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Abstract

Neural Stochastic Differential Equations
model a dynamical environment with neu-
ral nets assigned to their drift and diffusion
terms. The high expressive power of their
nonlinearity comes at the expense of instabil-
ity in the identification of the large set of free
parameters. This paper presents a recipe to
improve the prediction accuracy of such mod-
els in three steps: i) accounting for epistemic
uncertainty by assuming probabilistic weights,
ii) incorporation of partial knowledge on the
state dynamics, and iii) training the resultant
hybrid model by an objective derived from
a PAC-Bayesian generalization bound. We
observe in our experiments that this recipe
effectively translates partial and noisy prior
knowledge into an improved model fit.

1 INTRODUCTION

In many engineering applications, it is often easy to
model dominant characteristics of a dynamical envi-
ronment by a system of differential equations with a
small set of state variables. In contrast, black-box ma-
chine learning methods are often highly accurate but
less interpretable. Pushing the model towards high
fidelity by capturing intricate properties of the envi-
ronment, however, usually requires highly flexible, e.g.
over-parameterized models. Fitting these models to
data can, in turn, result in over-fitting and hence poor
generalization ability due to their high capacity.

Our work combines the benefits of both types of models
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by hybrid modeling: We set up the learning task as a
non-linear system identification problem with partially
known system characteristics. It assumes to have ac-
cess to a differential equation system that describes
the dynamics of the target environment with low fi-
delity, e.g. by describing the vector field on a reduced
dimensionality, by ignoring detailed models of some
system components, or by avoiding certain dependen-
cies for computational feasibility. We incorporate the
ODE system provided by the domain expert into a non-
linear system identification engine, which we choose
to be a Bayesian Neural Stochastic Differential Equa-
tion (BNSDE) to cover a large scope of dynamical
systems, resulting in a hybrid model.

We propose a new algorithm for stable and effective
training of such a hybrid BNSDE that combines the
strengths of two statistical approaches: i) Bayesian
model selection (Williams and Rasmussen, 2006), and
ii) Probably Approximately Correct (PAC) Bayesian
bounds (McAllester, 1999; Seeger, 2002). We improve
the theoretical links between these two approaches
(Germain et al., 2016b) by demonstrating how they can
co-operate during training. To this end, we propose a
novel training objective that suits SDE inference and
derive a PAC-Bayesian generalization bound. Further,
we provide a proof that this bound is upper bounded by
the marginal likelihood of the BNSDE hyperparameters
and a complexity penalizer. Gradients of this upper
bound are tied to the actual PAC bound, hence tight-
ening the upper bound also tightens the PAC bound.
Consequently, optimizing this bound amounts to Em-
pirical Bayes stabilized by a regularizer developed from
first principles. We refer to using this objective for
training as Empirical PAC-Bayes.

We demonstrate that our method can translate coarse
descriptions of the actual underlying dynamics into
a consistent forecasting accuracy increase. We first
show the necessity of each of the multiple steps that
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comprise our method in an ablation study. Finally, we
demonstrate in a real-world motion capture modelling
task, that our method outperforms black-box system
identification approaches (Chen et al., 2018; Hegde
et al., 2019; Look and Kandemir, 2019) and alternative
hybridization schemes that incorporate second-order
Newtonian mechanics (Yildiz et al., 2019).

2 BACKGROUND

Our contribution combines approaches from stochastic
differential equations, PAC-Bayes, and Empirical Bayes.
Hence, we first introduce each of these concepts.

Stochastic Differential Equations. Stochastic dif-
ferential equations (SDEs) are an extension of ordinary
differential equations (ODEs) to include stochastic fluc-
tuations in the dynamics (Oksendal, 1992). If we let
ht ∈ RP denote the P -dimensional state, the dynamics
can be written in the following form:

dht = f(ht, t)dt+G(ht, t)dWt, (1)

where the drift term is given by an arbitrary non-linear
function f(·, ·) : RP ×R+ → RP and the matrix valued
function G(·, ·) : RP ×R+ → RP×P governs the diffu-
sion dynamics. Finally, Wt denotes a P -dimensional
Wiener Process determining the stochastic fluctuations.
The solution to the SDE is a stochastic process ht.

