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Abstract

Deep ResNet architectures have achieved state
of the art performance on many tasks. While
they solve the problem of gradient vanishing,
they might suffer from gradient exploding as
the depth becomes large. Moreover, recent
results have shown that ResNet might lose
expressivity as the depth goes to infinity [Yang
and Schoenholz, 2017, Hayou et al., 2019a].
To resolve these issues, we introduce a new
class of ResNet architectures, called Stable
ResNet, that have the property of stabilizing
the gradient while ensuring expressivity in the
infinite depth limit.

1 INTRODUCTION

The limit of infinite width has been the focus of many
theoretical studies on Neural Networks (NNs) [Neal,
1995, Poole et al., 2016, Schoenholz et al., 2017, Yang
and Schoenholz, 2017, Hayou et al., 2019a, Lee et al.,
2019|. Although unachievable in practice, it features
many interesting properties which can help grasp the
complex behaviour of large networks.

Infinitely wide 1-layer random NNs behave like Gaus-
sian Processes (GPs) at initialization [Neal, 1995]. This
was recently extended to multilayer NNs, where each
layer can be associated to its own GP [Matthews et al.,
2018, Lee et al., 2018, Yang, 2019a]. From a theoretical
point of view, GPs have the advantage that their be-
haviour is fully captured by the mean function and the
covariance kernel. Moreover, when dealing with GPs
that are equivalent to infinite width NNs, these pro-
cesses are usually centered, and hence fully determined
by their covariance kernel. For multilayer networks,
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these kernels can be computed recursively, layer by
layer [Lee et al., 2018|. Interestingly, in apparent con-
tradiction with the naive idea “the deeper, the more
expressive”, it was shown in [Schoenholz et al., 2017]
that the GP becomes trivial as the number of layers
goes to infinity, that is the output completely forgets
about the input and hence lacks expressive power. This
loss of input information during the forward propaga-
tion through the network might be exponential in depth
and could lead to trainability issues for extremely deep
nets [Schoenholz et al., 2017, Hayou et al., 2019a].
One natural way to prevent this last issue is the in-
troduction of skip connections, commonly known as
the ResNet architecture. However, in the regime of
large width and depth, the output of standard ResNets
becomes inexpressive and the network may suffer from
gradient exploding [Yang and Schoenholz, 2017].

In the present work, we propose a new class of residual
neural networks, the Stable ResNet, which, in the limit
of infinite width and depth, is shown to stabilize the
gradient (no gradient vanishing or exploding) and to
preserve expressivity in the limit of large depth. The
main idea is the introduction of layer/depth dependent
scaling factors to the ResNet blocks.

For ReLU networks, we provide a comprehensive anal-
ysis of two different scalings: a uniform one, where
the scaling factor is the same for all the layers, and a
decreasing one, where the scaling factor decreases as we
go deeper inside the network. We also show that Stable
ResNet solve the problem of Neural Tangent kernel
(NTK) degeneracy in the limit of large depth [Hayou
et al., 2019b]; indeed, with our scalings, the NTK is
universal in the limit of infinite depth, which ensures
that any continuous function can be approximated to
an arbitrary precision by the features of the infinite
depth NTK on a compact set.

All theoretical results are substantiated with numerical
experiments in Section 7, where we demonstrate the
benefits of Stable ResNet scalings both for the corre-
sponding infinite width GP kernels as well as trained
ResNets, over a range of moderate and large-scale image
classification tasks: MNIST, CIFAR-10, CIFAR-100
and TinyImageNet.
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2 RESNET

2.1 Setup and Notations

Consider a standard ResNet architecture with L+1 lay-
ers, labelled with [ € [0 : L]!, of dimensions {Ni}iepo:)-

Yo(z) = Wox + Bo;
yi(@) =y-1(z) + F(Wi, Br), yi—1(x)) for L€ [1: L],
(1)
where z € R? is an input, y;(z) = {y} (@) }iep1.v, is the
vector of pre-activations, W; and B, are respectively
the weights and bias of the I*" layer, and F is a map-
ping that defines the nature of the layer. In general, the
mapping F consists of successive applications of simple
linear maps (including convolutional layers), normal-
ization layers [loffe and Szegedy, 2015] and activation
functions. In this work, for the sake of simplicity, we
consider Fully Connected blocks with ReLLU activation
function:

]:((Wa B),x) = W¢(l‘) + B,

where ¢ is the activation function. The weights and
bias are initialized with W, N(0,02 /N,_1), and
By %N(O,JEL where o, > 0, 0, > 0, N_; = d, and
N (u,0?) is the normal law of mean x and variance 0.

Recent results by [Hayou et al., 2021] suggest that

scaling the residual blocks with L~'/? might have some

beneficial properties on model pruning at initialization.

This results from the stabilization effect on the gradient

due to the scaling.

