A Proof of Theorem 4.2

Proof. In this section, we prove the regret bound of online Lasso fitted-Q-iteration. We need a notion of restricted eigenvalue that is common in high-dimensional statistics [Bickel et al., 2009, Bühlmann and Van De Geer, 2011].
Definition A. 1 (Restricted eigenvalue). Given a positive semi-definite matrix $Z \in \mathbb{R}^{d \times d}$ and integer $s \geq 1$, define the restricted minimum eigenvalue of Z as $C_{\min }(Z, s):=$

$$
\min _{\mathcal{S} \subset[d],|\mathcal{S}| \leq s} \min _{\boldsymbol{\beta} \in \mathbb{R}^{d}}\left\{\frac{\langle\boldsymbol{\beta}, Z \boldsymbol{\beta}\rangle}{\left\|\boldsymbol{\beta}_{\mathcal{S}}\right\|_{2}^{2}}:\left\|\boldsymbol{\beta}_{\mathcal{S}^{c}}\right\|_{1} \leq 3\left\|\boldsymbol{\beta}_{\mathcal{S}}\right\|_{1}\right\}
$$

Recall that π_{e} is an exploratory policy that satisfies Definition 3.1, e.g.,

$$
\sigma_{\min }\left(\mathbb{E}^{\pi_{e}}\left[\frac{1}{H} \sum_{h=1}^{H} \phi\left(x_{h}, a_{h}\right) \phi\left(x_{h}, a_{h}\right)^{\top}\right]\right)>0
$$

where $x_{1} \sim \xi_{0}, a_{h} \sim \pi\left(\cdot \mid x_{h}\right), x_{h+1} \sim P\left(\cdot \mid x_{h}, a_{h}\right)$ and $\mathbb{E}^{\pi_{e}}$ denotes expectation over the sample path generated under policy π_{e}. Recall that N_{1} is the number of episodes in exploration phase that will be specified later. Denote $\pi_{N_{1}}$ as the greedy policy with respect to the estimated Q-value calculated from the Lasso fitted-Q-iteration in Algorithm 1. According to the design of Algorithm 1, we keep using $\pi_{N_{1}}$ for the remaining $N-N_{1}$ episodes after exploration phase. From the definition of the cumulative regret in Eq. (2.3), we decompose R_{N} according to the exploration phase and exploitation phase:

$$
R_{N}=\sum_{n=1}^{N}\left(V_{1}^{*}\left(x_{1}^{n}\right)-V_{1}^{\pi_{n}}\left(x_{1}^{n}\right)\right)=\underbrace{\sum_{n=1}^{N_{1}}\left(V_{1}^{*}\left(x_{1}^{n}\right)-V_{1}^{\pi_{e}}\left(x_{1}^{n}\right)\right)}_{I_{1}: \text { regret during exploring }}+\underbrace{\sum_{n=N_{1}+1}^{N}\left(V_{1}^{*}\left(x_{1}^{n}\right)-V_{1}^{\pi_{N_{1}}}\left(x_{1}^{n}\right)\right)}_{I_{2} \text { :regret during exploiting }} .
$$

Since we assume $r \in[0,1]$, from the definition of value functions, it is easy to see $0 \leq V_{1}^{*}(x), V_{1}^{\pi_{e}}(x) \leq H$ for any $x \in \mathcal{X}$. Thus, we can upper bound I_{1} by

$$
\begin{equation*}
I_{1} \leq N_{1} H \tag{A.1}
\end{equation*}
$$

To bound I_{2}, we will bound $\left\|V_{1}^{*}-V_{1}^{\pi_{N_{1}}}\right\|_{\infty}$ first using the following lemma. The detailed proof is deferred to Lemma B.4. Recall that $C_{\min }\left(\Sigma^{\pi_{e}}, s\right)$ is the restricted eigenvalue in Definition A. 1 and we split the exploratory dataset into H folds with R episodes per fold.

Lemma A.2. Suppose the number of episodes in the exploration phase satisfies

$$
N_{1} \geq \frac{C_{1} s^{2} H \log \left(3 d^{2} / \delta\right)}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)}
$$

for some sufficiently large constant C_{1} and $\lambda_{1}=H \sqrt{\log (2 d / \delta) /(R H)}$. Then we have with probability at least $1-\delta$,

$$
\left\|V_{1}^{\widehat{\pi}_{N_{1}}}-V_{1}^{*}\right\|_{\infty} \leq \frac{32 \sqrt{2} s H^{3}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{N_{1}}}
$$

According to Lemma A.2, we have

$$
\begin{equation*}
I_{2} \leq N\left\|V_{1}^{\widehat{\pi}_{N_{1}}}-V_{1}^{*}\right\|_{\infty} \leq N \frac{32 \sqrt{2} s H^{3}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{N_{1}}} \tag{A.2}
\end{equation*}
$$

Putting the regret bound during exploring (Eq. (A.1)) and the regret bound during exploiting (Eq. (A.2)), we have

$$
R_{N} \leq N_{1} H+N \frac{32 \sqrt{2} s H^{3}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{N_{1}}}
$$

We optimize N_{1} by letting

$$
\begin{equation*}
N_{1} H=N \frac{32 \sqrt{2} s H^{3}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{N_{1}}} \Rightarrow N_{1}=\left(\frac{2048 s^{2} H^{4} N^{2}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)^{2}} \log (2 d H / \delta)\right)^{1 / 3} \tag{A.3}
\end{equation*}
$$

With this choice of N_{1}, we have with probability at least $1-\delta$

$$
R_{N} \leq 2 H\left(\frac{2048 s^{2} H^{4} N^{2}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)^{2}} \log (2 d H / \delta)\right)^{1 / 3}
$$

Remark A.3. The optimal choice of N_{1} in Eq. (A.3) requires the knowledge of s and $C_{\min }(\Sigma, s)$ that is typically not available in practice. Thus, we can choose a relatively conservative N_{1} as

$$
N_{1}=\left(512 H^{4} N^{2} \log (2 d H / \delta)\right)^{1 / 3}
$$

such that

$$
R_{N} \leq 4 \frac{s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} H\left(512 s^{2} H^{4} N^{2} \log (2 d H / \delta)\right)^{1 / 3}
$$

