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A Proof of Theorem 4.2

Proof. In this section, we prove the regret bound of online Lasso fitted-Q-iteration. We need a notion of restricted eigenvalue
that is common in high-dimensional statistics [Bickel et al., 2009, Bühlmann and Van De Geer, 2011].

Definition A.1 (Restricted eigenvalue). Given a positive semi-definite matrix Z ∈ Rd×d and integer s ≥ 1, define the
restricted minimum eigenvalue of Z as Cmin(Z, s) :=

min
S⊂[d],|S|≤s

min
β∈Rd

{
〈β, Zβ〉
‖βS‖22

: ‖βSc‖1 ≤ 3‖βS‖1
}
.

Recall that πe is an exploratory policy that satisfies Definition 3.1, e.g.,

σmin

(
Eπe

[
1

H

H∑
h=1

φ(xh, ah)φ(xh, ah)>

])
> 0 ,

where x1 ∼ ξ0, ah ∼ π(·|xh), xh+1 ∼ P (·|xh, ah) and Eπe denotes expectation over the sample path generated under
policy πe. Recall that N1 is the number of episodes in exploration phase that will be specified later. Denote πN1 as the
greedy policy with respect to the estimated Q-value calculated from the Lasso fitted-Q-iteration in Algorithm 1. According
to the design of Algorithm 1, we keep using πN1

for the remaining N −N1 episodes after exploration phase. From the
definition of the cumulative regret in Eq. (2.3), we decompose RN according to the exploration phase and exploitation
phase:

RN =

N∑
n=1

(
V ∗1 (xn1 )− V πn

1 (xn1 )
)

=

N1∑
n=1

(
V ∗1 (xn1 )− V πe

1 (xn1 )
)

︸ ︷︷ ︸
I1: regret during exploring

+

N∑
n=N1+1

(
V ∗1 (xn1 )− V πN1

1 (xn1 )
)

︸ ︷︷ ︸
I2:regret during exploiting

.

Since we assume r ∈ [0, 1], from the definition of value functions, it is easy to see 0 ≤ V ∗1 (x), V πe
1 (x) ≤ H for any x ∈ X .

Thus, we can upper bound I1 by
I1 ≤ N1H. (A.1)

To bound I2, we will bound ‖V ∗1 − V
πN1
1 ‖∞ first using the following lemma. The detailed proof is deferred to Lemma B.4.

Recall that Cmin(Σπe , s) is the restricted eigenvalue in Definition A.1 and we split the exploratory dataset into H folds with
R episodes per fold.

Lemma A.2. Suppose the number of episodes in the exploration phase satisfies

N1 ≥
C1s

2H log(3d2/δ)

Cmin(Σπe , s)
,

for some sufficiently large constant C1 and λ1 = H
√

log(2d/δ)/(RH). Then we have with probability at least 1− δ,

∥∥V π̂N1
1 − V ∗1

∥∥
∞ ≤

32
√

2sH3

Cmin(Σπe , s)

√
log(2dH/δ)

N1
.

According to Lemma A.2, we have

I2 ≤ N
∥∥V π̂N1

1 − V ∗1
∥∥
∞ ≤ N

32
√

2sH3

Cmin(Σπe , s)

√
log(2dH/δ)

N1
. (A.2)

Putting the regret bound during exploring (Eq. (A.1)) and the regret bound during exploiting (Eq. (A.2)), we have

RN ≤ N1H +N
32
√

2sH3

Cmin(Σπe , s)

√
log(2dH/δ)

N1
.
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We optimize N1 by letting

N1H = N
32
√

2sH3

Cmin(Σπe , s)

√
log(2dH/δ)

N1
⇒ N1 =

(
2048s2H4N2

Cmin(Σπe , s)2
log(2dH/δ)

)1/3

. (A.3)

With this choice of N1, we have with probability at least 1− δ

RN ≤ 2H

(
2048s2H4N2

Cmin(Σπe , s)2
log(2dH/δ)

)1/3

.

Remark A.3. The optimal choice of N1 in Eq. (A.3) requires the knowledge of s and Cmin(Σ, s) that is typically not
available in practice. Thus, we can choose a relatively conservative N1 as

N1 =
(
512H4N2 log(2dH/δ)

)1/3
,

such that

RN ≤ 4
s

Cmin(Σπe , s)
H
(
512s2H4N2 log(2dH/δ)

)1/3
.

