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A Proof of Theorem 4.2

Proof. In this section, we prove the regret bound of online Lasso fitted-Q-iteration. We need a notion of restricted eigenvalue
that is common in high-dimensional statistics [Bickel et al., 2009, Biithlmann and Van De Geer, 2011].

Definition A.1 (Restricted eigenvalue). Given a positive semi-definite matrix Z € R4*“ and integer s > 1, define the
restricted minimum eigenvalue of Z as Cyyin(Z, s) :=

. . { (B,28)
min  min 5
scldl,|SI<s gerd | ||Bs|3

Bl < 3||ﬁs||1} |

Recall that 7, is an exploratory policy that satisfies Definition 3.1, e.g.,

T
Omin (E ¢

where x1 ~ &y, an ~ 7(-|xn), xpe1 ~ P(-|xn,arn) and E™ denotes expectation over the sample path generated under
policy 7. Recall that IV; is the number of episodes in exploration phase that will be specified later. Denote 7y, as the
greedy policy with respect to the estimated Q-value calculated from the Lasso fitted-Q-iteration in Algorithm 1. According
to the design of Algorithm 1, we keep using 7y, for the remaining N — N; episodes after exploration phase. From the
definition of the cumulative regret in Eq. (2.3), we decompose R according to the exploration phase and exploitation
phase:

1 H

|

¢($h7 ah)¢($h7 ah)T‘| ) >0,

h=1

N N1 N
Ry =Y (V@) -vi@)) = > (V@h -vice)+ > (Wen-w™e) .
n=1 n=1 n=N;+1
I : regret during exploring I :regret during exploiting

Since we assume r € [0, 1], from the definition of value functions, it is easy to see 0 < Vi*(z), V"¢ (z) < H forany x € X.
Thus, we can upper bound I; by
I, < N, H. (A.1)

To bound I, we will bound ||V;* — V;"" || first using the following lemma. The detailed proof is deferred to Lemma B.4.
Recall that Cyyi, (X7, ) is the restricted eigenvalue in Definition A.1 and we split the exploratory dataset into H folds with
R episodes per fold.

Lemma A.2. Suppose the number of episodes in the exploration phase satisfies

2 2
Ny > Cys”H log(3d /(5)7
Cmin(zﬂ—e»s>

for some sufficiently large constant Cy and A; = H+/log(2d/d)/(RH). Then we have with probability at least 1 — 0,

32V2sH?  [log(2dH /&)
oo Omin(zﬂ—eas) Nl

v v

According to Lemma A.2, we have

3
<N 32v2sH log(2dH/9)

(A.2)
T Cmin(zﬂca 5) Nl

12 S NH‘/]_%Nl _ Vl*

Putting the regret bound during exploring (Eq. (A.1)) and the regret bound during exploiting (Eq. (A.2)), we have

32v2sH?  [log(2dH/9)
Omin(zﬂea 3) Nl

Ry < NtH+ N
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We optimize N; by letting

N1H =N

32v/2sH?®  [log(2dH /) <204852H4N2
= N; =

1/3
Crnin (27, 5) N C.(Ewlog@dH/f;)) : (A3)

With this choice of Ny, we have with probability at least 1 — §

204852 HAN? 1/3
> _ log(2dH/6)) .

<2H| ————
RN B (Cmin(zﬂ-evs)

O

Remark A.3. The optimal choice of Ny in Eq. (A.3) requires the knowledge of s and Ciin (X, s) that is typically not
available in practice. Thus, we can choose a relatively conservative N; as

Ny = (512H*N?log(2dH/5))"* |

such that

Ry <4——2—H (512s* H* N2 log(2dH/5))

1/3
Cmin(zﬂ—ea S) .

