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—APPENDIX—

1 CONTINUOUS TIME SDES

Solving the SDE system in (1) for a time interval [0, T ] and fixed θf requires computing integrals of the form∫ T

0

dht =

∫ T

0

fθf (ht, t)dt+

∫ T

0

G(ht, t)dWt.

This operation is intractable for almost any practical choice of fθf (·, ·) and G(·, ·) for two reasons. First, the
integral around the drift term fθf (·, ·) does not have an analytical solution, due both to potential nonlinearities of
the drift and to the fact that ht ∼ p(ht, t) is a stochastic variable following an implicitly defined distribution.
Second, the diffusion term involves the Itô integral (Oksendal, 1992) about Wt which multiplies the non-linear
function G(·, ·).

For each of the SDEs in (6) and (7), we could alternatively to the Euler-Maruyama integration theme use the
Fokker-Planck-Kolmogorov equation to derive a partial differential equation (PDE) system

∂phyb(ht, t|θf )/∂t = −∇ ·
[(
fθf (ht, t) + γ ◦ rξ(ht, t)

)
phyb(ht, t|θf )

]
+∇ ·

(
1∇ ·G(ht, t)phyb(ht, t|θf )

)
,

∂ppri(ht, t)/∂t = −∇ ·
[(
γ ◦ rξ(ht, t)

)
ppri(ht, t)

]
+∇ ·

(
1∇ ·G(ht, t)ppri(ht, t)

)
,

where ∇· is the divergence operator and 1 = (1, . . . , 1)>. Theoretically, these distributions can be obtained by
solving the Fokker-Planck PDE. As this requires solving a PDE which is not analytically tractable, we instead
resort to the discrete time Euler-Maruyama integration.

2 PROOFS

This section gives a more detailed derivation of the individual results stated in the main paper.

Lemma 1. For the process distributions1 Q0→T and P0→T the following property holds

DKL

(
Q0→T ||P0→T

)
=

1

2

∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt+DKL

(
pφ(θf )||ppri(θf )

)
for some T > 0, where Jt = G(ht, t)G(ht, t)

> .
1See the main paper for their definitions.
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Proof. Assume Euler-Maruyama discretization for the process Q0→T on arbitrarily chosen K time points
within the interval [0, T ]. Then we have DKL(Q||P ) denoting the Kullback-Leibler divergence between processes
Q0→T and P0→T up to discretization into T time points as:

DKL(Q||P ) =

∫∫
log

∏K−1
t=0

(
N
(
ht+1|

(
fθf (ht, t) + γ ◦ rξ(ht, t)

)
∆t,Jt∆t

))
∏K−1
t=0

(
N
(
ht+1|γ ◦ rξ(ht, t)∆t,Jt∆t

)) · �
��p(h0)pφ(θf )

�
��p(h0)ppri(θf )

Q0→T dHdθf

=

K−1∑
t=0

∫∫
logN

(
ht+1|

(
fθf (ht, t) + γ ◦ rξ(ht, t)

)
∆t,Jt∆t

)
− logN

(
ht+1|γ ◦ rξ(ht, t)∆t,Jt∆t

)
Q0→T dHdθf

+DKL

(
pφ(θf )||ppri(θf )

)
.

For simplicity, let us modify notation and adopt ft := fθf (ht, t) + γ ◦ rξ(ht, t), gt := γ ◦ rξ(ht, t), and
∆ht+1 := ht+1 − ht. Now writing down the log(·) terms explicitly, we get

DKL(Q||P ) =
1

2

K−1∑
t=0

∫∫∫ [
− (∆ht+1 − ft∆t)

>(Jt∆t)
−1(∆ht+1 − ft∆t)

+ (∆ht+1 − gt∆t)
>(Jt∆t)

−1(∆ht+1 − gt∆t)
]

· phyb(h0→T |θf )pφ(θf )dHdθf

+DKL

(
pφ(θf )||ppri(θf )

)
.

Expanding the products, removing the terms that cancel out, and rearranging the rest, we get

DKL(Q||P ) =
1

2

K−1∑
t=0

∫∫ [
− f>t J−1t ft∆t+ 2∆ht+1J

−1
t ft + g>t J

−1
t gt∆t− 2∆ht+1J

−1
t gt

]
· phyb(h0→T |θf , )pφ(θf )dHdθf

+DKL

(
pφ(θf )||p(θf )

)
.

