
Adaptive Approximate Policy Iteration

Supplement to “Adaptive Approximate Policy Iteration”

In Section A, we present the detailed proofs of main results. In Section B, the linear value function approximation is
considered. In Section C, some supporting lemmas are included.

A Proofs of main results

A.1 Proof of Theorem 4.5: main result

We combine the decomposition (4.1), (5.2) and (5.3) together and utilize the results in Lemmas 5.2, 5.3 and 5.7. Then we
have
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We choose δ = 1/T and ignore any universal constant and logarithmic factor in the following. Since K = T/τ , it holds that
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with probability at least 1− 1/T . With a little abuse of notations, we re-define ε0 = ε2
0 + ε0. By optimizing τ such that the

first two term above is equal, i.e., tmixC̃τ
−1/2T = t4mixτ/µ

∗
min, we choose τ = (C̃µ∗min/t

3
mix)2/3T 2/3. Overall, we reach

the final regret bound,
RT = Õ

(
t2mixρ

1/3C̃2/3T 2/3 + Tε0

)
,

where ρ = maxπ maxx:µπ(x) 6=0(1/µπ(x)). This ends the proof.

�

A.2 Proof of Lemma 5.4: adaptive optimistic FTRL (AO-FTRL)

Lemma 5.4 states that the cumulative regret for AO-FTRL is upper-bounded by

RT ≤
(8

η
+ ηR(f∗)

)√√√√ T∑
t=2

‖qt −Mt‖2∗ −
T∑
t=1

ηt
4
‖ft − ft+1‖2 + g,

where g = 〈MT+1, f
∗ − fT+1〉+ ‖q1‖2∗/η1.

First, at each round t, AO-FTRL has the form of

ft+1 = argmin
f∈F

〈f,
t∑

s=1

qs +Mt+1〉+ ηtR(f)

= argmin
f∈F

〈f,
t∑

s=1

qs〉+

t∑
s=1

〈Ms+1 −Ms, f〉+ ηtR(f),

where η1 ≤ · · · ≤ ηt are data-dependent learning rates. For simplicity, we assume η0 = 0. For s = 1, . . . , t, we define

hs(f) = 〈Ms+1 −Ms, f〉+ (ηs − ηs−1)R(f). (A.1)
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We define h0(f) = 0 for all f ∈ F and h1:t(f) =
∑t
s=1 hs(f) = 〈Mt+1, f〉+ ηtR(f). SinceR(f) is 1-strongly convex

with respect to norm ‖ · ‖, hs(f) is (ηs − ηs−1)-strongly-convex with respect to ‖ · ‖. Then we could rewrite the AO-FTRL
update as

ft+1 = argmin
f∈F

〈f,
t∑

s=1

qs〉+

t∑
s=1

hs(f).

Second, let us define the forward linear regret R+
T as:

R+
T =

T∑
t=1

〈
qt, ft+1 − f∗

〉
.

One could interpret R+
T as a cheating regret since it uses prediction ft+1 at round t. We decompose the cumulative regret

based on the forward linear regret as follows,

RT =

T∑
t=1

〈qt, ft〉 −
T∑
t=1

〈qt, f∗〉 = R+
T +

T∑
t=1

〈qt, ft − ft+1〉. (A.2)

The second term in the right side captures the regret by the algorithm’s inability to accurately predict the future. We define
the Bregman divergence between two vectors induced by a differentiable function R as follows:

DR(w, u) = R(w)−
(
R(u) + 〈∇R(u), w − u〉

)
.

Next theorem is used to bound the forward regret.

Theorem A.1 (Theorem 3 in Joulani et al. [2017]). For any f∗ ∈ F and any sequence of linear losses, the forward regret
satisfies the following inequality:

R+
T ≤

T∑
t=1

(
ht(f

∗)− ht(ft+1)
)
−

T∑
t=1

Dh1:t
(ft+1, ft).