B Additional proofs

B.1 Feature constructions
Specifically, let

d(z0,a?) = (0,...,0,0,...,0,1,0,...,0,1) € R*¥+3,
—— —— N——

d+2 k—1 d—k
¢(z0,a9) = (0,...,0,0,...,0,1,0,...,0,1) € R***3
N N—— N——
d+2 j—1 d—j

for j € [d] but j # k. In addition, we let ¢(z;) = (AT 0) € R2¥*3 and ¢)(x,) = (=0T 1) € R?¥*+3, Now we can
verify for a:

]P’(xu|x0,a2) = ¢($0 k)Tw(xu) = 07
= 1)

0
,a
P(xi|zo, ay) = (w0, ap) " ()
and for a? (j #k):

T

<
8
=
~—
Il
“H

P(xu|$0a a’g) - d)(‘TOa a(g))
P(xi|z0,a9) = ¢(xo,a3) " (i) =0,

B.2 Proof of Claim 3.6

Proof. We prove the first part. To simplify the notation, we write ¢,,; short for ¢; (x4, A%). From Eq. (3.6), we have

Ryv(My) = (H = DB [ (7 = 1)(s = 1)e i Zl @nje ) 1(D)]
> HsseEk |:Tk(82— 1)€H(Dk)}.
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Second, we derive a regret lower bound of alternative MDP M. Define * = = argmaxg e 4, oy, a‘j‘-)Tg(k) as the optimal
action when the learner is at state x, in MDP M. By a similar decomposition in Eq. (% 6),

T —1 Te—1
(M) 2 (= 1) (B[ 3 (o, @),00)] ~Ee] 3 (00, 0%)])
" . " (B.1)
= (H = DB 275 = D)z = Y (0, 0)].
n=1
Next, we will find an upper bound for 7" " (¢,,, 6*)). From the definition of §(*) in Eq. (3.5),
T —1 _ Th
> (on,09) =3 (pn, 0+ 253%)
n=1 n=1
Tr—1 Tr—1
=D (pn,0) +2¢ Z {#n, 2 (B.2)
n=1
Te—1 T —1

< Z SDm +2€ Z Z |90nj‘>
n=1

n=1 jesupp(z(F))

where the last inequality is from the definition of Z(*) in Eq. (3.5). To bound the first term, we have

Tr—1 Tr—1s—1
PCAUEDIP LT
n=1 n=1 j=1 B3
Tr—1s—1 ( : )
<e Z Z |(Pnj|'
n=1 j=1
Since all the ¢,, come from S which is a (s — 1)-sparse set, we have
Tr—1 d
SN lenil = (s = D,
n=1 j=1
which implies
.— Tk—l d
(Zw Y dewl) £ 30 D lewsl = (s = (e~ 1),
n=1 supp(@ n=1 j=1
Jjesupp(T) J (B4)
—1s— T —1
Z Zl%al SE-Dm-D-3, >, lewl
n=1 j=1 n=1 jesupp(Z)
Combining with Eq. (B.3),
kal Tk — 1
S tent) <e(G-Dm-1-3 3 lewl)
n=1 n=1 jesupp()
Plugging the above bound into Eq. (B.2), it holds that
T —1 . Tk
S o 0) <els—D(m—D+ed. D [onl. (B.5)
n=1 n=1 jesupp(Z)

When the event Dj, (the complement event of Dj,) happen, we have

Tr—1s—1 Tr—1s—1

T, —1)(s — 1)
Z Z|<P"j| > Z Z@nj =z kf

n=1 j=1 n=1 j=1
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Combining with Eq. (B.4), we have under event D,

TkZ > \s0m|< )( =D =1), (B.6)

n=1 jcsupp(7)
Putting Egs. (B.1), (B.5), (B.6) together, it holds that

Ry(M) > (1 - DB [ DE = Doy B.7)

Putting the lower bounds of Ry (M) and Ry (M) together, we have

Ry (Mu) + R (M) 2 (8~ 1) ([ 20Dy ] 4 B [l = Doy )