More generally, we introduce the residual architecture:

yo(z) = Wy + By

v(@) =yi—1(z) + N F(Wi, Bi), 1), Le[1:1L],
(2)

where {\; 1. }1e[1:1) i a sequence of scaling factors. We
assume hereafter that there exists A\pax € (0,00) such
that A\ p € (0, Apax] for all L > 1 and ! € [1: L.

In the next proposition, we give a necessary and suffi-
cient condition for the gradient to remain bounded as
the depth L goes to infinity.

Proposition 1 (Stable Gradient). Consider a ResNet
of type (2), and let L,(z) := L(y}(x),y) for some
(z,y) € RIXR, where £ : (2,y) — £(2,y) is a loss func-

tion satisfying supy, » , Bfgzz,y) < o0, for all com-

pacts K1, Ko CR. Then, in the limit of infinite width,
for any compacts K C R%, K' C R, there exists a
constant C' > 0 such that for all (z,y) € K x K’

2] < Cexp (% i A?,L) :

le[0:L]

'Notation: [m : n] = {m, m+1...n} for integers n > m.

Moreover, if there exists Amin > 0 such that for all
L>1andl €[l: L] we have N\j., > Amin, then, for

all (z,y) € (R?\ {0}) x R such that ‘% # 0, there
ezists £ > 0 such that for alll € [1: L]

2 2 oL
oL, Lo
E U aﬂ",l(lgi) } > K (1 + 7)““‘5 “’) .

Proposition 1 shows that in order to stabilize the
gradient, we have to scale the blocks of the ResNet
with scalars {\; 1 }ie1:2) such that SE A7 [ remains
bounded as the depth L goes to infinity. Taking
Amin = 1, Proposition 1 shows that the standard
ResNet architecture (1) suffers from gradient exploding
at initialization,” which may cause instability during
the first step of gradient based optimization algorithms
such as Stochastic Gradient Descent (SGD). This mo-
tivates the following definition of Stable ResNet.

Definition 1 (Stable ResNet). A ResNet of type (2) is
L
called a Stable ResNet if and only if Llim SN, < oc.
—oo ;1

The condition on the scaling factors is satisfied by a
wide range of sequences {\; 1 }ef1:2],2>1- However, it
is natural to consider the two categories:

Uniform scaling. The scaling factors have similar
magnitude and tend to zero at the same time. A simple
example is the uniform scaling \; ;, =1/ VL.
Decreasing scaling. The sequence is decreasing and
tends to zero. To be clearer, we consider a general
sequence {\}ep.r) such that 7,0, A7 < oo, and let
Mrp=XNforall L>1,allel:L].

Note that our theoretical analyses will hold for any
decreasing scaling {\;};>1 that is square summable,
but for simplicity in all empirical results we consider
the decreasing scaling:

AL =1% % log(l+1).

We study theoretical properties of both ResNets with
uniform and decreasing scaling. We show that, in
addition to stabilizing the gradient, both scalings ensure
that the ResNet is expressive in the infinite depth
limit. For this purpose, we use a tool known as Neural
Network Gaussian Process (NNGP) [Lee et al., 2018]
which is the equivalent Gaussian Process of a Neural
Network in limit of infinite width.

2.2 On Gaussian Process approximation of
Neural Networks

Consider a ResNet of type (2). Neurons {y(x)}icp1:n,)
are iid since the weights with which they are connected

2In [Yang and Schoenholz, 2017], authors show a similar
result with a slightly different ResNet architecture.



Soufiane Hayou*', Eugenio Clerico*', Bobby He*!, George Deligiannidis’

to the inputs are iid. Using the Central Limit Theo-
rem, as Ny — 0o, yi(x) is a Gaussian variable for any
input  and index ¢ € [1 : N1]. Moreover, the variables
{9} (2)}icp:n,) are iid. Therefore, the processes yj(.)
can be seen as independent (across 4) centred Gaussian
processes with covariance kernel ();. This is an ideal-
ized version of the true process corresponding to letting
width Ny — oo. Doing this recursively over [ leads
to similar approximations for y}(.) where [ € [1 : L],
and we write accordingly v} nd GP(0,Q;). The ap-
proximation of y!(.) by a Gaussian process was first
proposed by [Neal, 1995] in the single layer case and
was extended to multiple feedforward layers by [Lee
et al., 2019] and [Matthews et al., 2018]. More recently,
a powerful framework, known as Tensor Programs, was
proposed by [Yang, 2019b|, confirming the large-width
NNGP association for nearly all NN architectures.

For any input = € R, we have E[y{(z)] = 0, so that
the covariance Q;(z,2") = E[y} (z)y} («)] satisfies for
all z,2' € R? (see Appendix A1)

Quz, o) = Qi_r(z,2') + AT L V1 (z,2'),

where Uy (z,2") = o} + 0oL Blo(y; 1 (2))d(y;— ()]

For the ReLU activation function ¢ : x — max(0, z),
the recurrence relation can be written more explicitly
as in [Daniely et al., 2016]. Let C; be the correlation
kernel, defined as

n o Ql(w,a:/)
Cule, o) = oo (3)

and let f:[—1,1] — R be given by

[y (/1 —~2 —varccosy). (4)

The recurrence relation reads (see Appendix Al)

2
Q= Qi+ [0+ 5 (1+ £820) ]

Qo(z,2') = 0f + o2 22"

(5)

This recursion leads to divergent diagonal terms
Qr(z,x). This was proven in [Yang and Schoenholz,
2017] for a slightly different ResNet architecture. In
the next Lemma, we extend this result to the ResNet
defined by (1).