B Additional proofs

B.1 Feature constructions

Specifically, let

φ(x0, a
0
k) = (0, . . . , 0︸ ︷︷ ︸

d+2

, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−k

, 1) ∈ R2d+3,

φ(x0, a
0
j ) = (0, . . . , 0︸ ︷︷ ︸

d+2

, 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−j

, 1) ∈ R2d+3.

for j ∈ [d] but j 6= k. In addition, we let ψ(xi) = (θ̄(k)>, 0) ∈ R2d+3 and ψ(xu) = (−θ̄(k)>, 1) ∈ R2d+3. Now we can
verify for a0

k:

P(xu|x0, a
0
k) = φ(x0, a

0
k)>ψ(xu) = 0,

P(xi|x0, a
0
k) = φ(x0, a

0
k)>ψ(xi) = 1,

and for a0
j (j 6= k):

P(xu|x0, a
0
j ) = φ(x0, a

0
j )
>ψ(xu) = 1,

P(xi|x0, a
0
j ) = φ(x0, a

0
j )
>ψ(xi) = 0,

B.2 Proof of Claim 3.6

Proof. We prove the first part. To simplify the notation, we write ϕnj short for ϕj(xu, A
n
2 ). From Eq. (3.6), we have

RN (Mk) ≥ (H − 1)Ek
[(

(τk − 1)(s− 1)ε−
τk∑
n=1

s−1∑
j=1

ϕnjε
)
I(Dk)

]
≥ Hsε

8
Ek
[τk(s− 1)ε

2
I(Dk)

]
.
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Second, we derive a regret lower bound of alternative MDP M̃k. Define ã∗ = argmaxau
j∈A2

ϕ(xu, a
u
j)
>θ̃(k) as the optimal

action when the learner is at state xu in MDPMk. By a similar decomposition in Eq. (3.6),

RN (M̃k) ≥ (H − 1)
(
Ẽk
[ τk−1∑
n=1

〈ϕ(xu, ã
∗), θ̃(k)〉

]
− Ẽk

[ τk−1∑
n=1

〈ϕn, θ̃(k)〉
])

= (H − 1)Ẽk
[
2τk(s− 1)ε−

τk∑
n=1

〈ϕn, θ̃(k)〉
]
.

(B.1)

Next, we will find an upper bound for
∑τk−1
n=1 〈ϕn, θ̃(k)〉. From the definition of θ̃(k) in Eq. (3.5),

τk−1∑
n=1

〈ϕn, θ̃(k)〉 =

τk∑
n=1

〈ϕn, θ + 2εz̃(k)〉

=

τk−1∑
n=1

〈ϕn, θ〉+ 2ε

τk−1∑
n=1

〈ϕn, z̃(k)〉

≤
τk−1∑
n=1

〈ϕn, θ〉+ 2ε

τk−1∑
n=1

∑
j∈supp(z̃(k))

|ϕnj |,

(B.2)

where the last inequality is from the definition of z̃(k) in Eq. (3.5). To bound the first term, we have

τk−1∑
n=1

〈ϕn, θ〉 =

τk−1∑
n=1

s−1∑
j=1

ϕnjε

≤ ε
τk−1∑
n=1

s−1∑
j=1

|ϕnj |.

(B.3)

Since all the ϕn come from S which is a (s− 1)-sparse set, we have

τk−1∑
n=1

d∑
j=1

|ϕnj | = (s− 1)τk,

which implies

τk−1∑
n=1

( s−1∑
j=1

|ϕnj |+
∑

j∈supp(x̃)

|ϕnj |
)
≤
τk−1∑
n=1

d∑
j=1

|ϕnj | = (s− 1)(τk − 1),

τk−1∑
n=1

s−1∑
j=1

|ϕnj | ≤ (s− 1)(τk − 1)−
τk−1∑
n=1

∑
j∈supp(x̃)

|ϕnj |.