As analytical solutions of SDEs are not available except
for specific choices of f and G, one has to resort to
numerical approximation methods. Analogous to the
practice for ODEs, a common approach which we follow
is to use the Euler-Maruyama (EM) method (Särkkä
and Solin, 2019), which discretizes the SDE in time
steps t1, . . . , tK , resulting in the following sample-based
approximation to the joint distribution:

htk+1
= htk + f(htk , tk)∆tk +G(htk , tk)∆Wk,

∆Wk ∼ N (0,∆tk1P ), ∆tk := tk+1 − tk,
(2)

where 1P is a P dimensional identity matrix. Using
this sampling scheme, we obtain an approximation
to the joint distribution p(ht1 , . . .htK ) for the given
(fixed) drift and diffusion functions.

PAC-Bayes. Probably approximately correct (PAC)
bounds quantify a model’s generalization capabilities
from a training set to the true data distribution. To
this end, a risk R(h) = Ex [l(x, h(x))] of a hypothesis
h is defined via a loss function l(x, h(x)) that mea-
sures the loss of the hypothesis evaluated at a data
point x. Particularly, we build upon the PAC-Bayesian
formulation (McAllester, 1999, 2003), in which the
generalization performance of a posterior, i.e. a dis-
tribution Q over hypotheses, is characterized by the

following bound which holds with probability greater
than 1− δ:

∀Q : Eh∼Q [R(h)] ≤ Eh∼Q [RD(h)] + C(P,Q, δ,N).

In the inequality above, EQ [R(h)] is the expected
risk across all hypotheses under the true data dis-
tribution, which is not accessible in practice, and
EQ [RD(h)] = EQ

[
1
|D|
∑
x∈D l

(
x, h(x)

)]
is its empiri-

cal counterpart in which the risk is averaged across the
observed data D. A distribution P over the hypotheses
referred to as the prior determines the complexity term
C(P,Q, δ,N). This term additionally depends on the
number of observed data points N and a confidence
variable δ specifying the probability with which the
bound holds (McAllester, 1999; Maurer, 2004).

Empirical Bayes. Bayesian models define a prior
distribution pφ(θ) over parameters θ with hyperparame-
ter φ, which together with the likelihood p(D|θ) defines
the full model. The standard approach consists of learn-
ing a posterior over these parameters p(θ|D) keeping
the hyperparameters φ fixed and marginalizing over θ
in a second step to get the posterior predictive. An
alternative, known as Empirical Bayes or Type-II max-
imum likelihood (Bishop, 2006), directly marginalizes
over the prior, and optimizes the resulting marginal
likelihood with respect to the hyperparameters φ,

φ∗ = arg max
φ

∫
p(D|θ)pφ(θ)dθ. (3)

3 THE PROPOSED METHOD

In this section, we describe how to combine these tools
into a coherent whole for effective inference. We first
construct a BNSDE and equip it with domain-specific
prior knowledge. Then, we derive a PAC-Bayesian
objective to fit it to data and conclude with results on
the proposed approach’s convergence.

3.1 A Hybrid BNSDE

Application of deep learning to differential equation
modelling paves the way to high-capacity predictors
for capturing complex dynamics (Chen et al., 2018;
Rackauckas et al., 2020). Neural Stochastic Differential
Equations (NSDEs) (Look and Kandemir, 2019; Tzen
and Raginsky, 2019) are SDEs as defined in (1) where
the drift function, and potentially also the diffusion
function are modelled as neural nets. As an initial
step towards effective training, we introduce a prior
distribution pφ(θf ), parameterized by φ on the weights
θf of an NSDE drift network, and arrive at

dht = fθf (ht, t)dt+G(ht, t)dWt, θf ∼ pφ(θf ), (4)
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Figure 1: Illustration of the research question we pose
(above) and our proposed solution (below).

which we refer to as a Bayesian Neural Stochastic Dif-
ferential Equation (BNSDE). The epistemic uncertainty
introduced on the network weights allows the model to
quantify the model uncertainty, i.e. the knowledge of
which synaptic map fits best to data, in addition to the
aleatoric uncertainty that the Wiener Process models.
For technical reasons to be clarified below, we assume
fθf (·, ·) and G(·, ·) to be L-Lipschitz-continuous, and
G(·, ·) not to have any learnable parameters.