Lemma 1 (Exploding kernel with standard ResNet).
Consider a ResNet of type (1). Then, for all x € RY,

2\ L o2
Qr(z,z) > (1 + 7“) (a§ (1 + %) + #||x||2) .

Figure 1 plots the diagonal NNGP and NTK (intro-
duced in Section 5) values for a point on the sphere,
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Figure 1: NNGP/NTK for unscaled ResNets explode
exponentially (with base 2 if o2, = 2) in depth, unlike (both
uniform and decreasing scaled) Stable ResNets.

highlighting the exploding kernel problem for standard
ResNets. Stable ResNets do not suffer from this prob-
lem.

We now introduce further notation and definitions.
Hereafter, unless specified otherwise, K will denote
a compact set in R? (d > 1) and z,2’ denote two
arbitrary elements of K.

Let us start with a formal definition of a kernel.?

Definition 2 (Kernel). A kernel Q on K is a sym-
metric continuous function K2 — R such that, for
all n € N, for any finite subset {z1...2,} C K, the
matriz {Q(x;,x;)}i; is non-negative definite.

The symmetry in the above definition has to be under-
stood as Q(z,2") = Q(«/, ) for all z,2" € K.

Kernels induce non-negative integral operators [Paulsen
and Raghupathi, 2016].

Lemma 2. Given a continuous and symmetric func-
tion Q : K2 = R, we can define the induced integral
operator T(Q) on L*(K) wvia its action T(Q)p(x) =
Jx Q(z,y)e(y) dy, for p € L*(K).* Moreover, T(Q) is
a bounded, compact, non-negative definite self-adjoint
operator.

Each kernel induces a centred Gaussian Process on
K [Dudley, 2002|, that is a random function F on
K such that, for any finite K C K, {F(2)},ck is a
centred Gaussian vector. We recall that the law of
a centred GP is fully determined by its covariance
function (z,2’) — E[F(x)F(2)], defined on K?.

Definition 3 (Induced GP). Given a kernel @ on K,
the Gaussian Process induced by Q is a centred GP on
K whose covariance function is Q.

We will sometimes use the notation GP(0, Q) for the law
of the GP induced by a kernel ). With our definition

30ur definition is not the standard definition of a ker-
nel, which is more general does not require the continuity,
[Paulsen and Raghupathi, 2016].

4Naturally, we should write L?(K, i), specifying a mea-
sure p on K. In the present work, unless otherwise specified,
the notation L?(K) will imply the choice of any arbitrary
finite Borel measure on K (cf Appendix A0).



Stable ResNet

of a kernel, the samples from the induced GP lies in
L?(K) with probability 1 [Steinwart, 2019)].

From now on we will assume that 0 ¢ K if o, = 0.°
For all ResNets, it is straightforward to check that Q)
is a kernel, in the sense of Definition 2 (see Appendix
A1 or [Daniely et al., 2016]). The induced Gaussian
Process is what we refer to as NNGP.

We denote by Hg(K) the Reproducing Kernel Hilbert
Space (RKHS)® induced by the kernel @ on the set K.
The following hierarchical result holds.

Proposition 2. For all L > 1, 1 € [0,L — 1],
HQZ<K) - HQ1+1 (K)

Proposition 2 shows that, as we go deeper, the RKHS
cannot become poorer. However, increasing L might
introduce stability issues as illustrated in Proposition 1.
We show in Sections 3 and 4 that Stable ResNets resolve
this problem.

By Lemma 2, T(Qr) is a bounded, compact, self-
adjoint operator and hence can be written as the sum
of the projections on its eigenspaces [Lang, 2012]. By
Mercer’s Theorem [Paulsen and Raghupathi, 2016], all
the eigenfunctions of T(Qr) are continuous. Finally,
it is possible to link the eigen-decomposition of T'(Qy,)
with the distribution of the GP induced by Q. De-
noting respectively by px and ¥ the eigenvalues and
eigenfunctions of the operator T(Qr), we have the
equivalence in law:

i~ Y VERZrtk ~ GP(0,QL), (6)

keN

where {Zy}i>0 are i.i.d. standard Gaussian random
variables [Grenander, 1950]. The expressivity, that is
the capacity to approximate a large class of function,
of the network at initialization is then closely linked
to the eigendecomposition of @ [Yang and Salman,
2019].

2.3 Universal kernels and expressive GPs

In this section, we provide a comprehensive study of
the kernel Q. We start with a formal definition of
universality (c-universality in [Sriperumbudur et al.,
2011]). Again, unless otherwise stated, let K be a
compact in R%.

