, 2016b; Wiener, Hanneke, and El-Yaniv,
2015; Hanneke and Yang, 2015), and CAL is known
to be nearly minimax optimal in its distribution-free
label complexity guarantees (Hanneke and Yang, 2015;
Hanneke, 2016b). Our aim in this section is to argue
that this optimality also extends to distribution-free
analysis of the number of mistakes and queries. How-
ever, in this case, since there can be an entire spectrum
of “optimal” Q

T

values, depending on the constraint
on M

T

(or vice versa), we cannot simply analyze the
single algorithm CAL. Instead, we argue that every
point on the optimal Q

T

vs M
T

trade-off is nearly
matched by one of the trivial modifications of CAL.
Specifically, we establish the following result.
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Theorem 1. For any selective sampling algorithm
A and any T , there exists A0 2 TM(CAL) such
that M

T

(A0
) . dM

T

(A) + d log(T ) and Q
T

(A0
) .

Q
T

(A) log(T ).

Our proof of this result is comprised of two parts,
presented in Theorems 3 and 4 below. The proofs of
these results take their roots in the work of Hanneke and
Yang (2015) characterizing the optimal distribution-
free label complexity of pool-based active learning in
terms of the star number (defined below), together with
upper bounds for CAL in terms of the star number
from Hanneke (2016b). Our contribution on top of
these results is to extend those arguments to the entire
spectrum of Q

T

vs M
T

trade-offs. We rely on the
following definition.
Definition 2. (Hanneke and Yang, 2015) The star
number, denoted by s, is the largest s 2 N such that
there exist x

1

, . . . , x
s

2 X and h
0

, h
1

, . . . , h
s

2 H
such that, 8i, {j : h

i

(x
j

) 6= h
0

(x
j

)} = {i}; we say
{x

1

, . . . , x
s

} is a star set witnessed by h
0

, . . . , h
s

. If
no such largest s exists, define s = 1.

We have the following theorems, which together imply
Theorem 1; the proofs are deferred to Appendix A,
along with the proof of Theorem 1 based on them.
Theorem 3. For any q

T

 T , there exists A 2
TM(CAL) such that Q

T

(A)  q
T

and

M
T

(A)  d log(T ) +
dT

q
T

1[q
T

< s ln(eT )] .

The following minimax lower bound reveals that the
upper bound for the trivial modifications of CAL in
Theorem 3 are essentially the best achievable by any
selective sampling algorithm, up to log factors and
dependence on d.
Theorem 4. For any selective sampling algorithm A,

M
T

(A) & min{d, T}+ T

Q
T

(A)

1[Q
T

(A) < s/16] .

3 Distribution-Dependent Analysis

Above, we found that in distribution-free analysis, no
significant improvements over the trivial modifications
of CAL are possible. As noted by Dasgupta (2005),
allowing distribution-dependence in the analysis can
sometimes be important for revealing advantages of
active learning over passive learning. The present sec-
tion explores whether distribution-dependent analysis
may also be able to reveal advantages over the trivial
modifications of CAL. In contrast to the distribution-
free analysis, we find that in distribution-dependent
analysis significant improvements over the trivial mod-
ifications of CAL are possible.

The main demonstration of the possibility of such im-
provements is via a carefully-constructed example, wit-
nessing the improvements. We also discuss a more
abstract approach to designing distribution-specific
selective sampling algorithms, based on the splitting
approach of Dasgupta (2005).

3.1 An Example: Significant Improvements
over the Trivial Modifications of CAL

The purpose of this subsection is to describe a construc-
tion of a learning problem that verifies the following
proposition, which claims that there exist distribution-
dependent scenarios where some algorithms are capable
of achieving a number of mistakes and queries that no
trivial modification of CAL can come close to simulta-
neously achieving.

Proposition 5. There exists a space X , a hypothesis
class H with VC dimension d = 1, and a distribution P
such that, there is a selective sampling algorithm A that,
for infinitely many T , satisfies Q

T

(A;P) . log

2

(T )
and M

T

(A;P) . (T log(T ))1/2, yet for these same
times T , 8A0 2 TM(CAL), if Q

T

(A0
;P) < T 1/17, then

M
T

(A0
;P) > T 7/8.