= 22 ([ (100) + 1D) )] + Baln(DD)] - Balmil(D)])
= %2 (Bufr) + Balnd(D))] ~ Eelmd(DD)]).
This ends the proof. O

B.3 Proof of Claim 3.7

Proof. The KL-calculation is inspired by Jaksch et al. [2010], but with novel stopping time argument. Denote the state-
sequence up to nth episode, hthstepas Sp = {S1,...,5Y,...,S7,...,SP} and write X7 = {xq, i, Ty, Tg, 2} " VHFE,
For a fixed policy 7 interacting with the environment for n episodes, we denote Py (-) as the distribution over S, where
ST = wo, A} ~ m(-|S}), Sii1 ~ Pr(-|Sh, AR). Let Ey denote the expectation w.r.t. distribution P;,. By the chain rule, we
can decompose the KL divergence as follows:

Tle

ElY ZKL[IP’k S LIS

n=1 h=1

KL(P[[Py,) =

‘]P’k Sh+1|Sn)H (B.8)

Given a random variable z, the KL divergence over two conditional probability distributions is defined as
pylz)
KL(plte) o) = 32 3 pte0)os (2075

Then the KL divergence between Py, (S 11IS) and Py, (S}, 1 [S]) can be calculated as follows:

KL [Py(Si.11S7)

Pe(Si187)]

- . Pr(Sy,, = z|S})
= D > Pi(Siy==5h)log ( (5};rl - x|§§)

Spexy xeX h+1
Pi(Sp,, = |Sp)
Be(Sp = alSHPL(S]) log | —rit
S”;c" w%;( " " " P (S = zIS) (B.9)
= > BSpy) Y PuSp=aAY =dlS) )
Sh_1€X ' €EX,aEA

~ Py(Sp,, = 2|Sp_,, Sp =2/, A} =
0 BulShr = alSiy, 81 = ', A7 = 0) 0g<k25}7§+1 Ao R 2 a)>-

n n — !/ n —
ceX 1 = TISE_y, Sy = ', Ap = a)

According to the construction of My, and M k» the learner will remain staying at the current state when x’ = Zg OF Ty, that
implies
Pi(Shi1 = #[Sh_1, Sy =2, A = a) = Pi(Spyq = 2[Sp_1, Sy =2, Af = a) .
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In addition, from the definition of stopping time 7, the learner will never transit to the informative state x;. Therefore,
KL [Pa(S71[57) [ Pe(Sian IS5)]

= > PuSEy) Y. D Pu(Sp =4 Ay =alS)_,)

Sp_jext-1 ' =x0,%i,xy aEA

~ . Pr(Sy, , =x|SF_,, St =2, A} = a)
' Z ]P)k?(Sthl = LL‘lShfl,S =2 Ah - a’) 10g (Pk(sz+1 _ z|SZ 1 S: = ! A: — a)
+ —17? )

reX
~ ~ I?P;k(S,?H = z|S] = x4, A} = a)
= Pr(Sy = 2u, A} = a Pr(Sp.1 = z|SE = xu, A}, = a) log — - -
; L " )_;, s(5hsa = 15 h=a) ( Pr(Sy,, = 2|5} = 2w, A} = a)
. ; i) 1 (ol a), 7
_ P n _ . A" = ; o(k) 1 <30(xu’a)a 1— ; a(k) 1 u) &/,
2 PS4 @) (ot @), 0 log (5= 5500 ) (1= (s a), 00 tog (777t ) )

where A, is the action set associated to state x,. Moreover, we will use Lemma C.4 to bound the above last term.
Letting ¢ = (¢(24,a),0®) and € = (@(x4,a),0 — O)), it is easy to verify the conditions in Lemma C.4 as long as
e < (10(s — 1))~!. Then we have

- B 2000) — 0, (24, a))2
L[ButRaloD [Pu(SEon)] < 3 Bu(sy = o, A = o) 20 BT
ac€Az ’ v

~ 8e2(Z), (x4, a))?
= 3 Bl = df =) AT

ac Az <9’ Qp(xm a)>
Back to the KL-decomposition in Eq. (B.8), we have
- - kal
KL(Pel|Ps) < 8<% | Y (olou, 43),5)%)
n=1

To simplify the notations, we let ©,, = (xy, AY).