(B.4)

Combining with Eq. (B.3),

τk−1∑
n=1

〈ϕn, θ〉 ≤ ε
(

(s− 1)(τk − 1)−
τk−1∑
n=1

∑
j∈supp(x̃)

|ϕnj |
)

Plugging the above bound into Eq. (B.2), it holds that

τk−1∑
n=1

〈ϕn, θ̃〉 ≤ ε(s− 1)(τk − 1) + ε

τk∑
n=1

∑
j∈supp(x̃)

|ϕnj |. (B.5)

When the event Dck (the complement event of Dk) happen, we have

τk−1∑
n=1

s−1∑
j=1

|ϕnj | ≥
τk−1∑
n=1

s−1∑
j=1

ϕnj ≥
(τk − 1)(s− 1)

2
.
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Combining with Eq. (B.4), we have under event Dck,

τk−1∑
n=1

∑
j∈supp(x̃)

|ϕnj | ≤
(τk − 1)(s− 1)

2
. (B.6)

Putting Eqs. (B.1), (B.5), (B.6) together, it holds that

RN (M̃k) ≥ (H − 1)Ẽk
[ (τk − 1)(s− 1)ε

2
I(Dck)

]
. (B.7)

Putting the lower bounds of RN (Mk) and RN (M̃k) together, we have

RN (Mk) +RN (M̃k) ≥ (H − 1)
(
Ek
[ (τk − 1)(s− 1)ε

2
I(Dk)

]
+ Ẽk

[ (τk − 1)(s− 1)ε

2
I(Dck)

])
=
Hsε

8

(
Ek
[
τk

(
I(Dk) + I(Dck)

)]
+ Ẽk[τkI(Dck)]− Ek[τkI(Dck)]

)
=
Hsε

8

(
Ek[τk] + Ẽk[τkI(Dck)]− Ek[τkI(Dck)]

)
.

This ends the proof.

B.3 Proof of Claim 3.7

Proof. The KL-calculation is inspired by Jaksch et al. [2010], but with novel stopping time argument. Denote the state-
sequence up to nth episode, hth step as Snh = {S1

1 , . . . , S
1
H , . . . , S

n
1 , . . . , S

n
h} and writeXnh = {x0, xi, xu, xg, xb}(n−1)H+h.

For a fixed policy π interacting with the environment for n episodes, we denote Pk(·) as the distribution over Sn, where
Sn1 = x0, Anh ∼ π(·|Snh ), Snh+1 ∼ Pk(·|Snh , Anh). Let Ek denote the expectation w.r.t. distribution Pk. By the chain rule, we
can decompose the KL divergence as follows:

KL(P̃k‖Pk) = E

[
τk−1∑
n=1

H∑
h=1

KL
[
P̃k(Snh+1|Snh)

∥∥∥Pk(Snh+1|Snh)
]]

. (B.8)

Given a random variable x, the KL divergence over two conditional probability distributions is defined as

KL
(
p(y|x), q(y|x)

)
=
∑
x

∑
y

p(x, y) log

(
p(y|x)

q(y|x)

)
.

Then the KL divergence between P̃k(Snh+1|Snh) and Pk(Snh+1|Snh) can be calculated as follows:

KL
[
P̃k(Snh+1|Snh)

∥∥∥Pk(Snh+1|Snh)
]

=
∑

Snh∈X
n
h

∑
x∈X

P̃k(Snh+1 = x, Snh) log

(
P̃k(Snh+1 = x|Snh)

Pk(Snh+1 = x|Snh)

)

=
∑

Snh∈X
n
h

∑
x∈X

P̃k(Snh+1 = x|Snh)P̃k(Snh) log

(
P̃k(Snh+1 = x|Snh)

Pk(Snh+1 = x|Snh)

)

=
∑

Snh−1∈X
n
h−1

P̃k(Snh−1)
∑

x′∈X ,a∈A
P̃k(Snh = x′, Anh = a|Snh−1)

·
∑
x∈X

P̃k(Snh+1 = x|Snh−1, S
n
h = x′, Anh = a) log

(
P̃k(Snh+1 = x|Snh−1, S

n
h = x′, Anh = a)

Pk(Snh+1 = x|Snh−1, S
n
h = x′, Anh = a)

)
.

(B.9)

According to the construction ofMk and M̃k, the learner will remain staying at the current state when x′ = xg or xb, that
implies

P̃k(Snh+1 = x|Snh−1, S
n
h = x′, Anh = a) = Pk(Snh+1 = x|Snh−1, S

n
h = x′, Anh = a) .
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In addition, from the definition of stopping time τk, the learner will never transit to the informative state xi. Therefore,

KL
[
P̃k(Snh+1|Snh)

∥∥∥Pk(Snh+1|Snh)
]

=
∑

Snh−1∈X t−1

P̃k(Snh−1)
∑

x′=x0,xi,xu

∑
a∈A

P̃k(Snh = x′, Anh = a|Snh−1)