Note that from the definition of the process it follows that∫
∆ht+1 phyb(h0→T |θf )d∆ht+1 = ft∆t.

Plugging this fact into the KL term, we have

DKL(Q||P ) =
1

2

K−1∑
t=0

∫ [
f>t J−1t ft∆t+ g>t J

−1
t gt∆t− 2ftJ

−1
t gt∆t

]
pφf

(θf ))dθf +DKL

(
pφ(θf )||ppri(θf )

)
.

For any pair of vectors a,b ∈ RP and symmetric matrix C ∈ RP×P , the following identity holds:

a>Ca− b>Cb = (a− b)>C(a− b) + 2a>Cb.

Applying this identity to the above, we attain

DKL(Q||P ) =
1

2

K−1∑
t=0

∫ [
(ft − gt)

>J−1t (ft − gt)∆t
]
pφf

(θf )dθf +DKL

(
q(θf )||p(θf )

)
.

Plugging back the original terms and setting K to the limit, we arrive at the desired outcome

lim
K→+∞

{
1

2

K−1∑
t=0

∫ [
(fθf (ht, t))

>J−1t fθf (ht, t)∆t
]
pφf

(θf )dθf +DKL

(
pφ(θf )||ppri(θf )

)}

=
1

2

∫ [ ∫
fθf (ht, t)

>J−1t fθf (ht, t)pφf
(θf )dθf

]
dt+DKL

(
pφ(θf )||ppri(θf )

)
=

1

2

∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt+DKL

(
pφ(θf )||ppri(θf )

)
.



Theorem 1. Let p(yt|ht) be uniformly bounded likelihood function with density p(yt|ht) everywhere and Q0→T
and P0→T be the joints stochastic processes defined on the hypothesis class of the learning task, respectively. Define
the true risk of a draw from Q0→T on an i.i.d. sample Y = {y1, . . . ,yK} at discrete and potentially irregular
time points t1, . . . , tK drawn from an unknown ground-truth stochastic process G(t) as the expected model misfit
as on the sample as defined via the following risk over hypotheses H = (h0→T , θf )

R(H) = 1− EY∼G(t)

[
K∏
k=1

p(yk|hk)/B

]
, (1)

for time horizon T > 0 and the corresponding empirical risk on a data set D = {Y1, . . . ,YN} as

RD(H) = 1− 1

N

N∑
n=1

[
K∏
k=1

p(ynk |hk)/B

]
. (2)

Then the expected true risk is bounded above by the marginal negative log-likelihood of the predictor and a complexity
functional as

EH∼Q0→T
[R(H)] ≤ EH∼Q0→T

[RD(H)] + Cδ(Q0→T , P0→T ), (3)

≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k )

)
+ Cδ/2(Q0→T , P0→T ) +

√
log(2N/δ)

2S
+K logB (4)

≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

log
(
p(ynk |h

s,n
k )
)

+ Cδ/2(Q0→T , P0→T ) +

√
log(2N/δ)

2S
+K logB, (5)

where B := maxyk,hk
p(yk|hk) is the uniform bound, S is the sample count taken independently for each observed

sequence, and the complexity functional is given as

Cδ(Q0→T , P0→T ) :=

√
DKL

(
Q0→T ||P0→T

)
+ log(2

√
N)− log(δ/2)

2N

with DKL

(
Q0→T ||P0→T

)
as in Lemma 1 for some δ > 0.

Proof. To be able to apply known PAC bounds, we first define the hypothesis class H ∈ HK that contain latent
states hk, θf that explain the observations yk. Then, we define the true risk as

R(H) = EYk∼G(t)

[
1− 1

BK

K∏
k=1

p(yk|hk)

]

and the empirical risk as

RD(H) =
1

N

N∑
n=1

{
1− 1

BK

K∏
kn=1

p(ynk |hnk )

}
,

where we defined

BK := max
y,hk

K∏
k=1

p (yk|hk) ≤
(

max
y,hk

p
(
yk|hk

))K
.

The data set D = {Yn
k}k,n was generated by an unknown stochastic process G(t). Note that we normalize the

risks R(H) and RD(H) by the maximum of the likelihood and thereby obtaining a possible range of these risk of
[0, 1]. The likelihood can be bounded, as the term p(yk|hk) can be bounded from above, as we model this by a
Gaussian.Therefore, it is bounded, if we assume a minimal allowed variance.