Recall that h1:t(f) is ηt-strongly convex. From the definitions of strong convexity and Bregman divergence, we have

T∑
t=1

Dh1:t
(ft+1, ft) ≥

T∑
t=1

ηt
2
‖ft+1 − ft‖2. (A.3)

Applying Theorem A.1 and Eq. (A.3), we have

R+
T ≤

T∑
t=1

(
ht(f

∗)− ht(ft+1)
)
−

T∑
t=1

ηt
2
‖ft+1 − ft‖2. (A.4)

To bound the first term in Eq. (A.4), we expand it by the definition of Eq. (A.1),

T∑
t=1

(
ht(f

∗)− ht(ft+1)
)

=

T∑
t=1

〈Mt+1 −Mt, f
∗ − ft+1〉+

T∑
t=1

(ηt − ηt−1)(R(f∗)−R(ft+1))

≤
T∑
t=1

〈Mt+1 −Mt, f
∗〉 −

T∑
t=1

〈Mt+1 −Mt, ft+1〉+ ηTR(f∗)

= 〈MT+1, f
∗〉 −

T∑
t=1

〈Mt+1 −Mt, ft+1〉+ ηTR(f∗), (A.5)
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where the first inequality is due to the fact that ηt is non-decreasing and η0 = 0. We decompose the second term in Eq. (A.5)
as follows,

T∑
t=1

〈Mt+1 −Mt, ft+1〉 =

T+1∑
t=2

〈Mt, ft〉 −
T∑
t=1

〈Mt, ft+1〉

=

T∑
t=1

〈Mt, ft〉 −
T∑
t=1

〈Mt, ft+1〉+ 〈MT+1, fT+1〉, (A.6)

since M1 = 0. Combining Eq. (A.5) and Eq. (A.6) together,
T∑
t=1

(
ht(f

∗)− ht(ft+1)
)

= −
T∑
t=1

〈Mt, ft − ft+1〉+ 〈MT+1, f
∗ − fT+1〉+ ηTR(f∗). (A.7)

Putting Eq. (A.2), Eq. (A.4) and Eq. (A.7) together, we reach

RT ≤
T∑
t=1

〈qt −Mt, ft − ft+1〉 −
T∑
t=1

ηt
2
‖ft − ft+1‖2 + 〈MT+1, f

∗ − fT+1〉+ ηTR(f∗). (A.8)

To bound the first term in Eq. (A.8), we first use Hölder’s inequality such that

〈qt −Mt, ft − ft+1〉 =
2

ηt
(qt −Mt)

> ηt
2

(ft − ft+1)

≤ ‖ 2

ηt
(qt −Mt)‖∗‖

ηt
2

(ft − ft+1)‖

≤ 1

ηt
‖qt −Mt‖2∗ +

ηt
4
‖ft − ft+1‖2,

where the last inequality is due to 2ab ≤ a2 + b2. Thus we have

RT ≤
T∑
t=1

1

ηt
‖qt −Mt‖2∗ +

T∑
t=1

ηt
4
‖ft − ft+1‖2 −

T∑
t=1

ηt
2
‖ft − ft+1‖2

+〈MT+1, f
∗ − fT+1〉+ ηTR(f∗)

=

T∑
t=1

1

ηt
‖qt −Mt‖2∗ −

T∑
t=1

ηt
4
‖ft − ft+1‖2 + 〈MT+1, f

∗ − fT+1〉+ ηTR(f∗).

By choosing ηt = η
√∑t

s=1 ‖qs −Ms‖2∗ for some absolute constant η, we have

RT ≤
T∑
t=1

‖qt −Mt‖2∗
η
√∑t

s=1 ‖qt −Mt‖2∗
+ η

√√√√ T∑
t=1

‖qt −Mt‖2∗R(f∗)

−
T∑
t=1

ηt
4
‖ft − ft+1‖2 + 〈MT+1, f

∗ − fT+1〉.

(A.9)

Lemma 4 in McMahan [2017] states that for any non-negative real numbers a1, . . . , aT ,

T∑
t=1

at√∑t
s=1 as

≤ 2

√√√√ T∑
t=1

at.

Applying this inequality to the first term in Eq. (A.9) with at = ‖qt −Mt‖2∗, we have

RT ≤
(2

η
+ ηR(f∗)

)√√√√ T∑
t=1

‖qt −Mt‖2∗ −
T∑
t=1

ηt
4
‖ft − ft+1‖2 + 〈MT+1, f

∗ − fT+1〉.

Letting η =
√

2/R(f∗) and Rmax = maxf R(f), this concludes the proof. �
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A.3 Proof of Lemma 5.7: online learning reduction

Step 1. We utilize Lemma 5.4 for each individual state x. Recall that

R2T = τ

K∑
k=1

〈
µπ∗ , Q̂πk(·, π∗)− Q̂πk(·, πk)

〉
= τ

∑
x∈X

µπ∗(x)

K∑
k=1

〈
π∗(·|x)− πk(·|x), Q̂πk(x, ·)

〉
.