Definition 4 (Universal Kernel). Let Q be a kernel on
K, and Ho(K) its RKHS ™. We say that Q is universal
on K if for any € > 0 and any continuous function g
on K, there exists h € Ho(K) such that ||h— gl < €.

5We exclude 0 since for o, = 0 Cp is discontinuous in 0
and can’t be a kernel on K as in Definition 2, if 0 € K.

5See Appendix A0 for a definition.

"See Appendix A0.

The universality of a kernel @) on a compact set implies
that the kernel is strictly positive definite, i.e. for all
non-zero ¢ € L?(K),(T(Q)p,¢) > 0 [Sriperumbudur
et al., 2011]. Moreover, universality also implies the
full expressivity of the induced GP, as expressed in the
following.

Definition 5 (Expressive GP). A Gaussian Process
on K is said to be expressive on L*(K) if, denoting
by ¥ a random realisation ¢ of the process, for all
¢ € L*(K), for alle >0,

P(llv =l <€) > 0.

Lemma 3. A universal kernel Q on K induces an
expressive GP on L*(K).

By definition, universal kernels are characterized by the
property that their associated RKHS is dense (w.r.t the
uniform norm ||.||) in the space of continuous func-
tions on K. This is crucial for Kernel regression and
Gaussian Process inference [Kanagawa et al., 2018].%
By Proposition 2, it suffices to prove that Qr,, is uni-
versal for some Lq in order to conclude for all L > L.
It turns out this is true for Ly = 2.

Proposition 3. If o, > 0, then Q2 is universal on K.
From Proposition 2, Qp, is universal for all L > 2.

Note that the presence of biases is essential to achieve
universality in the case of a general K, since the output
of a ReLU ResNet with no bias is always a positive
homogeneous function of its input, i.e., a map F such
that F(az) = aF(z) for all & > 0. However, in the
particular case of K = S?1, the unit sphere in R?, the
kernel @r, is universal (for L > 2), even when o, = 0.

Proposition 4. Assume o, = 0. Then for all L > 2,
Q1 is universal on S for d > 2.

Another interesting fact of the case K = S~ is that
the eigendecomposition of the kernel ()7, has a simple
structure. Indeed, on S%~1, Qp(x,2’) depends only on
the scalar product z - ’. These kernels (zonal kernel)
admit Spherical Harmonics as an eigenbasis [Yang and
Salman, 2019].

Proposition 5 (Spectral decomposition on S~1). Let
Q be a zonal kernel on S4=1, that is Q(z,2") = p(z-2')
for a continuous function p: [—1,1] — R. Then, there
is a sequence {up > 0}ren such that for all x,z" € S—1

N(d,k)
Q(J?, Z‘/) = Z/’Lk Z Yk»j(x)yk,j(xl) )
k>0 j=1

where {Yy. j}k>0.je[1:N(d k)] are spherical harmonics of
S?1 and N(d, k) is the number of harmonics of order
8The closure of the set of functions described by the

mean function of the posterior of a GP regression is exactly
the RKHS of the kernel of the GP prior.
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k. With respect to the standard spherical measure,
the spherical harmonics form an orthonormal basis of
L2(S%71) and T(Q) is diagonal on this basis.

Although the kernel is universal for fixed depth L, it is
not guaranteed that as L — oo, (0 remains universal.
Indeed, for the standard ResNet architecture, the vari-
ance Qr(x,x) grows exponentially with L [Yang and
Schoenholz, 2017], and therefore, the kernel diverges.
In order to analyse the expressivity of the kernel of a
standard ResNet in the limit of large depth, we can
study the correlation kernel Cp,, defined in (3), instead.
We show in the following Lemma that, as L goes to
infinity, the kernel C, converges to a constant (which
has a 1D RKHS).

Lemma 4. Consider a standard ResNet of type (1)
and let K C R4\ {0} be a compact set. We have that

lim sup |1—CgL(z,2')] =0.

L—=o0o g z/eK
Moreover, if o, = 0, then,

sup |1 —Cp(z,2')| = O(L7?).
z,x' €K

Therefore, He (K) is the space of constant functions.
Lemma 4 shows that in the limit of infinite depth L,
the RKHS of the correlation kernel is trivial, meaning
that the NNGP cannot be expressive. On the contrary,
we will show in the next sections that Stable ResNets
achieve a universal kernel for infinite depth L.

3 UNIFORM SCALING
Consider a Stable ResNet with layers [0 : L]. Under
uniform scaling, the recurrence relation in (5) reads:

Ql:Qlfl‘i‘%(Ub +U“’ (1_|_ch 1))Ql 1) (7)

In the limit as L — oo, (7) converges uniformly to a
continuous ODE. Studying the solution of the corre-
sponding Cauchy problem, we show that the covariance
kernel remains universal in the limit of infinite depth.