To obtain a tractable bound, it is common practice is to upper bound its analytically intractable inverse (Germain
et al., 2016) using Pinsker’s inequality (Catoni, 2007; Dziugaite and Roy, 2017). Indeed, by applying Pinsker’s
inquality to the PAC-Theorem from Maurer (2004), we obtain the following theorem.
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PAC-theorem For any [0, 1]-valued loss function giving rise to empirical and true risk RD(H), R(H), for any
distribution ∆, for any N ∈ N, N > 8, for any distribution P0→T on a hypothesis set QK , and for any δ ∈ (0, 1],
the following holds with probability at least 1− δ over the training set D ∼ ∆N :

∀Q0→T : EH∼Q0→T
[R(H)] ≤ EH∼Q0→T

[RD(H)] +

√√√√KL (Q0→T ‖ P0→T ) + log
(

2
√
N
δ

)
2N

Here, KL (Q0→T ‖ P0→T ) acts as a complexity measure that measures, how much the posterior predictive
governing the SDE Q0→T needed to be adapted to the data when compared to an a priori chosen SDE that
could alternatively have generated data P0→T . In our situation, Q0→T is obtained by our approximation scheme,
resulting in a bounded likelihood of observations yk which factorizes over different observations n. The P0→T can
be arbitrarily chosen as long as it does not depend on the observations. As mentioned in the main paper, we
chose an SDE with the same diffusion term which also factorizes over observations. Using this setting, we can
analytically compute the KL-distance (as shown in Lemma 1).

On the right hand side of this PAC-bound, we need to evaluate EH∼Q0→T
[RD(H)]. To this end, we note

EH∼Q0→T
[RD(H)] =

1

N

N∑
n=1

EH∼Q0→T

[
1− 1

BK

(
K∏
k=1

p(ynk |hnk )

)]

= 1− 1

N

N∑
n=1

EH∼Q0→T

[
1

BK

K∏
k=1

p(ynk |hnk )

]
Hoeffding
≤ 1− 1

SN

N∑
n=1

S∑
s=1

[
1

BK

K∏
k=1

p(ynk |h
n,s
k )

]
+

√
log(2N/δ)

2S

=
1

N

N∑
n=1

{
1− 1

S

S∑
s=1

[
1

BK

K∏
k=1

p(ynk |h
n,s
k )

]}
+

√
log(2N/δ)

2S

− log(z)≥1−z
≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k )

)
+ logBK +

√
log(2N/δ)

2S

Jensen’s ineq.
≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

[
log p(ynk |h

n,s
k )
]

+ logBK +

√
log(2N/δ)

2S
,

where we have used Hoeffding’s inequality for estimating the true expectation over hypotheses with a K samples
trace hn,sk , k = 1, . . . ,K, s = 1, . . . , S for each observation n. As we approximate the integral for each time-series
n separately via sampling, we require Hoeffding to hold simultaneously for all n. Using a union bound, we have
to scale δ for each n by N . Splitting confidences between the PAC-bound and the sampling based approximation
results an additional factor of 2. With δ/(2N), the corresponding inequality holds with a probability of P > δ/2.
Also using δ/2 in PAC-theorem, we obtain that with P ≥ 1− δ we have for all Q0→T that

EH∼Q0→T
[R(H)] ≤ EH∼Q0→T

[RD(H)] +

√√√√KL (Q0→T ‖ P0→T ) + log
(

2
√
N

δ/2

)
2N

≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k )

)
+

√√√√KL (Q0→T ‖ P0→T ) + log
(

2
√
N

δ/2

)
2N

+ logBK +

√
log(2N/δ)

2S

≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

[
log p(ynk |h

n,s
k )
]

+

√√√√KL (Q0→T ‖ P0→T ) + log
(

2
√
N

δ/2

)
2N

+ logBK +

√
log(2N/δ)

2S



Corollary 1. Given a L-Lipschitz continuous function set{
fnθ (x) : R→ [0, 1]

∣∣∣n = 1, · · · , N
}⋃{

gθ(x) : R→ [0,+∞]
}
,

for the two losses:

l1(θ) = −
N∑
n=1

fnθ (x) + gθ(x) and l2(θ) = −
N∑
n=1

log fnθ (x) + gθ(x),

the sequential updates (θ0 := θ)

θ(n) ← θ(n−1) + αn∇
(

log fnθ(n−1)(x)
)
, n = 1, . . . , N,

θ(N+1) ← θ(N) − αN+1∇gθ(N)(x),

where αn ∈ (0, fn
θ(n−1)(x)/L) ∀n and αN+1 ∈ (0, 1/L), satisfy both l1(θ(N+1)) ≤ l1(θ) and l2(θ(N+1)) ≤ l2(θ).