·
∑
x∈X

P̃k(Snh+1 = x|Snh−1, S
n
h = x′, Anh = a) log

(
P̃k(Snh+1 = x|Snh−1, S

n
h = x′, Anh = a)

Pk(Snh+1 = x|Snh−1, S
n
h = x′, Anh = a)

)

=
∑
a∈A2

P̃k(Snh = xu, A
n
h = a)

∑
x=xg,xb

P̃k(Snh+1 = x|Snh = xu, A
n
h = a) log

(
P̃k(Snh+1 = x|Snh = xu, A

n
h = a)

Pk(Snh+1 = x|Snh = xu, Anh = a)

)

=
∑
a∈A2

P̃k(Snh = xu, A
n
h = a)

(
〈ϕ(xu, a), θ̃(k)〉 log

( 〈ϕ(xu, a), θ̃(k)〉
〈ϕ(xu, a), θ〉

)
+ (1− 〈ϕ(xu, a), θ̃(k)〉) log

(1− 〈ϕ(xu, a), θ̃(k)〉
1− 〈ϕ(xu, a), θ〉

))
,

where A2 is the action set associated to state xu. Moreover, we will use Lemma C.4 to bound the above last term.
Letting q = 〈ϕ(xu, a), θ̃(k)〉 and ε = 〈ϕ(xu, a), θ − θ̃(k)〉, it is easy to verify the conditions in Lemma C.4 as long as
ε ≤ (10(s− 1))−1. Then we have

KL
[
P̃k(Snh+1|Snh)

∥∥∥Pk(Snh+1|Snh)
]
≤
∑
a∈A2

P̃k(Snh = xu, A
n
h = a)

2〈θ̃(k) − θ, ϕ(xu, a)〉2

〈θ̃(k), ϕ(xu, a)〉

=
∑
a∈A2

P̃k(Snh = xu, A
n
h = a)

8ε2〈z̃(k), ϕ(xu, a)〉2

〈θ̃, ϕ(xu, a)〉
.

Back to the KL-decomposition in Eq. (B.8), we have

KL(P̃k‖Pk) ≤ 8ε2Ẽk
[ τk−1∑
n=1

〈ϕ(xu, A
n
2 ), z̃〉2

]
.

To simplify the notations, we let ϕn = ϕ(xu, A
n
2 ).

Next, we use a simple argument “minimum is always smaller than the average”. We decompose the following summation
over action set S ′ defined in Eq. (3.4),

∑
z∈S′

τk−1∑
n=1

〈ϕn, z〉2 =
∑
z∈S′

τk−1∑
n=1

( d∑
j=1

zjϕnj

)2

=
∑
z∈S′

τk−1∑
n=1

( d∑
j=1

(
zjϕnj

)2
+ 2

∑
i<j

zizjϕniϕnj

)
.

We bound the above two terms separately. To bound the first term, we observe that

∑
z∈S′

τk−1∑
n=1

d∑
j=1

(
zjϕnj

)2
=
∑
z∈S′

τk−1∑
n=1

d∑
j=1

|zjϕnj |, (B.10)

since both zj , ϕnj can only take−1, 0,+1. In addition,
∑τk−1
t=1

∑d
j=1 |ϕnj | = (s−1)τk. Since z ∈ S ′ that is (s−1)-sparse,

we have
∑d
j=1 |zjϕnj | ≤ s− 1. Therefore, we have

∑
z∈S′

τk−1∑
n=1

d∑
j=1

|zjϕnj | ≤ (s− 1)(τk − 1)

(
d− s− 1

s− 2

)
. (B.11)

Putting Eqs. (B.10) and (B.11) together,

∑
z∈S′

τk−1∑
n=1

d∑
j=1

(
zjϕnj

)2 ≤ (s− 1)(τk − 1)

(
d− s− 1

s− 2

)
. (B.12)
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To bound the second term, we observe∑
z∈S′

τk−1∑
n=1

2
∑
i<j

zizjϕniϕnj = 2

τk−1∑
n=1

∑
i<j

∑
z∈S′

zizjϕniϕnj .