A coarse description of the environment dynamics is
sometimes available as an incomplete set of differen-
tial equations in real-world applications. For instance,
the dynamics of a three-dimensional volume might be
modelled as a flow through a single point, such as the
center of mass. Alternatively, a model on a subset of
the system components might be provided. We assume
this prior knowledge to be available as an ODE

dht = rξ(ht, t)dt, (5)

where rξ(·, ·) : RP × R+ → RP is an arbitrary non-
linear function parameterized by a fixed set of parame-
ters ξ. We can incorporate these known dynamics into
the BNSDE by adding them to the drift as follows:

dht =
(
fθf
(
ht, t) +γ ◦ rξ(ht, t)

)
dt+G(ht, t)dWt, (6)

which can be viewed as a hybrid SDE with the free

parameter vector γ ∈ [0, 1]P governing the relative
importance of prior knowledge on the learning problem
and ◦ referring to element-wise multiplication. Al-
though we specified (5) within the same dimensional
state space as (6), γ allows us to provide only partial
information. When prior knowledge is available only for
a subset of the state space dimensions, the remaining
dimensions d can be filled in by simply setting γd = 0.

We define a prior stochastic process representing solely
the prior knowledge of the dynamics as

dht =
(
γ ◦ rξ(ht, t)

)
dt+G(ht, t)dWt. (7)

This prior SDE will be used as a reference distribution
for complexity penalization as part of the final PAC
training objective of our hybrid SDE. Note that we have
used the same diffusion term as in (6) for specifying the
prior SDE, which makes the complexity term within
the PAC-formulation tractable, as we will show later.
Also note that γ is a free parameter of the prior.

3.2 Learning via Empirical Bayes

Solving the SDE in (6) even for fixed parameters θf
over an interval [0, T ] is analytically intractable for
basically all practically interesting use cases. While
our method is applicable to any discretization scheme,
we demonstrate its use with the straightforward EM
for simplicity, which gives us the discrete-time version
of the hybrid BNSDE below

θf ∼ pφ(θf ), h0 ∼ p(h0),

hk+1|hk, θf ∼ N
(
hk+1

∣∣hk + d(hk, tk)∆tk,Σk
)
,

d(hk, tk) = fθf (hk, tk) + γ ◦ rξ(hk, tk),

with Σk := Jk∆tk,Jk := G(hk, tk)G(hk, tk)>, ∆tk :=
tk+1 − tk, and p(h0) defined on the initial state.

Analogously to latent state space models, we assume
that the observations of the dynamics described in (4),
(6), and (7) are linked via a likelihood p(yk|hk). Specif-
ically, we observe these dynamics as a time series Y =
{y1, . . . ,yK} consisting of K observations yk ∈ RD,
collected at irregular time points t = {t1, . . . , tK}.

Given an observed set of N such time series trajectories
D = {Y1, . . . ,YN}, the classical approach (MacKay,
2003; Gelman et al., 2013) would now require as a
first step the inference of the posterior over both
the global variables θf as well as the local variables
Hn = {hn1 , ...,h

n
K}, i.e. of p(θf ,H1, . . . ,HN |D), and as

a second step a marginalization over this posterior to
get the posterior predictive. As an analytical solution
is intractable, approximate solutions such as Markov
Chain Monte Carlo (MCMC) methods or Variational
Inference (VI) are required. Application of either of
these approaches to BNSDEs is prohibitive, the former
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computationally, the latter in terms of expressiveness
since existing work makes strong independence and
structural assumptions on the approximate posterior.

We propose in the following to apply model selection as
an alternative path to BNSDE inference. Instead of per-
forming the posterior inference on the latent variables,
we marginalize them out and learn those hyperparame-
ters φ from data that provide the highest log marginal
likelihood (Williams and Rasmussen, 2006). That is
our BNSDE learns the optimal φ∗ via

arg max
φ

∫
p(D|H)p(H|θf )pφ(θf )d(H, θf ). (8)

An advantage of this construction is that the marginal
likelihood has the identical functional form to the pre-
dictive distribution, which is the quantity of interest in
a typical prediction task. Marginal likelihood learning
has also been applied before in the context of neural
networks (Sensoy et al., 2018; Malinin and Gales, 2018;
Garnelo et al., 2018). Fitting the hyperparameters of
an SDE to data via marginal likelihood maximization
can also be viewed as an instance of the simulated
likelihood method (Särkkä and Solin, 2019).

Marginalizing over θf in (8) is intractable for most
practical use cases. However, it can be approximated
by Monte Carlo integration without constructing chains
on the global parameters. Sampling directly from the
prior, we get for a single observation n and s = 1, . . . S

θsf ∼ pφ(θf ), Hs ∼ p(H|θsf ),

φ∗ := arg max
φ

log
( 1

S

S∑
s=1

p(D|Hs)
)
.