B Additional proofs

B. 1 Feature constructions

Specifically, let

$$
\begin{aligned}
& \phi\left(x_{0}, a_{k}^{0}\right)=(\underbrace{0, \ldots, 0}_{d+2}, \underbrace{0, \ldots, 0}_{k-1}, 1, \underbrace{0, \ldots, 0}_{d-k}, 1) \in \mathbb{R}^{2 d+3}, \\
& \phi\left(x_{0}, a_{j}^{0}\right)=(\underbrace{0, \ldots, 0}_{d+2}, \underbrace{0, \ldots, 0}_{j-1}, 1, \underbrace{0, \ldots, 0}_{d-j}, 1) \in \mathbb{R}^{2 d+3} .
\end{aligned}
$$

for $j \in[d]$ but $j \neq k$. In addition, we let $\psi\left(x_{\mathrm{i}}\right)=\left(\bar{\theta}^{(k) \top}, 0\right) \in \mathbb{R}^{2 d+3}$ and $\psi\left(x_{\mathrm{u}}\right)=\left(-\bar{\theta}^{(k) \top}, 1\right) \in \mathbb{R}^{2 d+3}$. Now we can verify for a_{k}^{0} :

$$
\begin{aligned}
& \mathbb{P}\left(x_{\mathrm{u}} \mid x_{0}, a_{k}^{0}\right)=\phi\left(x_{0}, a_{k}^{0}\right)^{\top} \psi\left(x_{\mathrm{u}}\right)=0 \\
& \mathbb{P}\left(x_{\mathrm{i}} \mid x_{0}, a_{k}^{0}\right)=\phi\left(x_{0}, a_{k}^{0}\right)^{\top} \psi\left(x_{\mathrm{i}}\right)=1
\end{aligned}
$$

and for $a_{j}^{0}(j \neq k)$:

$$
\begin{aligned}
& \mathbb{P}\left(x_{\mathrm{u}} \mid x_{0}, a_{j}^{0}\right)=\phi\left(x_{0}, a_{j}^{0}\right)^{\top} \psi\left(x_{\mathrm{u}}\right)=1 \\
& \mathbb{P}\left(x_{\mathrm{i}} \mid x_{0}, a_{j}^{0}\right)=\phi\left(x_{0}, a_{j}^{0}\right)^{\top} \psi\left(x_{\mathrm{i}}\right)=0
\end{aligned}
$$

B. 2 Proof of Claim 3.6

Proof. We prove the first part. To simplify the notation, we write $\varphi_{n j}$ short for $\varphi_{j}\left(x_{\mathrm{u}}, A_{2}^{n}\right)$. From Eq. (3.6), we have

$$
\begin{aligned}
R_{N}\left(\mathcal{M}_{k}\right) & \geq(H-1) \mathbb{E}_{k}\left[\left(\left(\tau_{k}-1\right)(s-1) \varepsilon-\sum_{n=1}^{\tau_{k}} \sum_{j=1}^{s-1} \varphi_{n j} \varepsilon\right) \mathbb{I}\left(\mathcal{D}_{k}\right)\right] \\
& \geq \frac{H s \varepsilon}{8} \mathbb{E}_{k}\left[\frac{\tau_{k}(s-1) \varepsilon}{2} \mathbb{I}\left(\mathcal{D}_{k}\right)\right]
\end{aligned}
$$

Second, we derive a regret lower bound of alternative MDP $\widetilde{\mathcal{M}}_{k}$. Define $\widetilde{a}^{*}=\operatorname{argmax}_{a_{j}^{\mathrm{u}} \in \mathcal{A}_{2}} \varphi\left(x_{\mathrm{u}}, a_{j}^{\mathrm{u}}\right)^{\top} \widetilde{\theta}^{(k)}$ as the optimal action when the learner is at state x_{u} in MDP \mathcal{M}_{k}. By a similar decomposition in Eq. (3.6),

$$
\begin{align*}
R_{N}\left(\widetilde{\mathcal{M}}_{k}\right) & \geq(H-1)\left(\widetilde{\mathbb{E}}_{k}\left[\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi\left(x_{\mathrm{u}}, \widetilde{a}^{*}\right), \widetilde{\theta}^{(k)}\right\rangle\right]-\widetilde{\mathbb{E}}_{k}\left[\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \widetilde{\theta}^{(k)}\right\rangle\right]\right) \tag{B.1}\\
& =(H-1) \widetilde{\mathbb{E}}_{k}\left[2 \tau_{k}(s-1) \varepsilon-\sum_{n=1}^{\tau_{k}}\left\langle\varphi_{n}, \widetilde{\theta}^{(k)}\right\rangle\right]
\end{align*}
$$

Next, we will find an upper bound for $\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \widetilde{\theta}^{(k)}\right\rangle$. From the definition of $\widetilde{\theta}^{(k)}$ in Eq. (3.5),

$$
\begin{align*}
\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \widetilde{\theta}^{(k)}\right\rangle & =\sum_{n=1}^{\tau_{k}}\left\langle\varphi_{n}, \theta+2 \varepsilon \widetilde{z}^{(k)}\right\rangle \\
& =\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \theta\right\rangle+2 \varepsilon \sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \widetilde{z}^{(k)}\right\rangle \tag{B.2}\\
& \leq \sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \theta\right\rangle+2 \varepsilon \sum_{n=1}^{\tau_{k}-1} \sum_{j \in \operatorname{supp}\left(\widetilde{z}^{(k)}\right)}\left|\varphi_{n j}\right|
\end{align*}
$$

where the last inequality is from the definition of $\widetilde{z}^{(k)}$ in Eq. (3.5). To bound the first term, we have

$$
\begin{align*}
\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \theta\right\rangle & =\sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{s-1} \varphi_{n j} \varepsilon \\
& \leq \varepsilon \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{s-1}\left|\varphi_{n j}\right| \tag{B.3}
\end{align*}
$$

Since all the φ_{n} come from \mathcal{S} which is a $(s-1)$-sparse set, we have

$$
\sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left|\varphi_{n j}\right|=(s-1) \tau_{k}
$$

which implies

$$
\begin{align*}
& \sum_{n=1}^{\tau_{k}-1}\left(\sum_{j=1}^{s-1}\left|\varphi_{n j}\right|+\sum_{j \in \operatorname{supp}(\widetilde{x})}\left|\varphi_{n j}\right|\right) \leq \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left|\varphi_{n j}\right|=(s-1)\left(\tau_{k}-1\right) \\
& \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{s-1}\left|\varphi_{n j}\right| \leq(s-1)\left(\tau_{k}-1\right)-\sum_{n=1}^{\tau_{k}-1} \sum_{j \in \operatorname{supp}(\widetilde{x})}\left|\varphi_{n j}\right| \tag{B.4}
\end{align*}
$$

Combining with Eq. (B.3),

$$
\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \theta\right\rangle \leq \varepsilon\left((s-1)\left(\tau_{k}-1\right)-\sum_{n=1}^{\tau_{k}-1} \sum_{j \in \operatorname{supp}(\widetilde{x})}\left|\varphi_{n j}\right|\right)
$$

Plugging the above bound into Eq. (B.2), it holds that

$$
\begin{equation*}
\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \widetilde{\theta}\right\rangle \leq \varepsilon(s-1)\left(\tau_{k}-1\right)+\varepsilon \sum_{n=1}^{\tau_{k}} \sum_{j \in \operatorname{supp}(\widetilde{x})}\left|\varphi_{n j}\right| \tag{B.5}
\end{equation*}
$$