Next, we use a simple argument “minimum is always smaller than the average”. We decompose the following summation
over action set S’ defined in Eq. (3.4),

kal T — 1
Z Z<SDTL’ Z Z (sz@ng)
ze8’ n=1 2€8" n=1 j=1
Te—1 d
= Z Z (Z (ZjQOnj)Q + 22 ZiZjQOni(Pnj)-
z€8’ n=1 j=1 i<j

We bound the above two terms separately. To bound the first term, we observe that

T,—1 d T,—1 d

SN o) =0 D0 D el (B.10)

z€S8’ n=1 j=1 z€S' n=1 j=1

since both z;, ¢y,; can only take —1, 0, +1. In addition, >_,* ! ijl |on;| = (s—1)7y. Since z € S’ that is (s —1)-sparse,

we have Z?Zl |2jn;| < s — 1. Therefore, we have

T,—1 d
> ZlenjlS(S—l)(m—l)(d;i;l) (B.11)

z€S' n=1 j=1
Putting Egs. (B.10) and (B.11) together,

Te—1 d

> ZZ 2j¢nj) < sl>(m1><d8f21>. (B.12)

z€S’' n=1 j=1
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To bound the second term, we observe

Tr—1 Tr—1
g g 25 22 PniPnj = 2 g E g 22 PniPnj-
z€8’ n=1 i<j n=1 i<j z€S’

From the definition of S’, z;z; can only take values of {1 % 1,1 % —1,—1 %1, —1% —1,0}. This symmetry implies
> zizjpnipn; =0,
z€S’

which implies
TE—1

DY 2> zizienien; = 0. (B.13)

2€8 n=1 i<j
Combining Eqgs. (B.12) and (B.13) together, we have
T —1 Te—1 d d—s—1
5 S = £ 5 Sk <6 vm-n (1)
2€8" n=1 2€8" n=1 j=1

In the end, we use the fact that the minimum of 7;, — 1 points is always smaller than its average,

x| Y (on2)?] = Hégl]ﬁk[ > fons2)?]
< S ]
z€S8’ n=1
N 1 T —1
“Bilisr 2 o]
(o= 1>Ek[zk,_f 1“5
(5-1)
< (s — 1)%Eg [y — 1] .
= d

Therefore, we reach

8e2(s — 1)2E [y, — 1] _8(s —1)°N
d - d

since we consider the data-poor regime that N < d. It is obvious to see KL(Py||Px) = 0 from Eq. (B.9). This ends the

proof. O

KL(Py||Px) <

< 8% (s —1)?,

B.4 Proof of Lemma A.2

Proof. Recall that in the learning phase, we split the data collected in the exploration phase into H folds and each fold
consists of R episodes or RH sample transitions. For the update of each step h, we use a fresh fold of samples.

Step 1. We verify that the execution of Lasso fitted-Q-iteration is equivalent to the approximate value iteration. Recall that a
generic Lasso estimator with respect to a function V" at step h is defined in Eq. (4.1) as

RH

~ (L hy’ () (T, \?
V)= (577 > (Mo V@) = 6™, af) Tw)” + Afjwlh ).
(V) = argmin RH; 0.V (@) = ¢, ai") Tw) -+ M fwlls
Denote V,,(z) = maxsea(r(z,a) + ¢(z,a) w). For simplicity, we write @), := @;(Vg,,,) for short. Define an

approximate Bellman optimality operator T x = X as:

TOV](@) = max |r(w,a) + 6(z,0) @ (V)]. (B.14)
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Note this 7 is a randomized operator that only depends data from hth fold. The Lasso fitted-Q-iteration in learning phase
of Algorithm 1 is equivalent to the following approximate value iteration:

[?(h)H[O,H} Vanil(x) = max [7‘(3:, a) + ¢(x, a)T@h} = max Qa, (z,a) = Vg, (z). (B.15)
Recall that the true Bellman optimality operator in state space 7 : X — X is defined as

[TV](z) := max [T(x, a) + Zp(l‘l|l‘,a)V(l‘/):|. (B.16)

Step 2. We verify that the true Bellman operator on IIjy 1Vg,,, can also be written as a linear form. From Definition

2.1, there exists some functions ¢ () = (1% (*))kex such that for every z, a, 2/, the transition function can be represented as

P(2'|x,a) = di(w, a)ibi(a'), (B.17)

keKx

where K C [d] and |K| < s. For a vector wy, € R?, we define its kth coordinate as

nk = Yo, Ve, (@ )0r(a), if k € K, (B.18)
and wy, ;, = 0if k ¢ K. By the definition of true Bellman optimality operator in Eq. (B.16) and Eq. (B.17),
[T, m Ve, . (x) = max |7 (z,a +ZP ", a)Il wh+1(1’/)/i|

= max|r (z,a) + Z(b x,a) H[O ) Van (@ )/]

= max|r (z,a +Z Z or(z,a)(x ) wh“(:z:’)’}
) z/ ke

= max|r (x,a)+ Z oz, a) Zwk Mo, 1] U,Hl(;v’)'}
) keK

= max |r(z,a) + ¢(x,a) wh} . (B.19)

We interpret wy, as the ground truth of the Lasso estimator in Eq. (4.1) at step A in terms of the following sparse linear
regression:

o 1 Vi ir (7)) = d(24,0;) "0 + €50 =1...,RH, (B.20)

where ¢; = Iljo, g1V, , (]) — &(x, a;) "wy,. Define the filtration F; generated by {(x1,a1), ..., (i, a;)} and also the

data in folds i + 1 to H. By the definition of Vj, ., and wy,, we have

h+1
Elei| Fil = E[Mpo,m Vi, ,, (@) Fi] — d(wi, ai) "on
= Z 0.6 V) (2") P2 |24, a;) — o(zi,a;) "Wy,
x/

= Z on (24, a;) Z[H[O,H]V@;,+1](xl)¢k($/) — ¢(xi,a;) "0y = 0.

ke !

Therefore, {¢;}*1 is a sequence of martingale difference noises and |¢;| < H due to the truncation operator o, - The

next lemma bounds the difference between Wy, and wp, within ¢1-norm. The proof is deferred to Appendix B.5.

Lemma B.1. Consider the sparse linear regression described in Eq. (B.20). Suppose the number of episodes used in step h

satisfies ) )
R> Cy log(3d?/6)s

o C’min(zﬂ—c ) S) ’
for some absolute constant C; > 0. With the choice of Ay = H/log(2d/0)/(RH ), the following holds with probability at
least 1 — 4,

16v/2s 77 /1os(2d/0)

B.21
Com (57 8) RH (B:21)

Hﬂ}h - wh”l <
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Step 3. We start to bound ||V, — V;*||~ for each step h. By the approximate value iteration form Eq. (B.15) and the
definition of optimal value function,

Vo = Vil = 17 MoV = Vil (B.22)
= HT(}L)H[O H Vo, — 7“H[OVH]V@M Hoo + Hm[ovH]Vb"“ N TVh*JrlHOO

The first term mainly captures the error between approximate Bellman optimality operator and true Bellman optimality
operator. From linear forms Eqs. (B.15) and (B.19), it holds for any x € X,

[T om0 Vas, ) (%) — [THio,m Ve ) (@)

= max {r(m, a)+ ¢(x a)TﬂJ\h} — max {r(x, a) + é(z,a) "oy,
< mgx ’d)(l?, a) (wh wh) |
< max||¢(z,a)|lool|wp — wpll1- (B.23)

Applying Lemma B.1, the following error bound holds with probability at least 1 — 9,

16v/2s 77, /los(2d/0)

B.24
Com (57 8) RH (B.24)

Hﬂ}h - wh”l <

where R satisfies R > C; log(3d?/8)s? /Cinin (X7, 5).