(9)

In order to maximize this objective, we require an effi-
cient computation of gradients w.r.t. the hyperparame-
ters φ. Access to φ is only given via samples from the
distribution it is parameterizing. In our experiments,
we assume this distribution pφ(θf ) to be normal, allow-
ing us to make use of a standard reparameterization.
We separate the sampling process into a parameter-free
source of randomness and a parametric transformation,
i.e. we have ε ∼ p(ε), θf = gφ(ε), for a suitable gφ(·).
In order to further reduce the variance noise introduced
to the gradients due to this sampling step, we also use
the local reparameterization trick (Kingma et al., 2015)
in the drift, i.e. we sample the layer outputs during the
forward propagation instead of individual layer weights.

The objective (9) is agnostic to the specific SDE em-
ployed. Therefore, we refer to the discretized black-box
SDE in (4) governing p(H|θf ) and trained w.r.t. φ via
this objective as E-Bayes throughout the experiments.
Analogously, we refer to training a hybrid SDE as in (6)
with the same method as E-Bayes-Hybrid.

3.3 A Trainable PAC Bound

A major downside of the objective in (9), when applied
to BNSDEs, is that it optimizes a large set of hyper-
parameters, i.e. means and variances of drift network
weights, without a proper regularization aside from the
implicit regularization inherent in the chosen architec-
ture and the marginalization itself. While the hybrid
approach already allows us to incorporate prior expert
knowledge, it remains a guiding signal without an ex-
plicit model capacity regularizer. Next, we address
this problem by developing a training objective derived
from a PAC-Bayesian bound objective that combines
the benefits from the results we arrived at so far with
a proper regularization scheme.

The proposed approach is still agnostic to the chosen
discretization scheme. Consequently, we refer for any
time horizon T > 0 to all local latent variables by
h0→T . To distinguish the density given by the hybrid
SDE in (6) from the prior SDE in (7), we further refer
to the two densities induced by them respectively as
phyb(h0→T |θf ) and ppri(h0→T ). We define two distri-
butions Q and P over (h0→T , θf ). For the former, we
have the joint distribution of the hybrid process

Q0→T (h0→T , θf ) = phyb(h0→T |θf )pφ(θf ), (10)

while the latter stands for the joint of the prior process

P0→T (h0→T , θf ) = ppri(h0→T )ppri(θf ). (11)

Although the prior process is independent of the drift
parameters θf , we specify a fixed prior distribution
ppri(θf ), which we choose to be a standard normal
within our experiments. To be compliant with the
notational practice in the PAC-Bayesian literature, we
denote the prior distribution as P and the posterior
distribution that is fit to data as Q.1

As both Q and P share the same diffusion term, the
Kullback-Leibler (KL) divergence between these pro-
cesses can be calculated by extending the proof of Ar-
chambeau et al. (2008). The following Lemma holds for
any choice of diffusion G(·, ·). You can find the proofs
for it and the following Theorems in the appendix.

Lemma 1. For the process distributions Q0→T and
P0→T , it holds that

DKL

(
Q0→T ||P0→T

)
=

1

2

∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt

+DKL

(
pφ(θf )||ppri(θf )

)
,

1In the PAC-Bayesian framework, P and Q do not have
to be linked to each other via application of the Bayes rule
on an explicitly defined likelihood.
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for some T > 0, where Jt = G(ht, t)G(ht, t)
>.

This Lemma2 provides one of the main ingredients for
deriving a PAC-Bayesian bound on the generalization
performance of a learned distribution Q0→T . To derive
such a bound, we additionally specify the risk via a
loss function measuring the model mismatch. We as-
sume the likelihood function p(yt|ht) to be uniformly
bounded everywhere.3 We then define the true risk
of a draw from Q0→T on an i.i.d. sampled trajectory
Y = {y1, . . . ,yK} at discrete and potentially irregular
time points t1, . . . , tK drawn from an unknown ground-
truth stochastic process G(t) as the expected model
misfit on the sample. Specifically, we define the risk
over hypotheses H = (h0→T , θf ) as follows:

R(H) = 1− EY∼G(t)

[ K∏
k=1

p(yk|hk)/B
]
, (12)

for time horizon T > 0 and the corresponding empirical
risk on a data set D = {Y1, . . . ,YN} as

RD(H) = 1− 1

N

N∑
n=1

[ K∏
k=1

p(ynk |hnk )/B
]
. (13)

Here, B := maxyk,hk
p(yk|hk) is a uniform bound to

guarantee a [0, 1]-valued loss.