When the event \mathcal{D}_{k}^{c} (the complement event of \mathcal{D}_{k}) happen, we have

$$
\sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{s-1}\left|\varphi_{n j}\right| \geq \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{s-1} \varphi_{n j} \geq \frac{\left(\tau_{k}-1\right)(s-1)}{2}
$$

Combining with Eq. (B.4), we have under event \mathcal{D}_{k}^{c},

$$
\begin{equation*}
\sum_{n=1}^{\tau_{k}-1} \sum_{j \in \operatorname{supp}(\widetilde{x})}\left|\varphi_{n j}\right| \leq \frac{\left(\tau_{k}-1\right)(s-1)}{2} \tag{B.6}
\end{equation*}
$$

Putting Eqs. (B.1), (B.5), (B.6) together, it holds that

$$
\begin{equation*}
R_{N}\left(\widetilde{\mathcal{M}}_{k}\right) \geq(H-1) \widetilde{\mathbb{E}}_{k}\left[\frac{\left(\tau_{k}-1\right)(s-1) \varepsilon}{2} \mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right] \tag{B.7}
\end{equation*}
$$

Putting the lower bounds of $R_{N}\left(\mathcal{M}_{k}\right)$ and $R_{N}\left(\widetilde{\mathcal{M}}_{k}\right)$ together, we have

$$
\begin{aligned}
R_{N}\left(\mathcal{M}_{k}\right)+R_{N}\left(\widetilde{\mathcal{M}}_{k}\right) & \geq(H-1)\left(\mathbb{E}_{k}\left[\frac{\left(\tau_{k}-1\right)(s-1) \varepsilon}{2} \mathbb{I}\left(\mathcal{D}_{k}\right)\right]+\widetilde{\mathbb{E}}_{k}\left[\frac{\left(\tau_{k}-1\right)(s-1) \varepsilon}{2} \mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right]\right) \\
& =\frac{H s \varepsilon}{8}\left(\mathbb{E}_{k}\left[\tau_{k}\left(\mathbb{I}\left(\mathcal{D}_{k}\right)+\mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right)\right]+\widetilde{\mathbb{E}}_{k}\left[\tau_{k} \mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right]-\mathbb{E}_{k}\left[\tau_{k} \mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right]\right) \\
& =\frac{H s \varepsilon}{8}\left(\mathbb{E}_{k}\left[\tau_{k}\right]+\widetilde{\mathbb{E}}_{k}\left[\tau_{k} \mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right]-\mathbb{E}_{k}\left[\tau_{k} \mathbb{I}\left(\mathcal{D}_{k}^{c}\right)\right]\right)
\end{aligned}
$$

This ends the proof.

B. 3 Proof of Claim 3.7

Proof. The KL-calculation is inspired by Jaksch et al. [2010], but with novel stopping time argument. Denote the statesequence up to nth episode, h th step as $\mathbb{S}_{h}^{n}=\left\{S_{1}^{1}, \ldots, S_{H}^{1}, \ldots, S_{1}^{n}, \ldots, S_{h}^{n}\right\}$ and write $\mathcal{X}_{h}^{n}=\left\{x_{0}, x_{\mathrm{i}}, x_{\mathrm{u}}, x_{\mathrm{g}}, x_{\mathrm{b}}\right\}^{(n-1) H+h}$. For a fixed policy π interacting with the environment for n episodes, we denote $\mathbb{P}_{k}(\cdot)$ as the distribution over \mathbb{S}^{n}, where $S_{1}^{n}=x_{0}, A_{h}^{n} \sim \pi\left(\cdot \mid S_{h}^{n}\right), S_{h+1}^{n} \sim \mathbb{P}_{k}\left(\cdot \mid S_{h}^{n}, A_{h}^{n}\right)$. Let \mathbb{E}_{k} denote the expectation w.r.t. distribution \mathbb{P}_{k}. By the chain rule, we can decompose the KL divergence as follows:

$$
\begin{equation*}
\mathrm{KL}\left(\widetilde{\mathbb{P}}_{k} \| \mathbb{P}_{k}\right)=\mathbb{E}\left[\sum_{n=1}^{\tau_{k}-1} \sum_{h=1}^{H} \operatorname{KL}\left[\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right) \| \mathbb{P}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right)\right]\right] \tag{B.8}
\end{equation*}
$$

Given a random variable x, the KL divergence over two conditional probability distributions is defined as

$$
\mathrm{KL}(p(y \mid x), q(y \mid x))=\sum_{x} \sum_{y} p(x, y) \log \left(\frac{p(y \mid x)}{q(y \mid x)}\right)
$$

Then the KL divergence between $\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right)$ and $\mathbb{P}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right)$ can be calculated as follows:

$$
\begin{align*}
& \mathrm{KL}\left[\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right) \| \mathbb{P}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right)\right] \\
& =\sum_{\mathbb{S}_{h}^{n} \in \mathcal{X}_{h}^{n}} \sum_{x \in \mathcal{X}} \widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x, \mathbb{S}_{h}^{n}\right) \log \left(\frac{\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h}^{n}\right)}{\mathbb{P}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h}^{n}\right)}\right) \\
& =\sum_{\mathbb{S}_{h}^{n} \in \mathcal{X}_{h}^{n}} \sum_{x \in \mathcal{X}} \widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h}^{n}\right) \widetilde{\mathbb{P}}_{k}\left(\mathbb{S}_{h}^{n}\right) \log \left(\frac{\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h}^{n}\right)}{\mathbb{P}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h}^{n}\right)}\right) \tag{B.9}\\
& =\sum_{\mathbb{S}_{h-1}^{n} \in \mathcal{X}_{h-1}^{n}} \widetilde{\mathbb{P}}_{k}\left(\mathbb{S}_{h-1}^{n}\right) \sum_{x^{\prime} \in \mathcal{X}, a \in \mathcal{A}} \widetilde{\mathbb{P}}_{k}\left(S_{h}^{n}=x^{\prime}, A_{h}^{n}=a \mid \mathbb{S}_{h-1}^{n}\right) \\
& \\
& \quad \cdot \sum_{x \in \mathcal{X}} \widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right) \log \left(\frac{\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right)}{\mathbb{P}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right)}\right) .
\end{align*}
$$

According to the construction of \mathcal{M}_{k} and $\widetilde{\mathcal{M}}_{k}$, the learner will remain staying at the current state when $x^{\prime}=x_{\mathrm{g}}$ or x_{b}, that implies

$$
\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right)=\mathbb{P}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right)
$$