3.1 Continuous formulation

The layer index [ in (7) can be rescaled as [ — t(I) =
I/L. Clearly ¢(0) = 0 and t(L) = 1, so the image of ¢
is contained in [0, 1]. In the limit L — oo it is natural
to consider t as a continuous variable spanning the
interval [0,1]. With this in mind, it makes sense to
look at the continuous version of (7).

Let X C R? be a compact set and z,2’ € K. If 0, =0

assume that 0 ¢ K.

Qie,a) = o + 25" (14 LelmmD) g (0,0),

ci(z,2)

qo(xvxl) b + 0121; m(f l (8)

qt(z,x’)

n_
alz,2) = Va(zx)g (= z')

As discussed in Section A2 of the Appendix, for any
x,2’, the solution of the above Cauchy problem exists
and is unique. Moreover, the solutions ¢; and c¢; are
kernels on K, in the sense of Definition 2.

Clearly, for finite L, the continuous ODE (8) is an
approximation. However, the following result holds.

Lemma 5 (Convergence to the continuous limit). Let
Qi be the covariance kernel of the layer | in a net of
L +1 layers [0: L], and g; be the solution of (8), then

lim sup  sup

|Q1|L(93,$') - qt:z/L($7I/)| =0.
L—00c(0:L] (z,2") K2

3.2 Universality of the covariance kernel

When o3, > 0, the kernel ¢; is universal for ¢ > 0.

Theorem 1 (Universality of ¢;). Let K C R? be com-
pact and assume o, > 0. For anyt € (0, 1], the solution
q: of (8) is a universal kernel on K.

The proof of the above statement is detailed in Ap-
pendix A2. The main idea is to show that the integral
operator T'(g:) is strictly positive definite and then use
a characterization of universal kernels, due to [Sripe-
rumbudur et al., 2011], which connects the universality
of Definition 4 with the strict positivity of the induced
integral operator.?

As mentioned previously, the presence of the bias is
essential to achieve full expressivity on a generic com-
pact K C R?. However, we can still have universality
when no bias is present, limiting ourselves to the case
of the unit sphere K = S%-1.

Proposition 6 (Universality on S 1). For any t €
(0,1], the covariance kernel q:, solution of (8) with
o, = 0, is universal on ST, with d > 2.

4 DECREASING SCALING

Consider a Stable ResNet with decreasing scaling, that
is a sequence of scaling factors (Ag)g>1 such that
> ks>1 A7 < oo. In this setting, each additional layer
can be seen as a correction to the network output with
decreasing magnitude. As for the uniform scaling, we

9The details are more involved as we need to show that
the kernel induces a strictly positive definite operator on
L?(K, ) for any finite Borel measure p on K.
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show in the next proposition that the kernel Q) con-
verges to a limiting kernel ., and the convergence
is uniform over any compact set of R?. The nota-
tion g(z) = ©(m(x)) means there exist two constants
A, B > 0 such that Am(z) < g(z) < Bm(z).

Proposition 7 (Uniform Convergence of the Kernel).
Consider a Stable ResNet with a decreasing scaling, i.e.
the sequence {\ }i>1 is such that >, A\? < co. Then
for all (o4, 04) € RT X (RT)*, there exists a kernel Qoo
on RY such that for any compact set K C RY,
sup |Qr(z,7") — Qoo(z,2")| = 9( Dok )‘%) :
z,x' €K -

The convergence of the kernel @7, to the limiting kernel
Qoo is governed by the convergence rate of the series of
scaling factors. Moreover, leveraging the RKHS hierar-
chy from Proposition 2, we find that (), is universal.

Corollary 1 (Universality of Q). The following
statements hold

o Let K be a compact set of R? and assume oy > 0.
Then, Qs is universal on K.

o Assume o, = 0. Then Qo is universal on S 1.

As in the uniform scaling case, the limiting kernel exists
and is universal unlike the standard ResNet architecture
that yields a divergent kernel Q1 as L — oo.

To validate our universality and expressivity results,
Figure 2 plots the leading eigenvalues of the NNGP (&
NTK, introduced in Section 5) kernels on a set of 1000
points sampled uniformly at random from the circle,
normalized so that the largest eigenvalue is 1. We use
the recursion formulas for NNGP correlation (Lemma
A4) and normalized NTK (Lemma A19) to avoid the
exploding variance/gradient problem. We see that the
unscaled ResNet NNGP becomes inexpressive with
depth because all non-leading eigenvalues converge to
0, whereas our Stable ResNets (decreasing and uniform
scaling) are expressive even in the large depth limit.