The construction of this space H and distribution P is
rather technical, largely due to the fact that it should
be a single H and P for all T . However, it is based on a
recursive application of a familiar construction of Han-
neke (2014) exhibiting a case where CAL is suboptimal
for pool-based active learning. Specifically, the basic
idea is to have two regions, one with high probability
mass and all of the points in disagreement, but very
few nontrivially-informative points, and another region
with very low probability mass, but where it is easy to
identify highly-informative points.

We apply this idea recursively, so that a single distri-
bution can remain fixed as T ! 1 in Proposition 5.
Such recursive constructions of difficult active learning
problems have roots in the work of Balcan, Hanneke,
and Vaughan (2010). Our construction below repre-
sents a coupling of these two types of constructions.
There are a number of substantial technical challenges
addressed in the proofs in order to successfully cou-
ple these constructions, and particularly to adapt the
techniques to the online selective sampling setting.

We now proceed to describe the construction. Let
g : (0, 1) ! N be a nonincreasing function such that
g(") ! 1 and "g(") ! 0 as " ! 0. Let {`

i

}1
i=1

be any
sequence of strictly positive values with

P1
i=1

`
i

= 1.
Let p

1

2 (0, 1/2) satisfy g(p
1

) � 4 and p
1

g(p
1

)  `
1

,
and for each integer i � 2, inductively define p

i

as any
value in (0, 1/2) with p

i

Q

i

j=1

g(p
j

)  min{p
i�1

, `
i

},
g(p

i

) � Q

i�1

j=1

g(p
j

), p
i

g(p
i

)  p
i�1

/2, and g(p
i

)

2 �
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g(p
i�1

)

2/p
i�1

. Also define p
0

= 1�P1
i=1

p
i

Q

i

j=1

g(p
j

),
which is nonnegative since every p

i

Q

i

j=1

g(p
j

)  `
i

. In
particular, Proposition 5 will be established by choosing
g(✏) = b✏�1/2c, `

i

= 2

�i, and p
i

= 2

�2

2i+1

.

Now consider two infinite trees (constructed in paral-
lel) defined as follows. The set of nodes can be de-
scribed as distinct points xz (in the first tree) and yz
(in the second tree), defined for every z = (z

1

, . . . , z
k

),
k 2 N, with 8i  k, z

i

2 {1, . . . , g(p
i

)}, and also de-
fined for z = (). Define x

()

as the “root” node in the
first tree, and y

()

as the “root” node in the second
tree, and we define Children(x

()

) = {x
(1)

, . . . , x
(g(p1))

}
and Children(y

()

) = {y
(1)

, . . . , y
(g(p1))

}. For any
k 2 N and z = (z

1

, . . . , z
k

) s.t. 8i  k, z
i

2
{1, . . . , g(p

i

)}, define Children(xz) = {x
(z1,...,zk,j)

: j 2
{1, . . . , g(p

k+1

)}} and Children(yz) = {y
(z1,...,zk,j)

:

j 2 {1, . . . , g(p
k+1

)}}. This defines the structure of
the trees, and we let X be simply the set of all such
nodes xz and yz. For any node x defined in either
of these trees, we denote by Subtree(x) the set of all
nodes in the subtree rooted at x: that is, we inductively
define Subtree(x) = {x} [S

x

02Children(x)

Subtree(x0
).

To specify the probability measure P , define P({x
()

})=
(1/2)P({y

()

}) = (1/2)p
0

, and for any k 2 N, letting
↵
k

= 1/g(p
k

)

2, for any z = (z
1

, . . . , z
k

) with 8i  k,
z
i

2 {1, . . . , g(p
i

)}, define P({xz}) = (1�↵
k

)p
k

and
P({yz}) = ↵

k

p
k

. This uniquely defines a probability
measure on X .