In addition, from the definition of stopping time τ_{k}, the learner will never transit to the informative state x_{i}. Therefore,

$$
\begin{aligned}
& \operatorname{KL}\left[\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right) \| \mathbb{P}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right)\right] \\
= & \sum_{\mathbb{S}_{h-1}^{n} \in \mathcal{X}^{t-1}} \widetilde{\mathbb{P}}_{k}\left(\mathbb{S}_{h-1}^{n}\right) \sum_{x^{\prime}=x_{0}, x_{\mathrm{i}}, x_{\mathrm{u}}} \sum_{a \in \mathcal{A}} \widetilde{\mathbb{P}}_{k}\left(S_{h}^{n}=x^{\prime}, A_{h}^{n}=a \mid \mathbb{S}_{h-1}^{n}\right) \\
& \quad \sum_{x \in \mathcal{X}} \widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right) \log \left(\frac{\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right)}{\mathbb{P}_{k}\left(S_{h+1}^{n}=x \mid \mathbb{S}_{h-1}^{n}, S_{h}^{n}=x^{\prime}, A_{h}^{n}=a\right)}\right) \\
= & \sum_{a \in \mathcal{A}_{2}} \widetilde{\mathbb{P}}_{k}\left(S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right) \sum_{x=x_{\mathrm{g}}, x_{\mathrm{b}}} \widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right) \log \left(\frac{\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n}=x \mid S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right)}{\mathbb{P}_{k}\left(S_{h+1}^{n}=x \mid S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right)}\right) \\
= & \sum_{a \in \mathcal{A}_{2}} \widetilde{\mathbb{P}}_{k}\left(S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right)\left(\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \widetilde{\theta}^{(k)}\right\rangle \log \left(\frac{\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \widetilde{\theta}^{(k)}\right\rangle}{\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \theta\right\rangle}\right)+\left(1-\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \widetilde{\theta}^{(k)}\right\rangle\right) \log \left(\frac{1-\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \widetilde{\theta}(k)\right\rangle}{1-\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \theta\right\rangle}\right)\right),
\end{aligned}
$$

where \mathcal{A}_{2} is the action set associated to state x_{u}. Moreover, we will use Lemma C. 4 to bound the above last term. Letting $q=\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \widetilde{\theta}^{(k)}\right\rangle$ and $\epsilon=\left\langle\varphi\left(x_{\mathrm{u}}, a\right), \theta-\widetilde{\theta}^{(k)}\right\rangle$, it is easy to verify the conditions in Lemma C. 4 as long as $\varepsilon \leq(10(s-1))^{-1}$. Then we have

$$
\begin{aligned}
\mathrm{KL}\left[\widetilde{\mathbb{P}}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right) \| \mathbb{P}_{k}\left(S_{h+1}^{n} \mid \mathbb{S}_{h}^{n}\right)\right] & \leq \sum_{a \in \mathcal{A}_{2}} \widetilde{\mathbb{P}}_{k}\left(S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right) \frac{2\left\langle\widetilde{\theta}^{(k)}-\theta, \varphi\left(x_{\mathrm{u}}, a\right)\right\rangle^{2}}{\left\langle\widetilde{\theta}(k), \varphi\left(x_{\mathrm{u}}, a\right)\right\rangle} \\
& =\sum_{a \in \mathcal{A}_{2}} \widetilde{\mathbb{P}}_{k}\left(S_{h}^{n}=x_{\mathrm{u}}, A_{h}^{n}=a\right) \frac{8 \varepsilon^{2}\left\langle\widetilde{z}^{(k)}, \varphi\left(x_{\mathrm{u}}, a\right)\right\rangle^{2}}{\left\langle\widetilde{\theta}, \varphi\left(x_{\mathrm{u}}, a\right)\right\rangle}
\end{aligned}
$$

Back to the KL-decomposition in Eq. (B.8), we have

$$
\mathrm{KL}\left(\widetilde{\mathbb{P}}_{k} \| \mathbb{P}_{k}\right) \leq 8 \varepsilon^{2} \widetilde{\mathbb{E}}_{k}\left[\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi\left(x_{\mathrm{u}}, A_{2}^{n}\right), \widetilde{z}^{2}\right] .\right.
$$

To simplify the notations, we let $\varphi_{n}=\varphi\left(x_{\mathrm{u}}, A_{2}^{n}\right)$.
Next, we use a simple argument "minimum is always smaller than the average". We decompose the following summation over action set \mathcal{S}^{\prime} defined in Eq. (3.4),

$$
\begin{aligned}
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, z\right\rangle^{2} & =\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1}\left(\sum_{j=1}^{d} z_{j} \varphi_{n j}\right)^{2} \\
& =\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1}\left(\sum_{j=1}^{d}\left(z_{j} \varphi_{n j}\right)^{2}+2 \sum_{i<j} z_{i} z_{j} \varphi_{n i} \varphi_{n j}\right) .
\end{aligned}
$$

We bound the above two terms separately. To bound the first term, we observe that

$$
\begin{equation*}
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left(z_{j} \varphi_{n j}\right)^{2}=\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left|z_{j} \varphi_{n j}\right| \tag{B.10}
\end{equation*}
$$

since both $z_{j}, \varphi_{n j}$ can only take $-1,0,+1$. In addition, $\sum_{t=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left|\varphi_{n j}\right|=(s-1) \tau_{k}$. Since $z \in \mathcal{S}^{\prime}$ that is ($s-1$)-sparse, we have $\sum_{j=1}^{d}\left|z_{j} \varphi_{n j}\right| \leq s-1$. Therefore, we have

$$
\begin{equation*}
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left|z_{j} \varphi_{n j}\right| \leq(s-1)\left(\tau_{k}-1\right)\binom{d-s-1}{s-2} \tag{B.11}
\end{equation*}
$$

Putting Eqs. (B.10) and (B.11) together,

$$
\begin{equation*}
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left(z_{j} \varphi_{n j}\right)^{2} \leq(s-1)\left(\tau_{k}-1\right)\binom{d-s-1}{s-2} \tag{B.12}
\end{equation*}
$$

To bound the second term, we observe

$$
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} 2 \sum_{i<j} z_{i} z_{j} \varphi_{n i} \varphi_{n j}=2 \sum_{n=1}^{\tau_{k}-1} \sum_{i<j} \sum_{z \in \mathcal{S}^{\prime}} z_{i} z_{j} \varphi_{n i} \varphi_{n j}
$$

From the definition of $\mathcal{S}^{\prime}, z_{i} z_{j}$ can only take values of $\{1 * 1,1 *-1,-1 * 1,-1 *-1,0\}$. This symmetry implies

$$
\sum_{z \in \mathcal{S}^{\prime}} z_{i} z_{j} \varphi_{n i} \varphi_{n j}=0
$$

which implies

$$
\begin{equation*}
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} 2 \sum_{i<j} z_{i} z_{j} \varphi_{n i} \varphi_{n j}=0 \tag{B.13}
\end{equation*}
$$