Proof. As we only consider updates in θ for constant x, we simplify the notation for this proof to fn(θ) := fnθ (x),
g(θ) = gθ(x). I.e. we have as the two loss terms

l1(θ) = −
N∑
n=1

fn(θ) + g(θ) and l2(θ) = −
N∑
n=1

log fn(θ) + g(θ).

In general we have with log f(θ) < f(θ) that l1(θ) < l2(θ). Similarly we have

∇l2(θ) = −
∑
n

1

fn(θ)︸ ︷︷ ︸
≥1

∇fn(θ) +∇g(θ) ≤ −
∑
n

∇fn(θ) +∇g(θ) = ∇l1(θ).

Due to the sequential updates we can consider each term separately. For an L-Lipschitz function fn(θ), we have
that for arbitrary x, y

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
||y − x||22.

Choosing y = θ(n−1) and x = θ(n) = θ(n−1) + αn∇ log fn this gives us

f(θ(n−1)) ≤ f(θ(n))− αn
fn(θ(n))

||∇fn(θ(n))||22 +
Lα2

n

2fn(θ(n))2
||∇fn(θ(n))||22

= fn(θ(n))− αn
fn(θ(n))︸ ︷︷ ︸
≥0

(
1− Lαn

2fn(θ(n))

)
︸ ︷︷ ︸

>0

||∇fn(θ(n))||22 ≤ fn(θ(n)),

and hence chaining the update steps gives the desired result.

That is, updating the terms in l2(θ) sequentially, one can ensure concurrent optimization of l1(θ). Note that l1(θ)
and l2(θ) are not necessarily dual objectives, hence may have different extrema. Nevertheless, a gradient step that
decreases one loss also decreases the other with potentially a different magnitude. In practice, we observe this
behavior to also hold empirically for joint gradient update steps with shared learning rates. Applying Lemma 2
to the setup in Theorem 2, we establish a useful link between Empirical Bayes and PAC learning.

Theorem 2 (strong convergence). Let hθt be an Itô process as in (4) with drift parameters θ and its Euler-
Maruyama approximation h̃θt for some regular step size ∆t > 0. For some coefficient R > 0 and any T > 0, the
following inequality holds

E

[
sup

0≤t≤T

∣∣∣Eθ[hθt ]− 1

S

S∑
s=1

h̃θ
(s)

t

∣∣∣] ≤ R∆t1/2,

as S →∞, where {θ(s) ∼ pφ(θf )|s = 1, . . . , S} are i.i.d. draws from a prior pφ(θf ).
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Proof: The Euler-Maruyama (EM) approximation converges strongly as

E
[∣∣hθT − h̃

θ

T

∣∣] ≤ R∆t1/2,

for a positive constant R and a suitably small step size ∆t as discussed e.g. by Kloeden and Platen (2011). To
simplify the mathematical notation we follow their approach of comparing the absolute error of the end of the
trajectory throughout the proof. As our sampling scheme is unbiased it is a consistent estimator and we have
that asymptotically for S →∞

1

S

S∑
s=1

h̃
θ(s)
T = Eθ[h̃

θ
T ].

We then have for the marginal hT , h̃T that

E
[∣∣hT − h̃T

∣∣] = E
[∣∣EθhθT − Eθh̃θT ∣∣]

= E
[∣∣Eθ [hθT − h̃

θ

T

] ∣∣]
≤ E

[
Eθ

[∣∣hθT − h̃
θ

T

∣∣]]
≤ Eθ

[
R∆t1/2

]
= R∆t1/2,

where the first inequality is due to Jensen and the second due to the strong convergence result for a fixed set of
parameters.