5 NEURAL TANGENT KERNEL

In the so-called lazy training regime [Chizat and Bach,
2019|, the training dynamics of an infinitely wide net-
work can be described via the Neural Tangent Kernel
(NTK) [Lee et al., 2019], introduced in [Jacot et al.,
2018] and defined as

éZLJ (z,2") = Vpar yzL(x) * Vpar ij(x/) )
with Vpa, the gradient wrt the parameters of the NN.!°

To simplify our presentation we will assume that the
output dimension of the network is 1.1

10 A1l network considered in this section are assumed to
have NTK parametrization, cf Appendix A4 for details.

HThis does not affect our final conclusion of universality
for the NTK, which is diagonal in the output space, that is
O = 04", [Jacot et al., 2018, Hayou et al., 2019b].
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Figure 2: (Normalized) NNGP & NTK matrix eigenvalues
of Stable (decreasing & uniform) & unscaled (i.e. standard)
ResNets.

Let F, be the output function of the ResNet at train-
ing time 7. In the NTK regime (infinite width), the
gradient flow is equivalent to a simple linear model [Lee
et al., 2019], that gives

F, ()~ Fo(z) = Op(z, X)O; L (I—e 7007 ) (Y~ Fy (X)),

where X and Y are respectively the input and output
datasets, O (x, X) = {O(z,2')}»ex and O is the
matrix {©;(x, ')}z »cx. The universality of the NTK
is crucial for the ResNet to learn beyond initialization,
since the residual F. — Fj lies in the RKHS generated
by ©. For unscaled ResNet, [Hayou et al., 2019b]
showed that the limiting NTK is trivial in the sense
of Lemma 4. However, this is not the case for Stable
ResNet.

Consider a ResNet of type (2). We have 12

O =Qo, O1y1 =01+ AL (T +T;0;), (9)

where W(x,2') = o} + o2E[6(y! (2))é(y!(«'))] and
Ui(z,a') = oLE[¢ (v} (x))¢/ (v} («'))] (see Appendix
A4).

Proposition 8. Fir a compact K ¢ R? (0 ¢ K if
op =0) and consider a Stable ResNet with decreasing
scaling. Then O, converges uniformly over K2 to a

kernel © . Moreover Oy is universal on K if o, > 0.
If K = S, then the universality holds for oy = 0.

12This is true under the technical assumption that the
parameters appearing in the back-propagation can be con-
sidered independent from the ones of the forward pass
(Gradient Independent Assumption) [Yang, 2019a]
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An analogous result can be stated for the uniform
scaling, after noticing that a continuous formulation
(©1 = 0(;)) can be obtained in analogy with what has
been done for the covariance kernel (cf Appendix A4).

Proposition 9. Let K C R? and fixr t € (0,1]. If
op > 0, then 0y is universal on K. The same holds true
if op =0 and K = S~ 1.

Figure 2 shows that the non-leading NTK eigenvalues
do not decay to 0 with depth for Stable ResNets, unlike
for unscaled ResNets. This is in line with findings of
Propositions 8 and 9.

6 A PAC-BAYES RESULT

Consider a dataset S with N iid training examples
(%, yi)1<i<n € X x Y, and a hypothesis space P from
which we want to learn an optimal hypothesis according
to some bounded loss function £: Y x Y — [0, 1]. The
empirical /generalization loss of a hypothesis h € U are

re(h) = £ SN (@), i), r(h) = B, [0(h(x),y)],

where v is a probability distribution on X x Y. For
some randomized learning algorithm 4, the empirical
and generalization loss are given by:

rs(A) = Enalrs(h)],  r(A) = Envalr(h)].

The PAC-Bayes theorem gives a probabilistic upper
bound on the generalization loss (. A) of a randomized
learning algorithm A in terms of the empirical loss
rs(A). Fix a prior distribution P on the hypothesis set
U. The Kullback-Leibler divergence between A and P
is defined as KL(A||P) = [ A(h)log %dh € [0, ]
The Bernoulli KL-divergence is given by kl(al||lp) =
alog% +(1—a)log %_T; for a,p € [0,1]. We define the

inverse Bernoulli KL-divergence kl™* by
kI~ (a,e) = sup{p € [0,1] : Kl(a||p) < &}

Theorem 2 (PAC-Bayes bound Theorem [Seeger,
2002]). For any loss function £ that is [0, 1] valued,
any distribution v, any N € N, any prior P, and any
6 € (0,1], with probability at least 1 — 8 over the sample
S, we have

VA, r(A) S KT (g (A), KHALPIR0s VNI )

The KL-divergence term KL(A|P) plays a major role
as it controls the generalization gap, i.e. the differ-
ence (in terms of Bernoulli KL-divergence) between the
empirical loss and the generalization loss. In our set-
ting, we consider an ordinary GP regression with prior
P(f) =GP(f]0,Q(x,z")). Under the standard assump-
tion that the outputs yn = (y;)ic[1:n] are noisy versions

of fnv = (f(2:))iep:ny with yn|fn ~ N(yn|fn.o%1),
the Bayesian posterior A is also a GP and is given by

A(f) = GP(fIQn(2)(Qnn + 0*1) yn, Q(z, 2')

— Qn(2)(Q@nn + ) HQn()T).
(10)

Qn(z) = (Q(xaxi))ie[lzN]a QNN = (Q(ﬂﬁmxj))lgi,jg]v.
In this setting, we have the following result
Proposition 10 (Curse of Depth). Let Q be the
kernel of a ResNet. Let Py be a GP with kernel Qp,
and Ap, be the corresponding Bayesian posterior for
some fized noise level 0% > 0. Then, in a fized setting
(fized sample size N), the following results hold:

o With a standard ResNet, KL(AL||PL) 2 L.

e With a Stable ResNet, KL(AL||Pr) = OL(1).