Applying Lemma 5.4 with fk = πk(·|x), qk = Q̂πk(x, ·) and Mk = Q̂πk−1
(x, ·), we have

R2T ≤ τ
∑
x∈X

µπ∗(x)
(√

2Rmax

√√√√ K∑
k=1

∥∥Q̂πk(x, ·)− Q̂πk−1
(x, ·)

∥∥2

∞

−
K∑
k=1

ηk(x)

4

∥∥πk(·|x)− πk+1(·|x)
∥∥2

1
+ 2(b+Qmax)

)
,

(A.10)

since Q̂πK (x, a) ∈ [b, b+Qmax] from Condition 4.1. Here, ηk(x) = η
√∑k

s=1 ‖Q̂πs(x, ·)− Q̂πs−1
(x, ·)‖2∞.

Step 2. It remains to bound the cumulative change of estimated Q-values in Eq. (A.10). We first decompose it by substrating
the true Q-function and using the triangle inequality and 2ab ≤ a2 + b2:

K∑
k=1

∥∥Q̂πk(x, ·)− Q̂πk−1
(x, ·)

∥∥2

∞

≤
K∑
k=1

2
∥∥Q̂πk(x, ·)−Qπk(x, ·)

∥∥2

∞ +

K∑
k=1

2
∥∥Qπk−1

(x, ·)− Q̂πk−1
(x, ·)

∥∥2

∞

+

K∑
k=1

2
∥∥Qπk(x, ·)−Qπk−1

(x, ·)
∥∥2

∞.

(A.11)

The first two terms in Eq. (A.11) measure the estimation error. By Condition 4.1, we have,∥∥Q̂πk(x, ·)−Qπk(x, ·)
∥∥2

∞ ≤
2C̃2 log(1/δ)

τ
+ 2ε2

0, (A.12)

with probability at least 1− δ for each k ∈ [K] and for problem-dependent constants C̃. Putting Eq. (A.11), Eq. (A.12) and
Lemma 5.6 together, the following holds with probability 1−Kδ,

K∑
k=1

∥∥Q̂πk(x, ·)− Q̂πk−1
(x, ·)

∥∥2

∞

≤ 8C̃2K log(1/δ)

τ
+ 8Kε2

0

+2t4mix log4
2(K)

K∑
k=1

max
x

∥∥πk(·|x)− πk−1(·|x)
∥∥2

1
+

4K

K6
. (A.13)

Step 3. Finally, by our choice of the data-dependent learning rate ηk(x), we are able to cancel out the positive term in
Eq. (A.10) such that the regret is greatly sharpened. For notation simplicity, we denote dk(x) = ‖πk(·|x)− πk−1(·|x)‖1.
Putting Eq. (A.10) and Eq. (A.13) together, with a union bound, we have

R2T

τ
≤ C1

∑
x∈X

µπ∗(x)
(√

Rmax

√√√√t4mix log4
2(K)

K∑
k=1

max
x

d2
k(x) +

C̃2K log(Kµπ∗(x)δ−1)

τ
+Kε2

0

−
K∑
k=1

ηk(x)

4
d2
k+1(x) + 2(b+Qmax)

) (A.14)
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holds with probability at least 1− δ. Assuming η0(x) = η1(x), we have

K∑
k=1

ηk(x)

4
d2
k+1(x) ≥

K∑
k=1

ηk−1(x)

4
d2
k(x).

Moreover, we denote µ∗min = minx:µπ∗ (x)>0 µπ∗(x) and

g1 = Rmaxt
4
mix log4

2(K)

g2 = C̃2RmaxK log(Kµ∗minδ)
−1/τ +Kε2

0Rmax

g3 = 2(b+Qmax).

Then we simplify Eq. (A.14) as

R2T

τ
≤

∑
x∈X

µπ∗(x)
(√√√√g1

K∑
k=1

max
x

d2
k(x) + g2 −

K∑
k=1

ηk−1(x)

4
d2
k(x) + g3

)

=

√√√√g1

K∑
k=1

max
x

d2
k(x) + g2 −

∑
x∈X

µπ∗(x)

K∑
k=1

ηk−1(x)

4
d2
k(x) + g3.