Note that the samples we use between phases are mutually independent. Thus Eq. (B.24) uniformly holds for all h € [H]
with probability at least 1 — Ho. Plugging it into Eq. (B.23), we have for any stage h € [H],

~ 16v/2s log(2dH/§)
h
HT( )H[O’H]V@h#—l = Tlio,11 Va1 Hoo = Cmin(E”€7S)H RH ’ (B.25)
holds with probability at least 1 — 6.
To bound the second term in Eq. (B.22), we observe that
||TH[07H]V@h+1 - TV};-lH = max |TH[O,H] V@h+1 (I) - T‘/h*—&-l(x)|
< maxmaX|ZP |, )0, 1) Vg, . (% ZP ', a)To m Vs ()] (B.26)
= ||H[0aH]V@h+1 - Vh+1Hoo
Plugging Eqs. (B.25) and (B.26) into Eq. (B.22), it holds that
. 16+/2s log(2dH /6 N
Ve, - . B Ve~ Vil ®27)

= Chin(X7e, 5) RH
with probability at least 1 — §. Recursively using Eq. (B.27), the following holds with probability 1 — 4,
Mo, m Vo, = Vil < [V, = Vil

16v/2s log(2dH /9) .
= Cmin(zweaS)H RH + Hl_I[Q,].J{]V@2 -V ||Oo

16v/2s log(2dH/6)

< ||H[0,H}V1EH+1 - Vﬁ—&-l”oo + H? Cmin(zﬂ'e’ S) RH

161/2s log(2dH /6)

= H?
Chnin (X7, 8) RH ’

where the first inequality is due to that ITjp 7 can only make error smaller and the last inequality is due to Vi, ,, = V7, | =
0. From Proposition 2.14 in Bertsekas [1995],

(v = vl < BlQa, — @ill., < 28| Mo Vi, — Vil (B.28)
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Putting the above together, we have with probability at least 1 — 4,

32v/2sH?  [log(2dH /)

ANy v
HVl Vl | S Cmin(zﬂ-eys) Nl ’

when the number of episodes in the exploration phase has to satisfy

2 2
N, > Cys°H log(3d /5)’
Cmin(zﬂ—gas)

for some sufficiently large constant C. This ends the proof. 0

B.5 Proof of Lemma B.1

Proof. Denote the empirical covariance matrix induced by the exploratory policy 7, and feature map ¢ as
1 a1 &
ETe = ﬁ Z E Z ¢(x;z7 a;z)(b(x;w a;)T'

Recall that ¥ is the population covariance matrix induced by the exploratory policy 7. defined in Eq. (3.1) and feature
map ¢ with o, (X7™) > 0. From the definition of restricted eigenvalue in (A.1) it is easy to verify Cpin(X7¢,s) >
Omin(X7¢) > 0. For any i, j € [d], denote

H
r 1 ror roor Te
v = E E Q5i(1'h,ah)¢j(xhaah) - Eij )
h=1

It is easy to verify E[v;;] = 0 and |v;| < 1 since we assume [[¢(z,a)||c < 1. Note that samples between different
episodes are independent. This implies vilj, cee vﬁ are independent. By standard Hoeffding’s inequality (Proposition 5.10
in Vershynin [2010]), we have

2
)

25) §3exp(—

{0

for some absolute constant Cy > 0. Applying an union bound over 4, j € [d], we have

g 3t 29) <16 (- )
=1
= IP’(Hi“e — 3T o> 6) < 3d? exp(— C%SQ).