The KL-divergence bound diverges for a standard
ResNet while it remains bounded for Stable ResNet.
Although PAC-Bayes bounds only give an upper bound
on the generalization error, Proposition 10 shows that
Stable ResNet does not suffer from the “curse of depth”,
i.e. the KL-divergence does not explode as the depth
becomes large.

7 EXPERIMENTS

In line with our theory, we now present results demon-
strating empirical advantages of Stable ResNets (both
uniform and decreasing scaling) compared to their un-
scaled counterparts on a toy regression task and stan-
dard image classification tasks, both for infinite-width
NNGP kernels as well as trained finite-width NNs in
the latter case. In the interests of space, all experimen-
tal details not described in this section can be found in
Appendix A7. All error bars in this section correspond
to 3 independent runs.

Stable NNGP regression experiment We first
present a toy regression posterior regression experiment
with NNGP kernel. We compare across different depths
and scalings, with target test function y = zsin(z) and
a small amount of observation noise o = 0.1 (o as
defined in Eq. 10). We use 5 training points (dark
green dots).

We map our 1D inputs x onto the circle (cos(z), sin(x))
before performing GP regression. This is so that all
inputs have unit norm and we can use the NNGP cor-
relation kernel (Eq. 3) for the vanilla ResNet (ResNet
with fully connected blocks), in order to avoid the ex-
ploding variance problem.

As expected from our theory, in Figure 3, for depth
1000 the NNGP correlation kernel without stable scal-
ing (top row, red) is unable to learn anything beyond
a constant function due to inexpressivity, whereas our
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Figure 3: NNGP toy regression experiment.

Stable ResNets (bottom two rows, blue) are still ex-
pressive in the large depth limit. We plot mean and
95% posterior predictive credible interval for NNGP
posteriors.

Stable NNGP classification results We first com-
pare the performance of Stable and standard ResNets
of varying depths through their infinite-width NNGP
kernels, on MNIST & CIFAR-10. For each consid-
ered NNGP kernel () and training set (4, ¥;)ie[1:n], We
report test accuracy using the mean of the posterior
predictive (Eq. 10): Qn(-)(Qnn + 0*I)~'yxn, which
is also the kernel ridge regression predictor [Kanagawa
et al., 2018]. We treat classification labels y as one-hot
regression targets, similar to recent works [Arora et al.,
2019, Lee et al., 2019, Shankar et al., 2020], and tune
the noise o2 using prediction accuracy on a held-out
validation set.

Table 1: CIFAR-10 test accuracies (%) using posterior
predictive mean of NNGP kernels for deep Wide-ResNets
[Zagoruyko and Komodakis, 2016] with different training
set sizes N. Scaled (D) & Scaled (U) refer to decreasing
and uniform scaling respectively.

N Depth Scaled (D) Scaled (U) Unscaled

1K 112 36.844053 36431040 37.7140.50
202 36.8940.55 36.4740.49 —

10K 112 53.8140.11 53.551041 53.3440.07
202 53.80+0.10 953.57+0.40 —

First, in Table 1, we demonstrate the exploding NNGP
variance problem for unscaled Wide-ResNets (WRN)
[Zagoruyko and Komodakis, 2016]. For an unscaled

WRN of depth 202, the NNGP kernel values explode
resulting in numerical errors, whereas Stable ResNets
achieve 54% test accuracy with 10K training points
(out of full size 50K). Note that any numerical errors
from exploding NNGP also afflict the NTK, as the
difference between the NTK and NNGP is positive
semi-definite [Lee et al., 2019, He et al., 2020] (which is
why the NTK lines always lie above their corresponding
NNGP in Figure 1).

To isolate the disadvantages of inexpressivity in un-
scaled Resnets NNGPs compared to our Stable ResNets,
we need to avoid the exploding variance problem and
ensuing numerical errors. In order to do so, we use
the NNGP correlation kernel C instead of the NNGP
covariance kernel @), noting that these two kernels are
equal up to multiplicative constant on the sphere, and
that the posterior predictive mean is invariant to the
scale of @ (with o2 also tuned relative to the scale of
Q). Moreover, the formula in Lemma A4 for NNGP
correlation recursion for vanilla ResNets without bias
can be recast as a ResNet with a modified scaling (see
Appendix A6), allowing us to use existing optimised
libraries [Novak et al., 2020]. In order to use the vanilla
ResNet correlation recursion, we standardise all MNIST
& CIFAR-10 images to lie on the 784 & 3072-dimension
sphere respectively.