Let us denote x∗k = argmaxx d
2
k(x). Noting that

∑
x∈X

µπ∗(x)

K∑
k=1

ηk−1(x)

4
d2
k(x) ≥

K∑
k=1

µπ∗(x
∗
k)
ηk−1(x∗k)

4
d2
k(x∗k), (A.15)

we have

R2T

τ
≤

√√√√g1

K∑
k=1

d2
k(x∗k) + g2 −

K∑
k=1

µπ∗(x
∗
k)
ηk−1(x∗k)

4
d2
k(x∗k) + g3

=

√√√√g1

K∑
k=1

µπ∗(x∗k)

µπ∗(x∗k)
d2
k(x∗k) + g2 −

K∑
k=1

µπ∗(x
∗
k)
ηk−1(x∗k)

4
d2
k(x∗k) + g3

≤

√√√√ 4g1

η1(x∗k)µ∗min

K∑
k=1

µπ∗(x∗k)
ηk−1(x∗k)

4
d2
k(x∗k) + g2 −

K∑
k=1

µπ∗(x
∗
k)
ηk−1(x∗k)

4
d2
k(x∗k) + g3

= 2

√√√√ g1

η1(x∗k)µ∗min

( K∑
k=1

µπ∗(x∗k)
ηk−1(x∗k)

4
d2
k(x∗k) +

µ∗minη1g2

4g1

)

−
( K∑
k=1

µπ∗(x
∗
k)
ηk−1(x∗k)

4
d2
k(x∗k) +

µ∗minη1(x∗k)g2

4g1

)
+
µ∗minη1(x∗k)g2

4g1
+ g3,

where the second inequality we use the fact that ηk is monotone increasing. Letting

a =
g1

η1(x∗k)µ∗min

, b =

K∑
k=1

µπ∗(x
∗
k)
ηk−1(x∗k)

4
d2
k(x∗k) +

µ∗minη1(x∗k)g2

4g1
,

and using the fact that 2
√
ab− b ≤ a, we reach

R2T

τ
≤ g1

η1(x∗k)µ∗min

+
µ∗minη1(x∗k)g2

4g1
+ g3. (A.16)

Plugging in back the definition of g1, g2, g2, we have with probability at least 1− δ,

R2T ≤
Rmaxt

4
mix log4

2(K)τ

η1(x∗k)µ∗min

+
η1(x∗k)(C̃2K log(Kµ∗minδ)

−1 + Tε2
0)

4t4mix log4
2(K)

+ 2(b+Qmax). (A.17)
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By definition, η1(x∗k) =
√

2Rmax‖Q̂1(x∗k, ·)‖∞. Since Q̂1(x, a) ∈ [b, b+Qmax] from Condition 4.1, we have η1(x∗k) is
lower and upper bounded by some constant. Denote ρ = maxµ maxx:µ(x)6=0(1/µπ(x)). Based on this, we simplify the
upper bound (A.17) as

R2T . τt
4
mixρ log4

2(K) + C̃2K log(K/δ) + Tε2
0,

where . hides constant factors. This ends the proof. �

A.4 Proof of Lemma 5.6: relative Q-function error

We first introduce a lemma that illustrates the true Q-value can be bounded by the mixing time.

Lemma A.2 (Lemma 3 in Neu et al. [2014]). For any policy π and any state-action pair (x, a) ∈ X ×A, for any reward
function r ∈ [0, 1], we have

|Qπ(x, a)| ≤ 2tmix + 3. (A.18)

From the Bellman equation Eq. (2.2),

Qπk(x, a)−Qπk−1
(x, a) =

∑
x′

P(x′|x, a)
(
Vπk(x′)− Vπk−1

(x′)
)

+ λπk−1
− λπk . (A.19)

We first bound λπk−1
− λπk . By Lemma C.1 (performance difference lemma),

λπk−1
− λπk =

∑
x

µπk−1
(x)
(∑

a

(πk−1(a|x)− πk(a|x))
)
Qπk(x, a).

By Lemma A.2, it implies
λπk−1

− λπk ≤ (2tmix + 3) max
x

∥∥πk−1(·|x)− πk(·|x)
∥∥

1
. (A.20)

Next we bound Vπk(x) − Vπk−1
(x). In an ergodic MDP, the expected average reward λπ can be written as λπ = µ>π rπ,

where rπ(x) =
∑
a π(a|x)r(x, a). Let ex be an indicator vector for state x. For all π,

Vπ(x) =

∞∑
t=0

(
e>x (Pπ)t − µ>π

)
rπ

=

N−1∑
t=0

(
e>x (Pπ)t − µ>π

)
rπ +

∞∑
t=N

(
e>x (Pπ)t − µ>π

)
rπ, (A.21)

Corollary 13.2 of Wei et al. [2019] shows that for an ergodic MDP with mixing time tmix and N = d4tmix log2(K)e, for all
π,

∞∑
t=N

∥∥∥e>x (Pπ)t − µπ
∥∥∥

1
≤
∞∑
t=N

2
1− t

tmix =
2

1− N
tmix

1− 2
− 1
tmix

≤ 2tmix

ln 2
2

1− N
tmix =

2tmix

ln 2

2

K4
≤ 1

K3
.