Next, we specify the concept space H. Let Z =

{{z
i

}1
i=1

: 8i 2 N, z
i

2 {1, . . . , g(p
i

)}}, and for ev-
ery z = {z

i

}1
i=1

2 Z, define a classifier hz such
that any x 2 X has hz(x) = +1 if and only if
x 2 {x

()

, y
()

} [ {x
(z1,...,zk)

: k 2 N} [ {y
(z1,...,zk�1,j)

:

k 2 N, j 2 {z
k

, . . . , g(p
k

)}}: that is, hz is positive on a
single infinite path in the first tree, starting from the
root, and in the second tree it labels the corresponding
path as positive but also labels as positive any sibling
nodes with larger index. It is an easy exercise to verify
that the VC dimension of H is 1.

For G ✓ H, let DIS(G) = {x : 9h, h0 2 G s.t. h(x) 6=
h0
(x)}. Consider the following algorithm.

Algorithm: PickyActive
0. Let V

0

= H and let ˆh
0

be any classifier in V
0

1. For t = 1, 2, . . .
2. Predict ˆY

t

=

ˆh
t�1

(X
t

) as the prediction for Y
t

3. If X
t

2 DIS(V
t�1

) \ Subtree(y
()

)

4. Set Q
t

= 1 (Query for Y
t

)
5. Let V

t

= {h 2 V
t�1

: h(X
t

) = Y
t

}
6. Else set Q

t

= 0 and let V
t

= V
t�1

7. Let ˆh
t

be any classifier in V
t

The following theorem provides guarantees for the

PickyActive algorithm.
Theorem 6. For H, P above, for A the PickyActive
algorithm, for any T 2 N, denoting by k⇤

T

the smallest
k 2 N with T < ln(2T )

↵kpk
, we have Q

T

(A;P) . log

2

(T )

and M
T

(A;P) . g(p
k

⇤
T
)

2

log(T ).

This guarantee becomes most interesting when con-
trasted with the following lower bound for the trivial
modifications of CAL for this same scenario.
Theorem 7. For any T 2 N, letting k⇤

T

be as in The-
orem 6, if T is large enough that g(p

k

⇤
T�1

) � 800,
8A0 2 TM(CAL), if Q

T

(A0
;P)  (1/800)g(p

k

⇤
T�1

),
then M

T

(A0
;P) � e�1p

k

⇤
T�1

T .

Proposition 5 follows from these two theorems for well-
chosen values of g, `

i

, and p
i

(described above). Proofs
of Theorems 6 and 7 and Proposition 5 are provided
in Appendix B.

4 A General P-Dependent Algorithm

In this subsection, we present an attempt at generaliz-
ing the principles underlying the PickyActive algorithm,
by providing a flexible distribution-dependent selective
sampling strategy applicable to any hypothesis class H,
with the ability to control the mistakes-vs-queries trade-
off beyond mere trivial modifications. We specifically
base this strategy on an adaptation of the pool-based
active learning strategy known as splitting (Dasgupta,
2005). This is reasonable, since the splitting technique
has a built-in mechanism for trading off number of
queries with number of unlabeled examples (in the pool-
based setting), the latter of which is (weakly) related
to the number of mistakes in the online selective sam-
pling setting. However, one challenge in presenting
this strategy is to formulate concise characterizations
of the number of mistakes and queries; we provide only
a coarse description, leaving a more-refined characteri-
zation for future work.

The splitting strategy seems a natural starting place for
investigating the trade-off between number of queries
and number of mistakes in selective sampling, since
there is a rough analogue between number of mistakes
in selective sampling and number of unlabeled samples
in pool-based active learning. However, there are a
number of challenges in adapting the algorithm to this
setting. One issue is that the original technique relied
upon a given desired error rate for the classifier it
should produce, whereas in selective sampling we need
the error rate to shrink to zero as t grows (to avoid
having ⌦(T ) mistakes). Another challenge is that we
wish the algorithm to be flexible enough to express the
trade-off of M

T

and Q
T

as T ! 1, so that it may
be necessary to vary the querying frequency or desired
informativeness of queried points, as T grows.
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To address these issues, we suppose the algorithm is
parameterized by a sequence {T

i

}1
i=1

of values in N,
which crucially affect the behavior of the algorithm
and provide control over the trade-off between queries
and mistakes: smaller T

i

values lead to more queries
and fewer mistakes, and larger T

i

values lead to fewer
queries and more mistakes.