Combining Eqs. (B.12) and (B.13) together, we have

$$
\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, z\right\rangle^{2}=\sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1} \sum_{j=1}^{d}\left|z_{j} \varphi_{n j}\right| \leq(s-1)\left(\tau_{k}-1\right)\binom{d-s-1}{s-2}
$$

In the end, we use the fact that the minimum of $\tau_{k}-1$ points is always smaller than its average,

$$
\begin{aligned}
\widetilde{\mathbb{E}}_{k}\left[\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, \widetilde{z}\right\rangle^{2}\right] & =\min _{z \in \mathcal{S}^{\prime}} \widetilde{\mathbb{E}}_{k}\left[\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, z\right\rangle^{2}\right] \\
& \leq \frac{1}{\left|\mathcal{S}^{\prime}\right|} \sum_{z \in \mathcal{S}^{\prime}} \widetilde{\mathbb{E}}_{k}\left[\sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, z\right\rangle^{2}\right] \\
& =\widetilde{\mathbb{E}}_{k}\left[\frac{1}{\left|\mathcal{S}^{\prime}\right|} \sum_{z \in \mathcal{S}^{\prime}} \sum_{n=1}^{\tau_{k}-1}\left\langle\varphi_{n}, z\right\rangle^{2}\right] \\
& \leq \frac{(s-1) \widetilde{\mathbb{E}}_{k}\left[\tau_{k}-1\right]\binom{d-s-1}{s-2}}{\binom{d-s}{s-1}} \\
& \leq \frac{(s-1)^{2} \widetilde{\mathbb{E}}_{k}\left[\tau_{k}-1\right]}{d}
\end{aligned}
$$

Therefore, we reach

$$
\mathrm{KL}\left(\widetilde{\mathbb{P}}_{k} \| \mathbb{P}_{k}\right) \leq \frac{8 \varepsilon^{2}(s-1)^{2} \widetilde{\mathbb{E}}_{k}\left[\tau_{k}-1\right]}{d} \leq \frac{8 \varepsilon^{2}(s-1)^{2} N}{d} \leq 8 \varepsilon^{2}(s-1)^{2}
$$

since we consider the data-poor regime that $N \leq d$. It is obvious to see $\operatorname{KL}\left(\mathbb{P}_{0} \| \mathbb{P}_{k}\right)=0$ from Eq. (B.9). This ends the proof.

B. 4 Proof of Lemma A. 2

Proof. Recall that in the learning phase, we split the data collected in the exploration phase into H folds and each fold consists of R episodes or $R H$ sample transitions. For the update of each step h, we use a fresh fold of samples.
Step 1. We verify that the execution of Lasso fitted-Q-iteration is equivalent to the approximate value iteration. Recall that a generic Lasso estimator with respect to a function V at step h is defined in Eq. (4.1) as

$$
\widehat{w}_{h}(V)=\underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}}\left(\frac{1}{R H} \sum_{i=1}^{R H}\left(\Pi_{[0, H]} V\left(x_{i}^{(h)^{\prime}}\right)-\phi\left(x_{i}^{(h)}, a_{i}^{(h)}\right)^{\top} w\right)^{2}+\lambda_{1}\|w\|_{1}\right)
$$

Denote $V_{w}(x)=\max _{a \in \mathcal{A}}\left(r(x, a)+\phi(x, a)^{\top} w\right)$. For simplicity, we write $\widehat{w}_{h}:=\widehat{w}_{h}\left(V_{\widehat{w}_{h+1}}\right)$ for short. Define an approximate Bellman optimality operator $\widehat{\mathcal{T}}^{(h)}: \mathcal{X} \rightarrow \mathcal{X}$ as:

$$
\begin{equation*}
\left[\widehat{\mathcal{T}}^{(h)} V\right](x):=\max _{a}\left[r(x, a)+\phi(x, a)^{\top} \widehat{w}_{h}(V)\right] \tag{B.14}
\end{equation*}
$$

Note this $\widehat{\mathcal{T}}^{(h)}$ is a randomized operator that only depends data from h th fold. The Lasso fitted-Q-iteration in learning phase of Algorithm 1 is equivalent to the following approximate value iteration:

$$
\begin{equation*}
\left[\widehat{\mathcal{T}}^{(h)} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right](x)=\max _{a}\left[r(x, a)+\phi(x, a)^{\top} \widehat{w}_{h}\right]=\max _{a} Q_{\widehat{w}_{h}}(x, a)=V_{\widehat{w}_{h}}(x) \tag{B.15}
\end{equation*}
$$

Recall that the true Bellman optimality operator in state space $\mathcal{T}: \mathcal{X} \rightarrow \mathcal{X}$ is defined as

$$
\begin{equation*}
[\mathcal{T} V](x):=\max _{a}\left[r(x, a)+\sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right) V\left(x^{\prime}\right)\right] \tag{B.16}
\end{equation*}
$$

Step 2. We verify that the true Bellman operator on $\Pi_{[0, H]} V_{\widehat{w}_{h+1}}$ can also be written as a linear form. From Definition 2.1, there exists some functions $\psi(\cdot)=\left(\psi_{k}(\cdot)\right)_{k \in \mathcal{K}}$ such that for every x, a, x^{\prime}, the transition function can be represented as

$$
\begin{equation*}
P\left(x^{\prime} \mid x, a\right)=\sum_{k \in \mathcal{K}} \phi_{k}(x, a) \psi_{k}\left(x^{\prime}\right) \tag{B.17}
\end{equation*}
$$

where $\mathcal{K} \subseteq[d]$ and $|\mathcal{K}| \leq s$. For a vector $\bar{w}_{h} \in \mathbb{R}^{d}$, we define its k th coordinate as

$$
\begin{equation*}
\bar{w}_{h, k}=\sum_{x^{\prime}} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x^{\prime}\right) \psi_{k}\left(x^{\prime}\right), \text { if } k \in \mathcal{K} \tag{B.18}
\end{equation*}
$$

and $\bar{w}_{h, k}=0$ if $k \notin \mathcal{K}$. By the definition of true Bellman optimality operator in Eq. (B.16) and Eq. (B.17),

$$
\begin{align*}
{\left[\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right](x) } & =\max _{a}\left[r(x, a)+\sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right) \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x^{\prime}\right)^{\prime}\right] \\
& =\max _{a}\left[r(x, a)+\sum_{x^{\prime}} \phi(x, a)^{\top} \psi\left(x^{\prime}\right) \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x^{\prime}\right)^{\prime}\right] \\
& =\max _{a}\left[r(x, a)+\sum_{x^{\prime}} \sum_{k \in \mathcal{K}} \phi_{k}(x, a) \psi_{k}\left(x^{\prime}\right) \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x^{\prime}\right)^{\prime}\right] \\
& =\max _{a}\left[r(x, a)+\sum_{k \in \mathcal{K}} \phi_{k}(x, a) \sum_{x^{\prime}} \psi_{k}\left(x^{\prime}\right) \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x^{\prime}\right)^{\prime}\right] \\
& =\max _{a}\left[r(x, a)+\phi(x, a)^{\top} \bar{w}_{h}\right] . \tag{B.19}
\end{align*}
$$