From the definition of S ′, zizj can only take values of {1 ∗ 1, 1 ∗ −1,−1 ∗ 1,−1 ∗ −1, 0}. This symmetry implies∑
z∈S′

zizjϕniϕnj = 0,

which implies ∑
z∈S′

τk−1∑
n=1

2
∑
i<j

zizjϕniϕnj = 0. (B.13)

Combining Eqs. (B.12) and (B.13) together, we have

∑
z∈S′

τk−1∑
n=1

〈ϕn, z〉2 =
∑
z∈S′

τk−1∑
n=1

d∑
j=1

|zjϕnj | ≤ (s− 1)(τk − 1)

(
d− s− 1

s− 2

)
.

In the end, we use the fact that the minimum of τk − 1 points is always smaller than its average,

Ẽk
[ τk−1∑
n=1

〈ϕn, z̃〉2
]

= min
z∈S′

Ẽk
[ τk−1∑
n=1

〈ϕn, z〉2
]

≤ 1

|S ′|
∑
z∈S′

Ẽk
[ τk−1∑
n=1

〈ϕn, z〉2
]

= Ẽk
[ 1

|S ′|
∑
z∈S′

τk−1∑
n=1

〈ϕn, z〉2
]

≤
(s− 1)Ẽk[τk − 1]

(
d−s−1
s−2

)(
d−s
s−1

)
≤ (s− 1)2Ẽk[τk − 1]

d
.

Therefore, we reach

KL(P̃k‖Pk) ≤ 8ε2(s− 1)2Ẽk[τk − 1]

d
≤ 8ε2(s− 1)2N

d
≤ 8ε2(s− 1)2 ,

since we consider the data-poor regime that N ≤ d. It is obvious to see KL(P0‖Pk) = 0 from Eq. (B.9). This ends the
proof.

B.4 Proof of Lemma A.2

Proof. Recall that in the learning phase, we split the data collected in the exploration phase into H folds and each fold
consists of R episodes or RH sample transitions. For the update of each step h, we use a fresh fold of samples.

Step 1. We verify that the execution of Lasso fitted-Q-iteration is equivalent to the approximate value iteration. Recall that a
generic Lasso estimator with respect to a function V at step h is defined in Eq. (4.1) as

ŵh(V ) = argmin
w∈Rd

( 1

RH

RH∑
i=1

(
Π[0,H]V (x

(h)′

i )− φ(x
(h)
i , a

(h)
i )>w

)2

+ λ1‖w‖1
)
.

Denote Vw(x) = maxa∈A(r(x, a) + φ(x, a)>w). For simplicity, we write ŵh := ŵh(Vŵh+1
) for short. Define an

approximate Bellman optimality operator T̂ (h) : X → X as:

[T̂ (h)V ](x) := max
a

[
r(x, a) + φ(x, a)>ŵh(V )

]
. (B.14)
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Note this T̂ (h) is a randomized operator that only depends data from hth fold. The Lasso fitted-Q-iteration in learning phase
of Algorithm 1 is equivalent to the following approximate value iteration:

[T̂ (h)Π[0,H]Vŵh+1
](x) = max

a

[
r(x, a) + φ(x, a)>ŵh

]
= max

a
Qŵh

(x, a) = Vŵh
(x). (B.15)

Recall that the true Bellman optimality operator in state space T : X → X is defined as

[T V ](x) := max
a

[
r(x, a) +

∑
x′

P (x′|x, a)V (x′)
]
. (B.16)

Step 2. We verify that the true Bellman operator on Π[0,H]Vŵh+1
can also be written as a linear form. From Definition

2.1, there exists some functions ψ(·) = (ψk(·))k∈K such that for every x, a, x′, the transition function can be represented as

P (x′|x, a) =
∑
k∈K

φk(x, a)ψk(x′), (B.17)

where K ⊆ [d] and |K| ≤ s. For a vector w̄h ∈ Rd, we define its kth coordinate as

w̄h,k =
∑
x′

Π[0,H]Vŵh+1
(x′)ψk(x′), if k ∈ K, (B.18)

and w̄h,k = 0 if k /∈ K. By the definition of true Bellman optimality operator in Eq. (B.16) and Eq. (B.17),

[T Π[0,H]Vŵh+1
](x) = max

a

[
r(x, a) +

∑
x′

P (x′|x, a)Π[0,H]Vŵh+1
(x′)′

]
= max

a

[
r(x, a) +

∑
x′

φ(x, a)>ψ(x′)Π[0,H]Vŵh+1
(x′)′

]
= max

a

[
r(x, a) +

∑
x′

∑
k∈K

φk(x, a)ψk(x′)Π[0,H]Vŵh+1
(x′)′

]
= max

a

[
r(x, a) +

∑
k∈K

φk(x, a)
∑
x′

ψk(x′)Π[0,H]Vŵh+1
(x′)′

]
= max

a

[
r(x, a) + φ(x, a)>w̄h

]
. (B.19)