For any x 2 X and finite set E ✓ H2, define
Split(E, x)= |E|�max

y2Y
|{(h, h0

)2E :h(x)=h0
(x)=y}|.

Let T
0

= 0 and let T
1

, T
2

, . . . be any elements in N with
each T

i

� 2e. Let t
0

= 0 and for each i 2 N define
t
i

=

P

i

j=1

T
j

. Let j
0

=

¯t
0

= 0 and for each k 2 N
inductively define j

k

= min{i > j
k�1

: t
i

� 2t
jk�1} and

˜t
k

=

P

k

k

0
=1

t
jk0 . For each k 2 N[{0}, let "

k

= 1/t2
jk+1

.
Consider the following P-dependent algorithm.

Algorithm: PickySplitting
0. Let V

0

be a minimal "
0

-cover of H, let ˆh
0

2 V
0

,
�

0

= 1, E
0

= {}, k = i = 1

1. Repeat
2. If i = j

k

3. Set ˆh
0

=

ˆh
i�1

, V
0

as a minimal "
k

-cover of H,
set �

0

= 1, E
0

= {}, k = k + 1, i = 1

4. If E
i�1

= {},
5. Set �

i

= �

i�1

/2 and E
i�1

=

{(h, h0
)2V 2

i�1

:P(x :h(x) 6=h0
(x))��

i

}
6. Else set �

i

= �

i�1

7. For t = ˜t
k�1

+ t
i�1

+ 1, . . . , ˜t
k�1

+ t
i

8. Predict ˆY
t

=

ˆh
i�1

(X
t

) as the prediction for Y
t

9. If t > ˜t
k�1

+ t
i�1

+ T
i

/e,
Q

t

0
=0 8t02{˜t

k�1

+t
i�1

+1, . . . , t�1}, and
Split(E

i�1

, X
t

) � max{Split(E
i�1

, X
t

0
) :

1 t0�t
i�1

�˜t
k�1

T
i

/e}
10. Set Q

t

= 1 (Query for Y
t

),
V
i

={h2V
i�1

:h(X
t

)=Y
t

}, E
i

=E
i�1

\V 2

i

11. Else set Q
t

= 0, V
i

= V
i�1

, E
i

= E
i�1

12. Let ˆh
i

be any element of V
i

; set i = i+ 1

The essential strategy is to take the most-informative
query within consecutive batches of sizes T

i

, where
informativeness is measured by the splitting criterion.
However, since we cannot anticipate what the most
informative point will be in advance of seeing the points
X

t

in the batch, we apply a solution to the well-known
secretary problem, wherein we use an initial fraction of
each batch to set a target for roughly how large we can
expect Split(E

i�1

, X
t

) to be at the t in the batch that
maximizes this, and then we query the next point in
the batch that meets this target (if there is one). As
is well known, this strategy is guaranteed to find the t
of largest Split(E

i�1

, X
t

) in the batch, with at least a
constant probability. Thus, with high probability, this
algorithm will succeed in picking the highest-splitting
t, in at least a constant fraction of the batches.