We interpret \bar{w}_{h} as the ground truth of the Lasso estimator in Eq. (4.1) at step h in terms of the following sparse linear regression:

$$
\begin{equation*}
\Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x_{i}^{\prime}\right)=\phi\left(x_{i}, a_{i}\right)^{\top} \bar{w}_{h}+\varepsilon_{i}, i=1 \ldots, R H, \tag{B.20}
\end{equation*}
$$

where $\varepsilon_{i}=\Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x_{i}^{\prime}\right)-\phi\left(x_{i}, a_{i}\right)^{\top} \bar{w}_{h}$. Define the filtration \mathcal{F}_{i} generated by $\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{i}, a_{i}\right)\right\}$ and also the data in folds $h+1$ to H. By the definition of $V_{\widehat{w}_{h+1}}$ and \bar{w}_{h}, we have

$$
\begin{aligned}
\mathbb{E}\left[\varepsilon_{i} \mid \mathcal{F}_{i}\right] & =\mathbb{E}\left[\Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x_{i}^{\prime}\right) \mid \mathcal{F}_{i}\right]-\phi\left(x_{i}, a_{i}\right)^{\top} \bar{w}_{h} \\
& =\sum_{x^{\prime}}\left[\Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right]\left(x^{\prime}\right) P\left(x^{\prime} \mid x_{i}, a_{i}\right)-\phi\left(x_{i}, a_{i}\right)^{\top} \bar{w}_{h} \\
& =\sum_{k \in \mathcal{K}} \phi_{k}\left(x_{i}, a_{i}\right) \sum_{x^{\prime}}\left[\Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right]\left(x^{\prime}\right) \psi_{k}\left(x^{\prime}\right)-\phi\left(x_{i}, a_{i}\right)^{\top} \bar{w}_{h}=0 .
\end{aligned}
$$

Therefore, $\left\{\varepsilon_{i}\right\}_{i=1}^{R H}$ is a sequence of martingale difference noises and $\left|\varepsilon_{i}\right| \leq H$ due to the truncation operator $\Pi_{[0, H]}$. The next lemma bounds the difference between \widehat{w}_{h} and \bar{w}_{h} within ℓ_{1}-norm. The proof is deferred to Appendix B.5.
Lemma B.1. Consider the sparse linear regression described in Eq. (B.20). Suppose the number of episodes used in step h satisfies

$$
R \geq \frac{C_{1} \log \left(3 d^{2} / \delta\right) s^{2}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)}
$$

for some absolute constant $C_{1}>0$. With the choice of $\lambda_{1}=H \sqrt{\log (2 d / \delta) /(R H)}$, the following holds with probability at least $1-\delta$,

$$
\begin{equation*}
\left\|\widehat{w}_{h}-\bar{w}_{h}\right\|_{1} \leq \frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} H \sqrt{\frac{\log (2 d / \delta)}{R H}} \tag{B.21}
\end{equation*}
$$

Step 3. We start to bound $\left\|V_{\widehat{w}_{h}}-V_{h}^{*}\right\|_{\infty}$ for each step h. By the approximate value iteration form Eq. (B.15) and the definition of optimal value function,

$$
\begin{align*}
\left\|V_{\widehat{w}_{h}}-V_{h}^{*}\right\|_{\infty} & =\left\|\widehat{\mathcal{T}}^{(h)} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}-\mathcal{T} V_{h+1}^{*}\right\|_{\infty} \tag{B.22}\\
& =\left\|\widehat{\mathcal{T}}^{(h)} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}-\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right\|_{\infty}+\left\|\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}-\mathcal{T} V_{h+1}^{*}\right\|_{\infty} .
\end{align*}
$$

The first term mainly captures the error between approximate Bellman optimality operator and true Bellman optimality operator. From linear forms Eqs. (B.15) and (B.19), it holds for any $x \in \mathcal{X}$,

$$
\begin{align*}
& {\left[\widehat{\mathcal{T}}^{(h)} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right](x)-\left[\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right](x) } \\
= & \max _{a}\left[r(x, a)+\phi(x, a)^{\top} \widehat{w}_{h}\right]-\max _{a}\left[r(x, a)+\phi(x, a)^{\top} \bar{w}_{h}\right] \\
\leq & \max _{a}\left|\phi(x, a)^{\top}\left(\widehat{w}_{h}-\bar{w}_{h}\right)\right| \\
\leq & \max _{a, x}\|\phi(x, a)\|_{\infty}\left\|\widehat{w}_{h}-\bar{w}_{h}\right\|_{1} . \tag{B.23}
\end{align*}
$$

Applying Lemma B.1, the following error bound holds with probability at least $1-\delta$,

$$
\begin{equation*}
\left\|\widehat{w}_{h}-\bar{w}_{h}\right\|_{1} \leq \frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} H \sqrt{\frac{\log (2 d / \delta)}{R H}} \tag{B.24}
\end{equation*}
$$

where R satisfies $R \geq C_{1} \log \left(3 d^{2} / \delta\right) s^{2} / C_{\min }\left(\Sigma^{\pi_{e}}, s\right)$.
Note that the samples we use between phases are mutually independent. Thus Eq. (B.24) uniformly holds for all $h \in[H]$ with probability at least $1-H \delta$. Plugging it into Eq. (B.23), we have for any stage $h \in[H]$,

$$
\begin{equation*}
\left\|\widehat{\mathcal{T}}^{(h)} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}-\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\right\|_{\infty} \leq \frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} H \sqrt{\frac{\log (2 d H / \delta)}{R H}} \tag{B.25}
\end{equation*}
$$

holds with probability at least $1-\delta$.
To bound the second term in Eq. (B.22), we observe that

$$
\begin{align*}
\left\|\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}-\mathcal{T} V_{h+1}^{*}\right\|_{\infty} & =\max _{x}\left|\mathcal{T} \Pi_{[0, H]} V_{\widehat{w}_{h+1}}(x)-\mathcal{T} V_{h+1}^{*}(x)\right| \\
& \leq \max _{x} \max _{a}\left|\sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right) \Pi_{[0, H]} V_{\widehat{w}_{h+1}}\left(x^{\prime}\right)-\sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right) \Pi_{[0, H]} V_{h+1}^{*}\left(x^{\prime}\right)\right| \tag{B.26}\\
& \leq\left\|\Pi_{[0, H]} V_{\widehat{w}_{h+1}}-V_{h+1}^{*}\right\|_{\infty}
\end{align*}
$$