3 COMPUTATIONAL COST

We present the runtimes of the different approaches in Table 1. D-BNN samples the weights of the neural network
directly leading to the runtime term O(MTF ). All other approches do not sample the weights but the linear
activations of the each data points leading to O(2MTF ). When we apply empirical Bayes, we dot not use any
regularization term on the weights, while all other approaches contain a penalty term with cost O(W ). Using the
PAC-framework, we employ a second regularization term that leads to an additional runtime cost of O(TMD3).
However, the cubic cost in D is invoked by inverting the diffusion matrix G(ht, t) and can be further reduced
by choosing a simpler form for G(ht, t) (e.g. diagonal). In case that prior knowledge is available in ODE form,
we need to compute the corresponding drift term for each time point and each MC sample leading to the term
O(MTP ).

Table 1: Computational cost analysis in FLOPs for time series of length T. M: Number of Monte Carlo Samples.
W: Number of weights in the neural net. F: Forward pass cost of a neural net. L: Cost for computing the
likelihood term. D: Number of dimensions. P: Cost of a prior SDE integration.

Model Training per Iteration

D-BNN (SGLD) O(MTF +MTDL+W )
Variational Bayes O(2MTF +MTDL+W )
E-Bayes O(2MTF +MTDL)
E-PAC-Bayes O(2MTF +MTDL+W + TMD3)
E-Bayes-Hybrid O(2MTF +MTDL+MTP )
E-PAC-Bayes-Hybrid O(2MTF +MTDL+W + TMD3 +MTP )

4 FURTHER DETAILS ON THE EXPERIMENTS

Here we provide the details of the experiment setup we used in obtaining our results reported in the main paper.
We observed our results to be robust against most of the design choices. We provide a reference implementation
at https://github.com/manuelhaussmann/bnsde.

https://github.com/manuelhaussmann/bnsde


4.1 Lorenz Attractor

We took 200000 Euler-Maruyama steps ahead with a time step size of 10−4 and downsampling by factor 0.01,
which gives a sequence of 2000 observations with frequency 0.01. We split the first half of this data set into 20
sequences of length 50 and use them for training, and the second half to 10 sequences of length 100 and use for
test. For all model variants, we used an Adam optimizer learning rate 0.001, minibatch size of two, a drift net
with two hidden layers of 100 neurons and softplus activation function.We trained all models for 100 epochs and
observed this training period to be sufficient for convergence.

4.2 CMU Motion Capture

In this experiment, we tightly follow the design choices reported by Yildiz et al. (2019) to maintain commensu-
rateness. This setup assumes the stochastic dynamics are determined in a six-dimensional latent space. Yildiz
et al. (2019) use an auto-encoder to map this latent space to the 50−dimensional observation space back and
forth. We adopt their exact encoder-decoder architecture and incorporate it into our BNSDE, arriving at the
data generating process

θf ∼ pφf
(θf ),

dht|θf ∼ fθf
(
bλ(ht), t

)
dt+G

(
bλ(ht), t

)
dβt,

zt|ht ∼ N (zt|aψ(ht), 0.5 · 10−61),

yt|zt ∼ N (yt|zt, 0.5 · 10−61), ∀t ∈ t.

Above, bλ(·, ·) is the encoder which takes the observations of the last three time points as input, passes them
through two dense layers with 30 neurons and softplus activation function, and then linearly projects them to a
six-dimensional latent space, where the dynamics are modeled. The decoder aψ(ht) follows the same chain of
mapping operations in reverse order. The only difference is that the output layer of the decoder emits only one
observation point, as opposed to the encoder admitting three points at once.

The drift function fθf (·, ·) is governed by another separate Bayesian neural net, again with one hidden layer of 30
neurons and softplus activation function on the hidden layer. The diffusion function is fixed to be a constant.

We train all models except SGLD with the Adam optimizer for 3000 epochs on seven randomly chosen snippets
at a time with a learning rate of 10−3. We use snippet length 30 for the first 1000 epochs, 50 until epoch 2500,
and 100 afterwards. SGLD demonstrates significant training instability for this learning rate, hence for it we drop
its learning rate to the largest possible stable value 10−5 and increase the epoch count to 5000.