The algorithm must be slightly more complicated than
this, due to the fact that the Split(E, x) measure of
informativeness requires E to be a finite set. Following
the strategy of Dasgupta (2005), we resolve this issue by
replacing H with an "-cover of H. However, unlike the
setting considered by Dasgupta (2005), in our setting
we are interested in running the algorithm on an infinite
stream of data, so that no fixed value of " suffices. For
this reason, we also update the value of " periodically,
and effectively reset the learning process (in Step 3)
after each such update. For simplicity, we have taken
V
i

as an "
k

-cover of H in Step 3; however, it would also
be reasonable (though would not affect the results we
establish) to instead set V

i

as an "
k

-cover of {h 2 H :

h(X
t

) = Y
t

for all previous t s.t. Q
t

= 1}.
Following Dasgupta (2005), define the splitting index
as follows. For any ⇢,�, ⌧ 2 (0, 1), we say a set V ✓ H
is (⇢,�, ⌧)-splittable if, for every finite E ✓ {(h, h0

) :

h, h0 2 V,P(x : h(x) 6= h0
(x)) � �}, it holds that

P(x : Split(E, x) � ⇢|E|) � ⌧ . For any r > 0, define
B(f?, r) = {h2H :P(x :h(x) 6= f?

(x)) r}. Then for
any ", ⌧ 2 [0, 1], define the splitting index (of (f?,P))

⇢("; ⌧) = sup{⇢ 2 [0, 1] : 8� � ",

B(f?, 4�) is (⇢,�, ⌧)-splittable}.
It is possible to express bounds on the expected num-
bers of queries and mistakes by the PickySplitting
algorithm, in terms of the values of the splitting index
⇢("̃

i

; ⌧̃
i

) at appropriate values of "̃
i

and ⌧̃
i

. However,
as an abstract expression, it is rather complex, and
provides little additional insight into the behavior of
the algorithm beyond the literal description of the al-
gorithm itself above. As such, we do not discuss the
details of this abstract analysis, and we leave for future
work the issue of expressing concise general bounds.
However, we do find that, at least in special cases in
which the T

i

sequence is chosen carefully so that the
relevant ⇢ values are bounded away from zero, concise
bounds are possible. Specifically, we have the following
theorem. A proof sketch is provided in Appendix B.
Theorem 8. Suppose 9⇢̃ > 0 such that, 8i,
⇢(2�i

; 1/T
i

) � ⇢̃. Then for A = PickySplitting,
Q

T

(A; f?,P) . max{i : t
i�1

< T} log(T ), and

M
T

(A; f?,P) .
X

i:ti�1<T

T
i

⇣

2

�ci⇢̃/(d log(T ))

+t�1

i

⌘

log(T )

for a numerical constant c > 0.

Note that this result already contains within it a trade-
off between the sizes of T

i

values and number of queries:
larger T

i

values lead to fewer queries and more mistakes.
Furthermore, it is clear from the algorithm that in some
scenarios these trade-offs would be non-trivial (in that
they are not equivalent to trivial modifications of the
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algorithm), at least to the extent that small values of
T
i

might not admit ⇢ values bounded below, while in
some cases larger T

i

values would. However, we suspect
the specific result in Theorem 8 should be improvable
in a number of ways, such as in the arguments to ⇢(·, ·).
Moreover, it seems the PickySplitting algorithm itself
can exhibit many favorable behaviors not captured by
Theorem 8. Indeed, to truly understand this algorithm,
it is important to also characterize these trade-offs be-
yond merely enabling a constant ⇢ value: for instance,
setting the T

i

sequence in order to control the rate
of decrease of ⇢("

i

, 1/T
i

) toward zero (for appropriate
"
i

), which would lead to a more-involved expression
of the bounds. We leave for future work the ques-
tion of whether relatively simple expressions for such
interesting trade-offs are possible.

5 Target-Dependent Analysis:

Improvements in Asymptotic Rates

In the previous sections, we discussed the trade-off
between mistakes and queries in a distribution-free
analysis (Section 2.2) and a distribution-dependent
analysis (Section 3). In this section, we follow this line
to its extreme with an analysis that is both distribution-
dependent and target-dependent. We are specifically
interested in the asymptotic guarantees achievable by
the sequences M

T

(A; f?,P) and Q
T

(A; f?,P) for all
f? 2 H and all P.

In the pool-based active learning setting, the analogous
subject was explored by Hanneke (2009, 2012); Balcan,
Hanneke, and Vaughan (2010). These works found that
the label complexity of pool-based active learning can
always have a dependence on the desired error rate ✏
that is o(1/✏), where the constants in this bound may
depend on H, f?, and P. This result is significant
since it is known that there are classes H where this is
definitely not achievable by passive learning algorithms.