It implies the following holds with probability 1 — 4,

log(3d?/9)

HEW‘3 — X oo — R :

When the number of episodes R > 322 1log(3d?/§)s?/Cruin (X7, s)2, the following holds with probability at least 1 — 4§,

< C'min(ETre ) 5) )

[ — 57| <
o0 32s

Next lemma shows that if the restricted eigenvalue condition holds for one positive semi-definite matrix X, then it holds
with high probability for another positive semi-definite matrix >; as long as ¥y and X; are close enough in terms of
entry-wise max norm.

Lemma B.2 (Corollary 6.8 in [Biihlmann and Van De Geer, 2011]). Let ¥y and 3; be two positive semi-definite block diago-
nal matrices. Suppose that the restricted eigenvalue of X satisfies Cpin (3o, $) > 0 and |21 —Xojcc < Cmin(Z0, 5)/(325).
Then the restricted eigenvalue of 37 satisfies Cinin (21, 8) > Cinin (X0, 5)/2.
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Applying Lemma B.2 with S 7 and Y7, we have the restricted eigenvalue of S7e satisfies Cmin(fﬁre ,8) > Cryin (2™, 8)/2
with high probability.

Note that {&;¢;(x;,a;)}*H is also a martingale difference sequence and |e;¢;(z;,a;)| < H. By Azuma-Hoeffding
inequality,
o [P

1 RH
P( ’7 i95(Ti, a;
max RH;E (i, ;)| < T

Denote event £ as

RH
1
- _— bl a:) < .
*~plam ool <)
Then P(£) > 1 — 4. Under event &, applying (B.31) in Bickel et al. [2009], we have

__16V2s\
L= Cmin(zﬂ—ev S) ’
holds with probability at least 1 — 24. This ends the proof.

[ @h — @

C Supporting lemmas

Lemma C.1 (Pinsker’s inequality). Denote x = {x1,..., 27} € X7 as the observed states from step 1 to 7. Then for any
two distributions P; and P, over X' T and any bounded function f : X T — [0, B], we have

E1f(x) — Eaf(x) < \/log 2/2B\/KL(P2||Py),

where E; and E, are expectations with respect to P; and P;.

Lemma C.2 (Bretagnolle-Huber inequality). Let P and P be two probability measures on the same measurable space
(Q, F). Then for any event D € F,

P(D) + P(D°) > %exp (—KL(IP’, ﬁ)) , (C.1)

where D¢ is the complement event of D (D¢ = Q \ D) and KL(P, P) is the KL divergence between PP and P, which is

defined as +oo, if P is not absolutely continuous with respect to P, and is [, dP(w) log % (w) otherwise.

The proof can be found in the book of Tsybakov [2008]. When KL (P, @) is small, we may expect the probability measure P
is close to the probability measure P. Note that P(D) 4+ P(D¢) = 1. If P is close to P, we may expect P(D) + P(D) to be
large.

Lemma C.3 (Divergence decomposition). Let P and P be two probability measures on the sequence (A1, Y:,..., A, Y,)
for a fixed bandit policy 7 interacting with a linear contextual bandit with standard Gaussian noise and parameters ¢ and ]
respectively. Then the KL divergence of P and PP can be computed exactly and is given by

KL(P,P) = % > E[Tu(n)] (2,0 - 6)°, (C2)
z€A

where E is the expectation operator induced by P.

This lemma appeared as Lemma 15.1 in the book of Lattimore and Szepesvari [2020], where the reader can also find the
proof.

Lemma C.4 (Lemma 20 in Jaksch et al. [2010]). Suppose 0 < ¢ < 1/2and e < 1 — 2g, then
q 1—g¢q 2¢?
lo (—)+1— o (7)<7

qlog (= ( q)gl_q_e,q

Lemma C.5 (Pinsker’s inequality). For measures P and () on the same probability space ({2, F), we have

(P.Q) = sup(P(4) = @A) < |/ 5KL(P.Q)
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