Next, we develop a PAC-Bayesian generalization bound
building on these risk definitions. Furthermore, we
upper bound it with a trainable objective.

Theorem 1. The expected true risk is bounded above
with probability P ≥ 1− δ, for δ ∈ (0, 1] by:

EH∼Q0→T
[R(H)]

≤ EH∼Q0→T
[RD(H)] + Cδ(Q0→T , P0→T ) (14)

≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k )

)
(15)

2We assume ppri and pφ to be Gaussians. However,
to express the KL divergence between prior and posterior
processes analytically, it is sufficient for them to share the
same diffusion. Following the established definition of a
stochastic process on which the Itô calculus has been built,
we assume Gaussian diffusion noise across time increments.
In our case, these Gaussian increments are warped by non-
linear drift functions (neural nets) in the subsequent time
steps. Hence, they are capable of expressing arbitrarily
complicated marginal process densities. In effect, one can
attain a Gaussian distributed marginal process only from a
linear time-invariant SDE. The integral could be analogously
defined also for other consistent increment choices (e.g.,
Levy-Flights instead of Brownian motions).

3In our experiments, we ensure this condition by choos-
ing the likelihood to be a normal density with bounded
variance, i.e. bounded mass on the mode.

+ Cδ/2(Q0→T , P0→T ) +

√
log(2N/δ)

2S
+K logB︸ ︷︷ ︸

=:C

,

≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

log
(
p(ynk |h

n,s
k )
)

+ C (16)

with S the sample count taken independently for each
observed sequence, and the complexity functional:

Cδ(H0→T , P0→T ) =√
DKL

(
Q0→T ||P0→T

)
+ log(2

√
N)− log(δ/2)

2N

where DKL

(
Q0→T ||P0→T

)
as in Lemma 1.

As the complexity term in (16) vanishes for large sam-
ple sizes (N,S), the first term converges to the expected
log-likelihood for a given time resolution K. Although
the bound loosens as K increases, note that the gra-
dient of the bound w.r.t. model parameters remains
unaffected. Theorem 1 can be used to learn a posterior
distribution Q0→T from data by adjusting φ. Addition-
ally, we can also learn the importance of the prior by
fitting the γ parameter to data. While directly learning
γ by optimizing the PAC-bound violates the general-
ization guarantee, we can define a collection of prior
distributions P0→T for a set Γ of discretized values of
γ and employ the same union bound as Reeb et al.
(2018). The resulting PAC-bound differs by a constant
accounting for the number of distinct γ values within
the collection. Therefore, we can use the same gradient
based optimization to learn γ and quantize the value to
the closest point within Γ to evaluate the PAC bound.

3.4 The Training Algorithm

The first term in (14) does not correspond to the Em-
pirical Bayes objective as it averages over likelihoods,
and not log-likelihoods (Germain et al., 2016a). How-
ever, the first term in (15) provides a sampling based
approximation to the empirical Bayes objective. By
defining the risk in such a way and employing the PAC-
Bayesian framework, we obtain a regularized version
of empirical Bayes. Although placing the log(·) func-
tion into its summands loosens the bound on the true
risk, it improves numerical robustness and optimizing
(16) still tightens the original PAC-Bayesian bound, i.e.
(14), as stated in the following corollary.

Corollary 1. For Lipschitz-continuous risk and like-
lihood, a gradient step that reduces (16) also tightens
the PAC bound in (14).

Minimizing (16) hence closes the loop as the Empirical
Bayes objective derived in (9) reappears in (15) but
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is now combined in a principled way with the regu-
larization term Cδ. We can ignore the terms that do
not depend on φ and adopt the remaining expression
bound as our final objective and learn φ∗ via

φ∗ := arg max
φ

1

SN

N∑
n=1

S∑
s=1

K∑
k=1

log
(
p(ynk |h

n,s
k )
)

+

√(
DKL

(
Q0→T ||P0→T

)
+ log(4

√
N/δ)

)
/2N.

(17)

In this training procedure, we only train w.r.t. φ which
determine the drift term. To also learn the diffusion,
one could represent G also by a BNN. However, the
corresponding training procedure would invalidate the
PAC statement. Nevertheless, the diffusion term could
be learnt on a held-out data set and then incorporated
as fixed to the bound (16). As Theorem 1 applies
to any diffusion term, we keep the genericness of its
statement. However, in the experiments, we stick to a
constant diffusion term for practical reasons.