We interpret w̄h as the ground truth of the Lasso estimator in Eq. (4.1) at step h in terms of the following sparse linear
regression:

Π[0,H]Vŵh+1
(x′i) = φ(xi, ai)

>w̄h + εi, i = 1 . . . , RH, (B.20)

where εi = Π[0,H]Vŵh+1
(x′i)− φ(xi, ai)

>w̄h. Define the filtration Fi generated by {(x1, a1), . . . , (xi, ai)} and also the
data in folds h+ 1 to H . By the definition of Vŵh+1

and w̄h, we have

E[εi|Fi] = E
[
Π[0,H]Vŵh+1

(x′i)|Fi
]
− φ(xi, ai)

>w̄h

=
∑
x′

[Π[0,H]Vŵh+1
](x′)P (x′|xi, ai)− φ(xi, ai)

>w̄h

=
∑
k∈K

φk(xi, ai)
∑
x′

[Π[0,H]Vŵh+1
](x′)ψk(x′)− φ(xi, ai)

>w̄h = 0.

Therefore, {εi}RHi=1 is a sequence of martingale difference noises and |εi| ≤ H due to the truncation operator Π[0,H]. The
next lemma bounds the difference between ŵh and w̄h within `1-norm. The proof is deferred to Appendix B.5.

Lemma B.1. Consider the sparse linear regression described in Eq. (B.20). Suppose the number of episodes used in step h
satisfies

R ≥ C1 log(3d2/δ)s2

Cmin(Σπe , s)
,

for some absolute constant C1 > 0. With the choice of λ1 = H
√

log(2d/δ)/(RH), the following holds with probability at
least 1− δ, ∥∥ŵh − w̄h∥∥1

≤ 16
√

2s

Cmin(Σπe , s)
H

√
log(2d/δ)

RH
. (B.21)
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Step 3. We start to bound ‖Vŵh
− V ∗h ‖∞ for each step h. By the approximate value iteration form Eq. (B.15) and the

definition of optimal value function,∥∥Vŵh
− V ∗h

∥∥
∞ =

∥∥T̂ (h)Π[0,H]Vŵh+1
− T V ∗h+1

∥∥
∞

=
∥∥T̂ (h)Π[0,H]Vŵh+1

− T Π[0,H]Vŵh+1

∥∥
∞ +

∥∥T Π[0,H]Vŵh+1
− T V ∗h+1

∥∥
∞.

(B.22)

The first term mainly captures the error between approximate Bellman optimality operator and true Bellman optimality
operator. From linear forms Eqs. (B.15) and (B.19), it holds for any x ∈ X ,

[T̂ (h)Π[0,H]Vŵh+1
](x)− [T Π[0,H]Vŵh+1

](x)

= max
a

[
r(x, a) + φ(x, a)>ŵh

]
−max

a

[
r(x, a) + φ(x, a)>w̄h

]
≤ max

a

∣∣φ(x, a)>(ŵh − w̄h)
∣∣

≤ max
a,x
‖φ(x, a)‖∞‖ŵh − w̄h‖1. (B.23)

Applying Lemma B.1, the following error bound holds with probability at least 1− δ,

∥∥ŵh − w̄h∥∥1
≤ 16

√
2s

Cmin(Σπe , s)
H

√
log(2d/δ)

RH
, (B.24)

where R satisfies R ≥ C1 log(3d2/δ)s2/Cmin(Σπe , s).

Note that the samples we use between phases are mutually independent. Thus Eq. (B.24) uniformly holds for all h ∈ [H]

with probability at least 1−Hδ. Plugging it into Eq. (B.23), we have for any stage h ∈ [H],

∥∥T̂ (h)Π[0,H]Vŵh+1
− T Π[0,H]Vŵh+1

∥∥
∞ ≤

16
√

2s

Cmin(Σπe , s)
H

√
log(2dH/δ)

RH
, (B.25)

holds with probability at least 1− δ.