Here we are interested in the analogous question for
selective sampling. We propose the following question:

Open Problem: Is it true that, for every H of
finite VC dimension, there exists a selective
sampling algorithm A such that, for every P

and every f? 2 H, M
T

(A; f?,P) = O(log(T )) and
Q

T

(A; f?,P) = o(T )?

Here the big-O and little-o hide constant factors that
may depend on H, A, f?, and P, all of which are con-
sidered constant (the algorithm itself may only depend
on H). Since passive learning would typically make a
number of mistakes ⇥(log(T )), the above problem is
essentially asking whether there is an active learning al-
gorithm making roughly the same number of mistakes

as passive learning, but requesting only a sublinear
number of labels. We note that the aforementioned
pool-based techniques achieving o(1/") sample com-
plexity cannot directly resolve this problem, since they
require an unbounded number of unlabeled examples,
which here translates into worse than log(T ) mistakes.

The above question remains open at this time. How-
ever, in this section we present an example illustrat-
ing that, at least in certain interesting and nontrivial
cases, it is indeed possible to obtain O(log(T )) mis-
takes, even with O(log(T )) queries, even when most
general active learning algorithms, such as CAL (or
its trivial modifications), fail to achieve this guarantee.
This example is indeed nontrivial since these strong
improvements (or indeed, any improvements) over pas-
sive sampling would not be observed in an analysis that
is distribution-dependent but not target-dependent.

Perhaps the simplest example we could describe, ex-
hibiting this type of strong distinction between target-
dependent and target-independent analysis, is the class
of interval classifiers. However, to consider a more
expressive class, we instead study unions of k intervals.

Specifically, let X = [0, 1], and (defining 1±
A

(x) =

21[x 2 A]�1 for any A ✓ X ) define H
k

= {1±Sk
i=1[ai,bi]

:

8i  k, a
i

, b
i

2 [0, 1]} for each k 2 N, and H
0

= {1±
; }.

Algorithm: UIntActive

k

0. Let S
0

= {}, k
0

= 0, and let ˆh
0

= 1±
;

1. For t = 1, 2, . . .
2. Predict ˆY

t

=

ˆh
t�1

(X
t

) as the prediction for Y
t

3. If X
t

2DIS({h2H
kt�1 :8(x, y)2S

t�1

, h(x)=y})
or log

2

(2t) 2 N
4. Set Q

t

=1 (query for Y
t

), S
t

=S
t�1

[{(X
t

, Y
t

)}
5. Else Set Q

t

= 0 and let S
t

= S
t�1

6. If @h 2 H
kt�1 s.t. 8(x, y) 2 S

t

, h(x) = y
7. Let k

t

= k
t�1

+ 1

8. Else let k
t

= k
t�1

9. Let ˆh
t

be any h2H
kt s.t. 8(x, y)2S

t

, h(x)=y

We have the following theorem for this algorithm. The
proof is presented in Appendix C.
Theorem 9. Let k 2 N and H = H

k

. For A =

UIntActive

k

, for any P and any f?2H, Q
T

(A; f?,P)=

O(log(T )) and M
T

(A; f?,P)=O(log(T )).

6 Conclusions

This work represents mere first steps toward a general
theory of the trade-off between mistakes and queries
in online selective sampling. In addition to identifying
the trivial modifications of CAL as the fundamental
baseline for comparison, we believe the main contribu-
tions of this work are in providing examples illustrating
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possible behaviors, far more interesting than exhibited
by trivially-modified algorithms. Such examples are
an important part of the development of a general the-
ory. We have also made speculative advances toward
such a theory, providing a general flexible distribution-
dependent selective sampling strategy (in Section 4),
and proposing an open question regarding the ability
to always achieve strong asymptotic improvements over
passive sampling. It is our hope that these discussions
will stir future work in this direction.
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