Thus, the second term in Eq. (A.21) can be bounded by∣∣∣ ∞∑
t=N

(
e>x (Pπ)t − µ>π

)
rπ

∣∣∣ ≤ ∞∑
t=N

∥∥∥e>x (Pπ)t − µπ
∥∥∥

1
≤ 1

K3
.

The following steps are similar to the proof of Lemma 7 in Wei et al. [2019]. For the sake of completeness, we present a full
proof here. The difference between Vπk(x) and Vπk−1

(x) can be bounded by∣∣∣Vπk(x)− Vπk−1
(x)
∣∣∣

=
∣∣∣N−1∑
t=0

e>x

(
(Pπk)t − (Pπk−1)t

)
rπk +

N−1∑
t=0

e>x (Pπk)t(rπk − rπk−1
)−Nλπk +Nλπk−1

∣∣∣+
2

K3

≤
N−1∑
t=0

∥∥∥((Pπk)t − (Pπk−1)t
)
rπk

∥∥∥
∞

+

N−1∑
t=0

‖rπk − rπk−1
‖∞ +N |λπk − λπk−1

|+ 2

K3
. (A.22)
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Next, we will derive a recursive form for the first term as follows:∥∥∥((Pπk)t − (Pπk−1)t
)
rπk

∥∥∥
∞

=
∥∥∥(Pπk(Pπk)t−1 − Pπk(Pπk−1)t−1 + Pπk(Pπk−1)t−1 − Pπk−1(Pπk−1)t−1

)
rπk

∥∥∥
∞

≤
∥∥∥Pπk((Pπk)t−1 − (Pπk−1)t−1

)
rπk

∥∥∥
∞

+
∥∥∥(Pπk − Pπk−1)(Pπk−1)t−1rπk

∥∥∥
∞

≤
∥∥∥((Pπk)t−1 − (Pπk−1)t−1

)
rπk

∥∥∥
∞

+ max
x

∥∥∥e>x (Pπk − Pπk−1)(Pπk−1)t−1
∥∥∥

1

≤
∥∥∥((Pπk)t−1 − (Pπk−1)t−1

)
rπk

∥∥∥
∞

+ max
x

∥∥∥e>x (Pπk − Pπk−1)
∥∥∥

1

≤
∥∥∥((Pπk)t−1 − (Pπk−1)t−1

)
rπk

∥∥∥
∞

+ max
x

(∑
x′

∣∣∣∑
a

(
πk(a|x)− πk−1(a|x)

)
P(x′|x, a)

∣∣∣)
≤

∥∥∥((Pπk)t−1 − (Pπk−1)t−1
)
rπk

∥∥∥
∞

+ max
x

∥∥∥πk(a|x)− πk−1(a|x)
∥∥∥

1
.

By induction, it holds that ∥∥∥((Pπk)t − (Pπk−1)t
)
rπk

∥∥∥
∞
≤ tmax

x

∥∥∥πk(a|x)− πk−1(a|x)
∥∥∥

1
.

Thus,
N−1∑
t=0

∥∥∥((Pπk)t − (Pπk−1)t
)
rπk

∥∥∥
∞
≤ N2 max

x

∥∥∥πk(a|x)− πk−1(a|x)
∥∥∥

1
. (A.23)

In addition,
N−1∑
t=0

‖rπk − rπk−1
‖∞ ≤ N max

x

∥∥∥πk(a|x)− πk−1(a|x)
∥∥∥

1
. (A.24)

Plugging Eq. (A.20), Eq. (A.23) and Eq. (A.24) into Eq. (A.22) yields∣∣∣Vπk(x)− Vπk−1
(x)
∣∣∣ ≤ (N2 +N + (2tmix + 3)N

)
max
x

∥∥∥πk(a|x)− πk−1(a|x)
∥∥∥

1
+

2

K3
, (A.25)

where N = d4tmix log2(K)e. Together with Eq. (A.19), we reach the result. �

B Linear value function approximation

In this section, we show that with linear value function approximation and under similar assumptions as in Abbasi-Yadkori
et al. [2019a], the estimation error in each state can be bounded in the `∞ norm. Note that we consider an unrealizable
case such that Q-function could be approximated linear represented with an irreducible approximation error ε0. This is in
contrast of many existing works [Yang and Wang, 2019a,b, Jin et al., 2019] who consider realizable cases.