Although we require i.i.d. observations of time series
in the theory, we can in practice use mini-batches of
trajectories provided that the batches are sufficiently
far apart so that they become essentially independent.
The objective (15) differs from the Empirical Bayes
one in (9) only by the complexity term. The only
complicated calculation step in this term is the inte-
gral through the process, which can be made more
implementation friendly using Fubini’s theorem:∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt

= EQ0→T

[ ∫ T

0

fθf (ht, t)
>J−1t fθf (ht, t)dt

]
.

A pseudo-code description of the procedure is given in
Algorithm 1. Our sampling-based method naturally
couples with the EM approximation and inherits its
convergence properties. We show strong convergence to
the true solution with shrinking step size by extending
the plain EM proof (Kloeden and Platen, 2011).

Theorem 2 (strong convergence). Let hθt be an
Itô process as in (4) with drift and diffusion parameters
θ and h̃θt its Euler-Maruyama approximation for some
regular step size ∆t > 0. For some coefficient R > 0
and any T > 0, the below inequality holds as S →∞

E

[
sup

0≤t≤T

∣∣∣Eθ[hθt ]− 1

S

S∑
s=1

h̃θ
(s)

t

∣∣∣] ≤ R∆t1/2,

where θ(s) are i.i.d. draws from a prior pφ(θ).

Algorithm 1: E-PAC-Bayes-Hybrid Loss

Input: set of N trajectories D, prior drift rξ(·, ·),
time points t, drift fθf (·, ·), diffusion
G(·, ·), weight distribution pφ(θf ), number
of samples S, prior parameter γ

Output: training objective loss

// init. marginal log-likelihood (mll) and kl
mll← 0; kl← 0
for n ∈ {1, . . . , N} do // for each trajectory

for s ∈ {1, . . . , S} do // and each sample
// sample initial state and weights
hn,s0 ∼ p(h0); θn,sf ∼ pφ(θf )
// for each of the K steps
for k ∈ {1, . . . ,K} do

// get drift,prior,diffusion output
fn,sk ← fθn,s

f
(hn,sk−1, tk−1)

rn,sk ← rξ(h
n,s
k−1, tk−1)

Gn,sk ← G(hn,sk−1, tk−1)
// sample stochasticity
∆tk ← tk − tk−1
Wn,s
k ∼ N (0,∆tk1)

// update state
hn,sk ←
hn,sk−1 + (fn,sk + γrn,sk )∆tk +Gn,sk Wn,s

k

// and update mll and kl
mll← mll + 1

SN log p(ynk |h
n,s
k )

kl← kl+ 1
2S f

n,s
k
>(Gn,sk Gn,sk

>)−1fn,sk ∆tk
end

end
end
// add penalty for modified drift distribution

kl← kl +DKL

(
pφ(θf )||ppri(θf )

)
// and assign final loss

loss← −mll +
√(

kl + log(4
√
N/δ)

)
/(2N)

// to be returned and optimized
return loss

4 RELATED WORK

Empirical Bayes as PAC Learning. Germain
et al. (2016b) propose a learnable PAC-Bayesian bound
that provides generalization guarantees as a function of
a marginal log-likelihood. Our method differs from this
work in two main lines. First, Germain et al. (2016b) de-
fine risk as − log p(Y|H) ∈ (−∞,+∞) and compensate
for the unboundedness by either truncating the support
of the likelihood function or introducing assumptions
on the data distribution, such as sub-Gaussian or sub-
Gamma. Our risk defined in (12) assumes uniform
boundedness, yet can be incorporated into a PAC-
Bayesian bound without further restrictions. Second,
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Germain et al. (2016b)’s bound is an unparameterized
rescaling of the marginal log-likelihood. Hence, it is
not linked to a capacity penalizer, which can be used at
training time for regularization. Applying this method
to hybrid sequence modelling boils down to performing
plain Empirical Bayes, i.e. E-Bayes in our experiments.