Plugging Eqs. (B.25) and (B.26) into Eq. (B.22), it holds that

$$
\begin{equation*}
\left\|V_{\widehat{w}_{h}}-V_{h}^{*}\right\|_{\infty} \leq \frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} H \sqrt{\frac{\log (2 d H / \delta)}{R H}}+\left\|\Pi_{[0, H]} V_{\widehat{w}_{h+1}}-V_{h+1}^{*}\right\|_{\infty} \tag{B.27}
\end{equation*}
$$

with probability at least $1-\delta$. Recursively using Eq. (B.27), the following holds with probability $1-\delta$,

$$
\begin{aligned}
\left\|\Pi_{[0, H]} V_{\widehat{w}_{1}}-V_{1}^{*}\right\|_{\infty} & \leq\left\|V_{\widehat{w}_{1}}-V_{1}^{*}\right\|_{\infty} \\
& =\frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} H \sqrt{\frac{\log (2 d H / \delta)}{R H}}+\left\|\Pi_{[0, H]} V_{\widehat{w}_{2}}-V_{2}^{*}\right\|_{\infty} \\
& \leq\left\|\Pi_{[0, H]} V_{\widehat{w}_{H+1}}-V_{H+1}^{*}\right\|_{\infty}+H^{2} \frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{R H}} \\
& =H^{2} \frac{16 \sqrt{2} s}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{R H}}
\end{aligned}
$$

where the first inequality is due to that $\Pi_{[0, H]}$ can only make error smaller and the last inequality is due to $V_{\widehat{w}_{H+1}}=V_{H+1}^{*}=$ 0. From Proposition 2.14 in Bertsekas [1995],

$$
\begin{equation*}
\left\|V_{1}^{\widehat{\pi}_{N_{1}}}-V_{1}^{*}\right\|_{\infty} \leq H\left\|Q_{\widehat{w}_{1}}-Q_{1}^{*}\right\|_{\infty} \leq 2 H\left\|\Pi_{[0, H]} V_{\widehat{w}_{1}}-V_{1}^{*}\right\|_{\infty} \tag{B.28}
\end{equation*}
$$

Putting the above together, we have with probability at least $1-\delta$,

$$
\left\|V_{1}^{\widehat{\pi}_{N_{1}}}-V_{1}^{*}\right\|_{\infty} \leq \frac{32 \sqrt{2} s H^{3}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)} \sqrt{\frac{\log (2 d H / \delta)}{N_{1}}}
$$

when the number of episodes in the exploration phase has to satisfy

$$
N_{1} \geq \frac{C_{1} s^{2} H \log \left(3 d^{2} / \delta\right)}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)}
$$

for some sufficiently large constant C_{1}. This ends the proof.

B. 5 Proof of Lemma B. 1

Proof. Denote the empirical covariance matrix induced by the exploratory policy π_{e} and feature map ϕ as

$$
\widehat{\Sigma}^{\pi_{e}}:=\frac{1}{R} \sum_{r=1}^{R} \frac{1}{H} \sum_{h=1}^{H} \phi\left(x_{h}^{r}, a_{h}^{r}\right) \phi\left(x_{h}^{r}, a_{h}^{r}\right)^{\top}
$$

Recall that $\Sigma^{\pi_{e}}$ is the population covariance matrix induced by the exploratory policy π_{e} defined in Eq. (3.1) and feature $\operatorname{map} \phi$ with $\sigma_{\min }\left(\Sigma^{\pi_{e}}\right)>0$. From the definition of restricted eigenvalue in (A.1) it is easy to verify $C_{\min }\left(\Sigma^{\pi_{e}}, s\right) \geq$ $\sigma_{\min }\left(\Sigma^{\pi_{e}}\right)>0$. For any $i, j \in[d]$, denote

$$
v_{i j}^{r}=\frac{1}{H} \sum_{h=1}^{H} \phi_{i}\left(x_{h}^{r}, a_{h}^{r}\right) \phi_{j}\left(x_{h}^{r}, a_{h}^{r}\right)-\Sigma_{i j}^{\pi_{e}} .
$$

It is easy to verify $\mathbb{E}\left[v_{i j}^{r}\right]=0$ and $\left|v_{i j}^{r}\right| \leq 1$ since we assume $\|\phi(x, a)\|_{\infty} \leq 1$. Note that samples between different episodes are independent. This implies $v_{i j}^{1}, \ldots, v_{i j}^{R}$ are independent. By standard Hoeffding's inequality (Proposition 5.10 in Vershynin [2010]), we have

$$
\mathbb{P}\left(\left|\sum_{r=1}^{R} v_{i j}^{r}\right| \geq \delta\right) \leq 3 \exp \left(-\frac{C_{0} \delta^{2}}{R}\right)
$$

for some absolute constant $C_{0}>0$. Applying an union bound over $i, j \in[d]$, we have

$$
\begin{aligned}
& \mathbb{P}\left(\max _{i, j}\left|\sum_{r=1}^{R} v_{i j}^{r}\right| \geq \delta\right) \leq 3 d^{2} \exp \left(-\frac{C_{0} \delta^{2}}{R}\right) \\
& \Rightarrow \mathbb{P}\left(\left\|\widehat{\Sigma}^{\pi_{e}}-\Sigma^{\pi_{e}}\right\|_{\infty} \geq \delta\right) \leq 3 d^{2} \exp \left(-\frac{C_{0} \delta^{2}}{R}\right)
\end{aligned}
$$

It implies the following holds with probability $1-\delta$,

$$
\left\|\widehat{\Sigma}^{\pi_{e}}-\Sigma^{\pi_{e}}\right\|_{\infty} \leq \sqrt{\frac{\log \left(3 d^{2} / \delta\right)}{R}}
$$

When the number of episodes $R \geq 32^{2} \log \left(3 d^{2} / \delta\right) s^{2} / C_{\min }\left(\Sigma^{\pi_{e}}, s\right)^{2}$, the following holds with probability at least $1-\delta$,

$$
\left\|\widehat{\Sigma}^{\pi_{e}}-\Sigma^{\pi_{e}}\right\|_{\infty} \leq \frac{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)}{32 s}
$$

Next lemma shows that if the restricted eigenvalue condition holds for one positive semi-definite matrix Σ_{0}, then it holds with high probability for another positive semi-definite matrix Σ_{1} as long as Σ_{0} and Σ_{1} are close enough in terms of entry-wise max norm.
Lemma B. 2 (Corollary 6.8 in [Bühlmann and Van De Geer, 2011]). Let Σ_{0} and Σ_{1} be two positive semi-definite block diagonal matrices. Suppose that the restricted eigenvalue of Σ_{0} satisfies $C_{\min }\left(\Sigma_{0}, s\right)>0$ and $\left\|\Sigma_{1}-\Sigma_{0}\right\|_{\infty} \leq C_{\min }\left(\Sigma_{0}, s\right) /(32 s)$. Then the restricted eigenvalue of Σ_{1} satisfies $C_{\min }\left(\Sigma_{1}, s\right)>C_{\min }\left(\Sigma_{0}, s\right) / 2$.