Suppose φ : X × A → Rd is a feature map chosen by the user. Consider Q̂πk(x, a) = φ(x, a)>ŵk be the linear value
function estimate where ŵk is the estimated weight vector. Let Ψ be a |X ||A| × d feature matrix whose rows correspond
to state-action feature vectors. We make the regularity assumption on Ψ and assume that for all policies π, the following
feature excitation condition holds.

Assumption B.1 (Linearly independent features). The columns of the matrix [Ψ,1] are linearly independent.

Assumption B.2 (Uniformly excited features, Assumption A4 in Abbasi-Yadkori et al. [2019a]). There exists a positive
real σ such that for any policy π, λmin(Ψ>diag(µπ ⊗ π)Ψ) ≥ σ.

Furthermore, we assume that the following error bound holds.

Assumption B.3 (Estimation error in µπ ⊗ π-norm). For all k ∈ [K], with probability at least 1 − δ, the value error is
bounded in the µπ ⊗ π-norm. ∥∥∥Q̂πk −Qπk∥∥∥

µπ⊗π
≤ C2

√
log(1/δ)

τ
+ ε0 ,

where C2 is a problem-dependent constant and ε0 is the irreducible approximation error.
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The above error Assumption B.3 can be satisfied, for example, by the LSPE algorithm of Bertsekas and Ioffe [1996], as
shown in Theorem 5.1 in Abbasi-Yadkori et al. [2019a]. The same authors show that Assumptions B.1, B.2 and B.3 also
suffice to bound the error in µ∗ ⊗ πk and µ∗ ⊗ π∗-norms, as required by our Lemma 5.3. Here we additionally prove that
under same assumptions, the error in each state is bounded in the `∞-norm, as required by Lemma B.4.

Lemma B.4 (Estimation error in `∞-norm). Under Assumptions B.2 and B.3, the following holds with probability at least
1− δ, ∥∥Q̂πk(x, ·)−Qπk(x, ·)

∥∥
∞ ≤ Cψ

(
C2

√
σ

log(1/δ)

τ
+ ε0

)
,

where CΨ = maxx,a ‖φ(x, a)‖2.

Proof. Note that under Assumption B.2, ||Ψ(ŵk − wk)||2µπ⊗π ≥ σ||ŵk − wk||
2
2. We have the following:

‖Q̂πk(x, ·)−Qπk(x, ·)‖∞ = max
a
|φ(x, a)>(ŵk − wk)|

≤ CΨ||ŵk − wk||2
≤ CΨ||Ψ(ŵk − wk)||µπ⊗π/

√
σ

= CΨ‖Q̂πk −Qπk‖µπ⊗π/
√
σ

≤ CΨC2

√
log(1/δ)/(στ) + CΨ/

√
σε0 .

�

C Supporting lemmas

Lemma C.1 (Performance difference lemma). Consider an MDP specified by the transition probability kernel P and reward
function r. For any policy π, π̂, it holds that

λπ − λπ̂ =
∑
x,a

µπ(x)(π(a|x)− π̂(a|x))Qπ̂(x, a),

where µπ(x) is the stationary distribution of a policy π.

Proof. Based on average reward Bellman equation, we have∑
x,a

µπ(x)π(a|x)Qπ̂(x, a) =
∑
x,a

µπ(x)π(a|x)
[
r(x, a)− λπ̂ +

∑
x′

P(x′|x, a)Vπ̂(x′)
]

= λπ − λπ̂ +
∑
x

µπ(x)Vπ̂(x),

where the second equation is due to
∑
x,a µπ(x)π(a|x)P(x′|x, a) = µπ(x′). Therefore,

λπ − λπ̂ =
∑
x,a

µπ(x)π(a|x)Qπ̂(x, a)−
∑
x

µπ(x)Vπ̂(x)

=
∑
x,a

µπ(x)
(
π(a|x)Qπ̂(x, a)− π̂(a|x)Qπ̂(x, a)

)
.

This ends the proof. �

Lemma C.2 (Lemma 4 in McMahan [2017]). For any non-negative real numbers a1, . . . , aT , the following holds

T∑
t=1

at√∑t
s=1 as

≤ 2

√√√√ T∑
t=1

at.