Differential GPs. Hegde et al. (2019) model the
dynamics of the activation maps of a feed-forward
learner by the predictive distribution of a GP. This
method allocates the mean of a GP as the drift and
covariance as the diffusion. It infers the resultant
model using variational inference. While direct ap-
plication of this method to time series modeling is not
straightforward, we represent it in our experiments
by sticking to our generic non-linear BNSDE design
in (4), and inferring it by maximizing the ELBO:
L(φ) = EH,θ

[
log p(Y|H)

]
− DKL

(
pφ(θ)||p(θ)

)
, ap-

plying the local reparameterization trick on θ. Al-
though variational inference can be seen from a PAC-
perspective by choosing the log-likelihood as the loss
(Knoblauch et al., 2019), the ELBO does not account
for the deviation of variational posterior over latent
dynamics from the prior latent dynamics. We refer to
this baseline in the experiments as D-BNN (VI). The
approximate posterior design here closely follows the
PR-SSM approach (Doerr et al., 2018), which repre-
sents state of the art in state-space modelling.

Differential BNNs with SGLD. The learning al-
gorithm of Look and Kandemir (2019) shares our
BNSDE modeling assumptions, however, it uses
Stochastic Gradient Langevin Dynamics (SGLD) to
infer θ. The algorithm is equivalent to performing
MAP estimation of the model parameters in (4) while
distorting the gradient updates with decaying normal
noise that also determines the learning rate.

Black-box identification of dynamic systems.
There are various approaches to identify a dynami-
cal system that differ in the model class used for fitting
the right-hand side of the differential equation and may
also allow for transitional noise (e.g. Brunton et al.,
2016; Durstewitz, 2016). These approaches could be
incorporated into ours, using their transition likelihood
and prior over parameters. Our black-box neural SDE
can be seen as one instance of such a black-box iden-
tification of dynamical systems (E-Bayes). As we are
mainly interested in incorporating prior knowledge into
such black-box models, we chose one such competitor
(Hegde et al., 2019), with reported results on the CMU
Motion capture data set (Tab. 2).

Table 1: Ablation study on the Lorenz attractor to
evaluate the contributions of the prior knowledge on
the predictive performance measured in Mean Squared
Error (MSE) with standard error over fifty repetitions.
The hybrid models ((iii), (iv)) consistently improve on
the black box models ((i),(ii)). The last row (v) shows
the performance for the case the model has full access
to the true dynamics with noisy parameters in (5).

Prior Knowledge Model Test MSE

None (i) 29.20± 0.19
(ii) 29.05± 0.23

γ = [1, 0, 0], ζ ∼ N (10, 1)
(iii) 27.58± 0.17
(iv) 27.42± 0.16

γ = [0, 1, 0], κ ∼ N (2.67, 1)
(iii) 15.87± 0.46
(iv) 15.06± 0.35

γ = [0, 0, 1], ρ ∼ N (28, 1)
(iii) 27.82± 0.26
(iv) 28.37± 0.21

γ = [1, 1, 1], (v) 16.40± 2.31
(ζ, κ, ρ)> ∼ N

(
(10, 2.67, 28)>,13

)

5 EXPERIMENTS

We evaluate the following four variants of our method:

(i) E-Bayes. Empirical Bayes without prior knowl-
edge, i.e. training (9) with p(h0→T ) given by (4).

(ii) E-PAC-Bayes. Empirical PAC Bayes on the
BNDSE using the objective in (16) with an unin-
formative prior drift, i.e. rξ(ht, t) = 0.

(iii) E-Bayes-Hybrid. Same training objective as (i),
however with the hybrid model as proposed in (6).

(iv) E-PAC-Bayes-Hybrid. The hybrid model (6) with
the same loss as E-PAC-Bayes, which is the com-
bination we propose.

We extend the Empirical Bayes objective in (9) by
PAC-Bayes to tune many hyperparameters without
overfitting and incorporate prior domain knowledge in
a principled way. We evaluate the first motivation as
E-PAC-Bayes, i.e. objective (16) but without a prior
SDE, and the complete model including a prior SDE as
E-PAC-Bayes-Hybrid. See the appendix for a detailed
discussion of each of these methods’ computational cost
and further experiments.

Lorenz Attractor. This chaotic non-linear system
has the the following inherently unsolvable dynamics

dxt = ζ(yt − xt)dt+ dWt,

dyt =
(
xt(κ− zt)− yt

)
dt+ dWt,

dzt = (xtyt − ρzt)dt+ dWt,
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Table 2: Benchmarking of our method on the CMU Motion Capture Data Set. Mean Squared Error (MSE) and
Negative Log-Likelihood (NLL) on 300 future frames is averaged over ten repetitions (± standard deviation).