Applying Lemma B. 2 with $\widehat{\Sigma}^{\pi_{e}}$ and $\Sigma^{\pi_{e}}$, we have the restricted eigenvalue of $\widehat{\Sigma}^{\pi_{e}}$ satisfies $C_{\min }\left(\widehat{\Sigma}^{\pi_{e}}, s\right)>C_{\min }\left(\Sigma^{\pi_{e}}, s\right) / 2$ with high probability.

Note that $\left\{\varepsilon_{i} \phi_{j}\left(x_{i}, a_{i}\right)\right\}_{i=1}^{R H}$ is also a martingale difference sequence and $\left|\varepsilon_{i} \phi_{j}\left(x_{i}, a_{i}\right)\right| \leq H$. By Azuma-Hoeffding inequality,

$$
\mathbb{P}\left(\max _{j \in[d]}\left|\frac{1}{R H} \sum_{i=1}^{R H} \varepsilon_{i} \phi_{j}\left(x_{i}, a_{i}\right)\right| \leq H \sqrt{\frac{\log (2 d / \delta)}{R H}}\right) \geq 1-\delta .
$$

Denote event \mathcal{E} as

$$
\mathcal{E}=\left\{\max _{j \in[d]}\left|\frac{1}{R H} \sum_{i=1}^{R H} \varepsilon_{i} \phi_{j}\left(x_{i}, a_{i}\right)\right| \leq \lambda_{1}\right\} .
$$

Then $\mathbb{P}(\mathcal{E}) \geq 1-\delta$. Under event \mathcal{E}, applying (B.31) in Bickel et al. [2009], we have

$$
\left\|\widehat{w}_{h}-\bar{w}_{h}\right\|_{1} \leq \frac{16 \sqrt{2} s \lambda_{1}}{C_{\min }\left(\Sigma^{\pi_{e}}, s\right)}
$$

holds with probability at least $1-2 \delta$. This ends the proof.

C Supporting lemmas

Lemma C. 1 (Pinsker's inequality). Denote $\mathbf{x}=\left\{x_{1}, \ldots, x_{T}\right\} \in \mathcal{X}^{T}$ as the observed states from step 1 to T. Then for any two distributions P_{1} and P_{2} over \mathcal{X}^{\top} and any bounded function $f: \mathcal{X}^{\top} \rightarrow[0, B]$, we have

$$
\mathbb{E}_{1} f(\mathbf{x})-\mathbb{E}_{2} f(\mathbf{x}) \leq \sqrt{\log 2 / 2} B \sqrt{\mathrm{KL}\left(P_{2} \| P_{1}\right)}
$$

where \mathbb{E}_{1} and \mathbb{E}_{2} are expectations with respect to P_{1} and P_{2}.
Lemma C. 2 (Bretagnolle-Huber inequality). Let \mathbb{P} and $\widetilde{\mathbb{P}}$ be two probability measures on the same measurable space (Ω, \mathcal{F}). Then for any event $\mathcal{D} \in \mathcal{F}$,

$$
\begin{equation*}
\mathbb{P}(\mathcal{D})+\widetilde{\mathbb{P}}\left(\mathcal{D}^{c}\right) \geq \frac{1}{2} \exp (-\mathrm{KL}(\mathbb{P}, \widetilde{\mathbb{P}})) \tag{C.1}
\end{equation*}
$$

where \mathcal{D}^{c} is the complement event of $\mathcal{D}\left(\mathcal{D}^{c}=\Omega \backslash \mathcal{D}\right)$ and $\operatorname{KL}(\mathbb{P}, \widetilde{\mathbb{P}})$ is the KL divergence between \mathbb{P} and $\widetilde{\mathbb{P}}$, which is defined as $+\infty$, if \mathbb{P} is not absolutely continuous with respect to $\widetilde{\mathbb{P}}$, and is $\int_{\Omega} d \mathbb{P}(\omega) \log \frac{d \mathbb{P}}{d \widetilde{\mathbb{P}}}(\omega)$ otherwise.

The proof can be found in the book of Tsybakov [2008]. When $\operatorname{KL}(\mathbb{P}, \widetilde{\mathbb{P}})$ is small, we may expect the probability measure \mathbb{P} is close to the probability measure $\widetilde{\mathbb{P}}$. Note that $\mathbb{P}(\mathcal{D})+\mathbb{P}\left(\mathcal{D}^{c}\right)=1$. If $\widetilde{\mathbb{P}}$ is close to \mathbb{P}, we may expect $\mathbb{P}(\mathcal{D})+\widetilde{\mathbb{P}}\left(\mathcal{D}^{c}\right)$ to be large.
Lemma C. 3 (Divergence decomposition). Let \mathbb{P} and $\widetilde{\mathbb{P}}$ be two probability measures on the sequence $\left(A_{1}, Y_{1}, \ldots, A_{n}, Y_{n}\right)$ for a fixed bandit policy π interacting with a linear contextual bandit with standard Gaussian noise and parameters θ and $\widetilde{\theta}$ respectively. Then the KL divergence of \mathbb{P} and $\widetilde{\mathbb{P}}$ can be computed exactly and is given by

$$
\begin{equation*}
\mathrm{KL}(\mathbb{P}, \widetilde{\mathbb{P}})=\frac{1}{2} \sum_{x \in \mathcal{A}} \mathbb{E}\left[T_{x}(n)\right]\langle x, \theta-\widetilde{\theta}\rangle^{2} \tag{C.2}
\end{equation*}
$$

where \mathbb{E} is the expectation operator induced by \mathbb{P}.
This lemma appeared as Lemma 15.1 in the book of Lattimore and Szepesvári [2020], where the reader can also find the proof.
Lemma C. 4 (Lemma 20 in Jaksch et al. [2010]). Suppose $0 \leq q \leq 1 / 2$ and $\epsilon \leq 1-2 q$, then

$$
q \log \left(\frac{q}{q+\epsilon}\right)+(1-q) \log \left(\frac{1-q}{1-q-\epsilon}\right) \leq \frac{2 \epsilon^{2}}{q}
$$

Lemma C. 5 (Pinsker's inequality). For measures P and Q on the same probability space (Ω, \mathcal{F}), we have

$$
\delta(P, Q)=\sup _{A \in \mathcal{F}}(P(A)-Q(A)) \leq \sqrt{\frac{1}{2} \mathrm{KL}(P, Q)}
$$