5 FURTHER EXPERIMENTS

5.1 Lotka Volterra

We demonstrate the benefits of incorporating prior knowledge although it is a coarse approximation to the true
system. We consider the Lotka-Volterra system specified as:

dxt = (θ1xt − θ2xtyt)dt+ 0.2 dβt,

dyt = (−θ3yt + θ4xtyt)dt+ 0.3 dβt.

with θ = (2.0, 1.0, 4.0, 1.0). Assuming that the trajectory is observed on the interval t = [0, 1] with a resolution of
dt = 0.01, we compare the following three methods: i) the black-box BNSDE without prior knowledge, ii) the
white-box SDE in (7) representing partial prior knowledge (parameters are sampled from a normal distribution
centered on the true values with a standard deviation of 0.5), and finally iii) combining them in our proposed
hybrid method. The outcome is summarized in Figure 1. While the plain black-box model delivers a poor fit to
data, our hybrid BNSDE brings significant improvement from relevant but inaccurate prior knowledge.

5.1.1 Experimental details

We took 105 Euler-Maruyama steps on the interval [0, 10] with a time step size of 10−4, downsampling them
by a factor of 100 giving us 1000 observations with a frequency of 0.01. We take the first 500 observations on
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Figure 1: Lotka-Volterra visualization. Error bars indicate three standard deviations over 10 trajectories starting
from the true value at t = 1. The predictions over 200 time steps (dt = 0.01) are for: i) a BNSDE trained without
prior knowledge, ii) an SDE with known prior parameters, iii) the joint hybrid BNSDE. The dashed lines are the
observed trajectories for xt and yt.

the interval [0,5] to be the training data and the observations in (5, 10] to be the test data. Each sequence is
split into ten sequences of length 50. Assuming the diffusion parameters to be known and fixed, both BNSDEs
(i.e. with and without prior knowledge) get a 4 layer net as the drift function with 50 neurons per layer and
ReLU activation functions. The BNSDE with prior knowledge as well as the raw SDE estimate each get an initial
sample of θ̃ parameters as the prior information by sampling from a normal distribution centered around the
true parameters (θ̃ ∼ N (θ̃|θ, σ214)). The models are each trained for 50 epochs with the Adam optimizer and a
learning rate of 1e− 3. Since both the latent and observed spaces are only two dimensional, we did not need an
observation model in this experiment. We directly linked the BNSDE to the likelihood.

5.2 Lorenz Attractor

As discussed in the main paper, the model is trained solely on the first 1000 observations of a trajectory consisting
of 2000 observations, leaving the second half for the test evaluation. Figure 2 visualizes the qualitative difference
between the two. Note also the single loop the trajectory performs which we will see again in the 1d projections
below. To visualize explore the qualitative difference of our proposed model with weak prior knowledge compared
to one lacking this knowledge we consider the situation where we we have structural prior knowledge only about
the third SDE (i.e. the penultimate case in Table 1 with ρ = [0, 0, 1].

In order to properly visualize it we switch from the 3d plot to 1d plots showing always one of the three dimensions
vs the time component. We always start at T = 10, forcasting either 100 steps (as in the numerical evaluation),
200 or 1000 steps. All the following figures show the mean trajectory averaged over 21 trajectories, as well as
an envelope of ± 2 standard deviations. Figure 3 visualizes that at that time scale the qualitative behavior is
similar without clear differences. Doubling the predicted time interval as shown in Figure 4 the baseline starts
to diverge from the true test sequence, while our proposed model still tracks it closely be it at an increased
variance. Finally predicting for 1000 time steps (Figure 5) the chaotic behavior of the Lorenz attractor becomes
visible as the mean in both setups no longer tracks the true trajectory. Note however that the baseline keeps has
rather small variance and a strong tendency in its predictions that do not replicate the qualitative behavior of the
Lorenz attractor. While the proposed model also shows an unreliable average, the large variance, which nearly
always includes the true trajectory shows that the qualitative behavior is still replicated properly by individual
trajectories of the model. See Figure 6 for seven individual trajectories of each of the two models. All trajectories
of E-PAC-Bayes-Hybrid show the qualitatively correct behavior, including even the characteristic loop.
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Figure 2: Visualization of the stochastic Lorenz attractor. Of the 2000 observations, the first 1000 constitute
the training data (marked in blue), while the second 1000 are the test observations (marked in red). Note the
qualitative difference of the two sets.
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Figure 3: Predicting 100 time steps ahead.
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Figure 4: Predicting 200 time steps ahead.
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Figure 5: Predicting 1000 time steps ahead.
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Figure 6: Predicting 1000 time steps ahead. Shows individual trajectories.
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