Method Reference Bayesian Hybrid +KL Test MSE Test NLL

DTSBN-S (Gan et al., 2015) No No No 34.86± 0.02 Not Applicable
npODE (Heinonen et al., 2018) No No No 22.96 Not Applicable
Neural-ODE (Chen et al., 2018) No No No 22.49± 0.88 Not Applicable
ODE2VAE (Yildiz et al., 2019) Yes Yes No 10.06± 1.40 Not Reported
ODE2VAE-KL (Yildiz et al., 2019) Yes Yes Yes 8.09± 1.95 Not Reported
D-BNN (SGLD) (Look and Kandemir, 2019) Yes No No 13.89± 2.56 747.92± 58.49
D-BNN (VI) (Hegde et al., 2019) Yes No Yes 9.05± 2.05 452.47± 102.59

E-Bayes Baseline Yes No No 8.68± 1.56 433.76± 77.78

E-PAC-Bayes Ablation Yes No Yes 9.17± 1.20 489.82± 67.06
E-Bayes-Hybrid Ablation Yes Yes No 9.25± 1.99 462.82± 99.61
E-PAC-Bayes-Hybrid Proposed Yes Yes Yes 7.84± 1.41 415.38± 80.37

where ζ = 10, κ = 28, ρ = 2.67, and Wt is a random
variable following a Wiener process with unit diffusion.
We generate 1920 observations from the above dynam-
ics initiating the system at x0, y0, z0 = (1, 1, 28), use the
first half for training and the rest for testing. We split
both the training and the test data into 20 sequences
of length 24, which can be interpreted as i.i.d. sam-
ples of the system with different initial states. Table 1
presents the 24-step ahead forecasting error in MSE on
the test set for our model variants. In each experiment
repetition, E-Bayes-Hybrid and E-PAC-Bayes-Hybrid
are provided one equation after distorting the corre-
sponding parameter by normal distributed noise. The
other equations are hidden by being hard assigned to
zero. To set up the corresponding prior and model,
we used a constant diffusion with G = 1. Despite the
imprecision of the provided prior knowledge, the largest
performance leap comes from the hybrid models. The
complexity term on the PAC-Bayesian bound restricts
the model capacity for black-box system identification,
while it improves the hybrid setup.

Figure 2 visualizes the predicted trajectories on the
test sequence for prior knowledge on dzt. Even with
weak prior knowledge, the proposed model is stable
longer than the baseline and shows a proper increase
in the predictive variance over time.

CMU Walking Data Set. We benchmark against
state of the art on this motion capture data set fol-
lowing the setup of Yildiz et al. (2019). We train an
E-PAC-Bayes model on the MOCAP-1 data set consist-
ing of 43 motion capture sequences measured from 43
different subjects. The drift net of the learned BNSDE
is then treated as weak and broad prior knowledge of
human walking dynamics. We use MOCAP-2 with 23
walking sequences from Subject 35 to represent a high-
fidelity subject-specific modelling task. As reported
in Table 2 of Yildiz et al. (2019), the state of the art
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Figure 2: Predicted mean trajectory starting at T = 10
on one dimension of the Lorenz data. The shaded areas
give ±2 standard deviations over 21 trajectories.

of subject-independent mocap dynamic modelling has
twice as high prediction error as subject-specific dy-
namics (MSE of 15.99 versus 8.09). Analogously to
the Lorenz attractor experiment, we fixed the PAC-
variants’ prior diffusion term to be constant. We report
the test MSE and negative log-likelihoods in Table 2.
Our method delivers the best prediction accuracy and
model fit when all its components are active.

6 CONCLUSION

We have shown that our method incorporates vague
prior knowledge into a flexible Bayesian black-box mod-
elling approach for learning SDEs resulting in a robust
learning scheme guided by generalization performance
via a PAC-Bayesian bound. The method is easily adapt-
able to other solvers. For example, the training loss
derived in (9) can also be optimized using a closed-form
normal assumed density scheme applied over a stochas-
tic Runge-Kutta variant (Li et al., 2019). Independent
from the sampling scheme and model used, our tied gra-
dient update procedure allows training on the loose, yet
numerically stable, bound while providing an improve-
ment w.r.t. the generalization guarantees on its tighter
counterpart. Our stochastic approximation of the data
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log-likelihood currently relies on samples obtained from
the prior, yet could be improved by incorporating a
more sophisticated sampling scheme, e.g. using parti-
cle filtering (Kantas et al., 2015). Finally, the bound
in (16) has the potential to be vacuous for certain drift
nets, incorporating a Hoeffding assumption (Alquier
et al., 2016) could further tighten it.
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