Our expressivity results, as well as Proposition 10,
suggest that we expect Stable ResNets to outperform
standard ResNets for large depths even when exploding
variance numerical errors are alleviated for standard
ResNets. In Table 2, we see that unscaled ResNets suf-
fer from a degradation in test accuracy with depth, due
to inexpressivity, whereas our Stable ResNets (both de-
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Table 2: MNIST and CIFAR-10 test accuracies (%) using posterior predictive mean of NNGP kernels for deep vanilla
ResNets (ResNet with fully connected blocks) with different size training sets N.

Dataset MNIST CIFAR-10
N Depth  Scaled (D) Scaled (U) Unscaled Scaled (D) Scaled (U) Unscaled
1K 50 92.88:‘:0,35 92.39:‘:0,33 92.44:|:0.21 35.83:‘:0.14 34.73:‘:0.14 37.16:|:0_25
200 92911035 92.391032 89.561056 35.861014 34.761011 34.85410.17
1000 92921034 92.3910932 55.131531 35.891014 34.7641011 12.431397
10K 50 97571012  97.5510.12 97.061010 48.T11p31 48121997 50.111¢ 37
200 97571011  97.5540.12 95.5510.13 48.771030 47.154018 47.0040.30
1000 97571010 97544012 67.531296 48.761030 47.161017 17.8612.32

creasing and uniform) do not suffer from a drop in per-
formance. For example, the posterior predictive mean
using the NNGP of an unscaled vanilla ResNet with
depth 1000 attains only 17.86% accuracy on CIFAR-
10 with 10K training points, compared to 48.76% for
Stable ResNet (decreasing scale).

We focus on the NNGP rather than the NTK as recent
works [Lee et al., 2020, Shankar et al., 2020] have
demonstrated that there is no advantage to the state-
of-the-art NTK over the NNGP as infinite-width kernel
predictors. Moreover, we do not aim for near state-of-
the-art kernel results due to computational resources,
and instead aim to empirically validate the theoretical
advantages of Stable ResNets.

Trained Stable ResNet results Finally, we con-
sider the benefits of trained Stable ResNets on the
large-scale CIFAR-10, CIFAR-100 and TinylmageNet'?
datasets. We compare trained convolutional ResNets
[He et al., 2016] of depths 32, 50 & 104 in terms of
test accuracy. In the main text we present results for
ResNets trained with Batch Normalization [loffe and
Szegedy, 2015] (BatchNorm), while results for trained
ResNets without BatchNorm can be found in Appendix
A7. Stable ResNet scalings are applied to the residual
connection after all convolution, ReLLU and BatchNorm
layers.

We use initial learning rate 0.1 which is decayed by 0.1
at 50% and 75% of the way through training. This
learning rate schedule has been used previously [He
et al., 2016] for unscaled ResNets and we found it to
work well for all ResNets trained with BatchNorm. We
train for 160 epochs on CIFAR-10/100 and 250 epochs
on TinylmageNet. Test accuracy results are displayed
in Table 3. As we can see, Stable ResNets consis-
tently outperform standard ResNets across datasets
and depths. Moreover, the performance gap is larger
for larger depths: for example on CIFAR-100 our Stable

13 Available at
tiny-imagenet-200.zip

http://cs231n.stanford.edu/

ResNet (decreasing) outperforms its standard counter-
part by 1.05% (75.06 vs 74.01) on average for depth 32
whereas for depth 104 the test accuracy gap is 2.36%
(77.44 vs 75.08) on average. A similar trend can also
be observed for the more challenging TinyImageNet
dataset. Interestingly, we see that among the Stable
ResNets, decreasing scaling also consistently outper-
forms uniform scaling.

Table 3: Test accurracies (%) of trained deep ResNets of
various scalings and depths on CIFAR-10 (C-10), CIFAR-
100 (C-100) & TinylmageNet (Tiny-I).

Dataset Depth Scaled (D) Scaled (U) Unscaled
C-10 32 94.844008 94.781017 94.6640.07
50 95.0710.06 94.9910.03 94.8510.06
104 95.1410.19 95.311007 95.1040.21
C-100 32 75.061005 74.794+028 74.0140.14
50 76.2010.22 75.8110920 74.6610.33
104 77.44.10.09 76.8810.39 75.0810.42
Tiny—l 32 63.01i0,22 63.06i0_04 62-79i0.08
50 64.7840.24 64.7440.10 63.96+0.39
104 66.5740.39 66.67+0.12 65.27+0.52

8 CONCLUSION

Stable ResNets have the benefit of stabilizing the gra-
dient and ensuring expressivity in the limit of infinite
depth. We have demonstrated theoretically and empir-
ically that this type of scaling makes NNGP inference
robust and improves test accuracy with SGD on modern
ResNet architectures. However, while Stable ResNets
with both uniform and decreasing scalings outperform
standard ResNet, the selection of an optimal scaling
remains an open question; we leave this topic for future
work.


http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip
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