To bound the second term in Eq. (B.22), we observe that∥∥T Π[0,H]Vŵh+1
− T V ∗h+1

∥∥
∞ = max

x

∣∣T Π[0,H]Vŵh+1
(x)− T V ∗h+1(x)

∣∣
≤ max

x
max
a

∣∣∑
x′

P (x′|x, a)Π[0,H]Vŵh+1
(x′)−

∑
x′

P (x′|x, a)Π[0,H]V
∗
h+1(x′)

∣∣
≤
∥∥Π[0,H]Vŵh+1

− V ∗h+1

∥∥
∞ .

(B.26)

Plugging Eqs. (B.25) and (B.26) into Eq. (B.22), it holds that

∥∥Vŵh
− V ∗h

∥∥
∞ ≤

16
√

2s

Cmin(Σπe , s)
H

√
log(2dH/δ)

RH
+
∥∥Π[0,H]Vŵh+1

− V ∗h+1

∥∥
∞ , (B.27)

with probability at least 1− δ. Recursively using Eq. (B.27), the following holds with probability 1− δ,∥∥Π[0,H]Vŵ1
− V ∗1

∥∥
∞ ≤

∥∥Vŵ1
− V ∗1

∥∥
∞

=
16
√

2s

Cmin(Σπe , s)
H

√
log(2dH/δ)

RH
+
∥∥Π[0,H]Vŵ2

− V ∗2
∥∥
∞

≤
∥∥Π[0,H]VŵH+1

− V ∗H+1

∥∥
∞ +H2 16

√
2s

Cmin(Σπe , s)

√
log(2dH/δ)

RH

= H2 16
√

2s

Cmin(Σπe , s)

√
log(2dH/δ)

RH
,

where the first inequality is due to that Π[0,H] can only make error smaller and the last inequality is due to VŵH+1
= V ∗H+1 =

0. From Proposition 2.14 in Bertsekas [1995],∥∥V π̂N1
1 − V ∗1

∥∥
∞ ≤ H

∥∥Qŵ1
−Q∗1

∥∥
∞ ≤ 2H

∥∥Π[0,H]Vŵ1
− V ∗1

∥∥
∞ . (B.28)
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Putting the above together, we have with probability at least 1− δ,

∥∥V π̂N1
1 − V ∗1

∥∥
∞ ≤

32
√

2sH3

Cmin(Σπe , s)

√
log(2dH/δ)

N1
,

when the number of episodes in the exploration phase has to satisfy

N1 ≥
C1s

2H log(3d2/δ)

Cmin(Σπe , s)
,

for some sufficiently large constant C1. This ends the proof.

B.5 Proof of Lemma B.1

Proof. Denote the empirical covariance matrix induced by the exploratory policy πe and feature map φ as

Σ̂πe :=
1

R

R∑
r=1

1

H

H∑
h=1

φ(xrh, a
r
h)φ(xrh, a

r
h)>.

Recall that Σπe is the population covariance matrix induced by the exploratory policy πe defined in Eq. (3.1) and feature
map φ with σmin(Σπe) > 0. From the definition of restricted eigenvalue in (A.1) it is easy to verify Cmin(Σπe , s) ≥
σmin(Σπe) > 0. For any i, j ∈ [d], denote

vrij =
1

H

H∑
h=1

φi(x
r
h, a

r
h)φj(x

r
h, a

r
h)− Σπe

ij .

It is easy to verify E[vrij ] = 0 and |vrij | ≤ 1 since we assume ‖φ(x, a)‖∞ ≤ 1. Note that samples between different
episodes are independent. This implies v1

ij , . . . , v
R
ij are independent. By standard Hoeffding’s inequality (Proposition 5.10

in Vershynin [2010]), we have

P
(∣∣∣ R∑

r=1

vrij

∣∣∣ ≥ δ) ≤ 3 exp
(
− C0δ

2

R

)
,

for some absolute constant C0 > 0. Applying an union bound over i, j ∈ [d], we have

P
(

max
i,j

∣∣∣ R∑
r=1

vrij

∣∣∣ ≥ δ) ≤ 3d2 exp
(
− C0δ

2

R

)
⇒ P

(∥∥Σ̂πe − Σπe
∥∥
∞ ≥ δ

)
≤ 3d2 exp

(
− C0δ

2

R

)
.

It implies the following holds with probability 1− δ,

∥∥Σ̂πe − Σπe
∥∥
∞ ≤

√
log(3d2/δ)

R
.

When the number of episodes R ≥ 322 log(3d2/δ)s2/Cmin(Σπe , s)2, the following holds with probability at least 1− δ,

∥∥Σ̂πe − Σπe
∥∥
∞ ≤

Cmin(Σπe , s)

32s
.

Next lemma shows that if the restricted eigenvalue condition holds for one positive semi-definite matrix Σ0, then it holds
with high probability for another positive semi-definite matrix Σ1 as long as Σ0 and Σ1 are close enough in terms of
entry-wise max norm.

Lemma B.2 (Corollary 6.8 in [Bühlmann and Van De Geer, 2011]). Let Σ0 and Σ1 be two positive semi-definite block diago-
nal matrices. Suppose that the restricted eigenvalue of Σ0 satisfiesCmin(Σ0, s) > 0 and ‖Σ1−Σ0‖∞ ≤ Cmin(Σ0, s)/(32s).
Then the restricted eigenvalue of Σ1 satisfies Cmin(Σ1, s) > Cmin(Σ0, s)/2.
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Applying Lemma B.2 with Σ̂πe and Σπe , we have the restricted eigenvalue of Σ̂πe satisfies Cmin(Σ̂πe , s) > Cmin(Σπe , s)/2

with high probability.

Note that {εiφj(xi, ai)}RHi=1 is also a martingale difference sequence and |εiφj(xi, ai)| ≤ H . By Azuma-Hoeffding
inequality,

P
(

max
j∈[d]

∣∣∣ 1

RH

RH∑
i=1

εiφj(xi, ai)
∣∣∣ ≤ H√ log(2d/δ)

RH

)
≥ 1− δ.

Denote event E as

E =
{

max
j∈[d]

∣∣∣ 1

RH

RH∑
i=1

εiφj(xi, ai)
∣∣∣ ≤ λ1

}
.

Then P(E) ≥ 1− δ. Under event E , applying (B.31) in Bickel et al. [2009], we have∥∥ŵh − w̄h∥∥1
≤ 16

√
2sλ1

Cmin(Σπe , s)
,

holds with probability at least 1− 2δ. This ends the proof.

C Supporting lemmas

Lemma C.1 (Pinsker’s inequality). Denote x = {x1, . . . , xT } ∈ X T as the observed states from step 1 to T . Then for any
two distributions P1 and P2 over X> and any bounded function f : X> → [0, B], we have

E1f(x)− E2f(x) ≤
√

log 2/2B
√

KL(P2‖P1),

where E1 and E2 are expectations with respect to P1 and P2.

Lemma C.2 (Bretagnolle-Huber inequality). Let P and P̃ be two probability measures on the same measurable space
(Ω,F). Then for any event D ∈ F ,

P(D) + P̃(Dc) ≥ 1

2
exp

(
−KL(P, P̃)

)
, (C.1)

where Dc is the complement event of D (Dc = Ω \ D) and KL(P, P̃) is the KL divergence between P and P̃, which is
defined as +∞, if P is not absolutely continuous with respect to P̃, and is

∫
Ω
dP(ω) log dP

dP̃
(ω) otherwise.

The proof can be found in the book of Tsybakov [2008]. When KL(P, P̃) is small, we may expect the probability measure P
is close to the probability measure P̃. Note that P(D) + P(Dc) = 1. If P̃ is close to P, we may expect P(D) + P̃(Dc) to be
large.

Lemma C.3 (Divergence decomposition). Let P and P̃ be two probability measures on the sequence (A1, Y1, . . . , An, Yn)

for a fixed bandit policy π interacting with a linear contextual bandit with standard Gaussian noise and parameters θ and θ̃
respectively. Then the KL divergence of P and P̃ can be computed exactly and is given by

KL(P, P̃) =
1

2

∑
x∈A

E[Tx(n)] 〈x, θ − θ̃〉2 , (C.2)

where E is the expectation operator induced by P.

This lemma appeared as Lemma 15.1 in the book of Lattimore and Szepesvári [2020], where the reader can also find the
proof.

Lemma C.4 (Lemma 20 in Jaksch et al. [2010]). Suppose 0 ≤ q ≤ 1/2 and ε ≤ 1− 2q, then

q log
( q

q + ε

)
+ (1− q) log

( 1− q
1− q − ε

)
≤ 2ε2

q
.

Lemma C.5 (Pinsker’s inequality). For measures P and Q on the same probability space (Ω,F), we have

δ(P,Q) = sup
A∈F

(P (A)−Q(A)) ≤
√

1

2
KL(P,Q).
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