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Abstract

Learning physically structured representa-
tions of dynamical systems that include con-
tact between different objects is an impor-
tant problem for learning-based approaches
in robotics. Black-box neural networks can
learn to approximately represent discontinu-
ous dynamics, but they typically require large
quantities of data and often suffer from patho-
logical behaviour when forecasting for longer
time horizons. In this work, we use connec-
tions between deep neural networks and dif-
ferential equations to design a family of deep
network architectures for representing contact
dynamics between objects. We show that
these networks can learn discontinuous con-
tact events in a data-efficient manner from
noisy observations in settings that are tra-
ditionally difficult for black-box approaches
and recent physics inspired neural networks.
Our results indicate that an idealised form of
touch feedback—which is heavily relied upon
by biological systems—is a key component of
making this learning problem tractable. To-
gether with the inductive biases introduced
through the network architectures, our tech-
niques enable accurate learning of contact
dynamics from observations.
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1 Introduction

Deep-learning-based models have accomplished remark-
able achievements in a myriad of fields in recent years,
ranging from image processing to text generation to re-
inforcement learning. These models are increasingly be-
ing applied to model physical systems, in areas ranging
from fluid dynamics (Kutz, 2017) to robotics (Viereck
et al., 2018; Lutter et al., 2020; Alvarez et al., 2020).
Though neural networks are good at approximating
general classes of functions, they often struggle to learn
invariant properties of physical systems, such as the
conservation of energy or momentum (Greydanus et
al., 2019) and other qualitative properties. A rapidly-
growing line of work (Raissi, 2018; Greydanus et al.,
2019; Lutter et al., 2020; Cranmer et al., 2020; Sæ-
mundsson et al., 2020) has thus focused on how to
introduce inductive biases into these networks to en-
able them to learn more accurate models from less data.

One particular kind of physical phenomenon of great
interest to areas such as robotics is contact dynamics,
which describes how collisions between different ob-
jects affect the evolution of the system. For example,
many of the basic actions that could be relevant for
a robot, e.g. walking, jumping or grasping, involve
discontinuous contact events. Accurately modelling
these dynamics, and related downstream phenomena,
such as friction, is a crucial step towards enabling the
creation of robots that can learn to interact with un-
known objects in the real world. Additionally, stronger
inductive biases can improve the data efficiency of such

Code available at: https://github.com/libeanim/
contact-symplectic-integrator-network.

https://github.com/libeanim/contact-symplectic-integrator-network
https://github.com/libeanim/contact-symplectic-integrator-network
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t0 tc t1

(a) Find the contact time tc.

t0 t−c t+c t1

(b) Calculate true trajectory.

Figure 1: Example integration scheme for contact dynamics that enforces constraints exactly, in the context of a
bouncing ball. Initially, the ball is time-stepped until a contact with the floor is detected through interpenetration
at time t1. Then, the trajectory is (a) linearly interpolated to find the contact time tc where contact occurs
between the ball and floor. Finally, the contact state at time tc is calculated, a transfer of momentum between t−c
and t+c is performed, and the ball is time-stepped as usual to time t1.

models (Deisenroth et al., 2015; Greydanus et al., 2019;
Lutter et al., 2020; Cranmer et al., 2020; Sæmundsson
et al., 2020). Due to the presence of non-linear and
non-smooth behaviour, accurate multi-body contact
dynamics are widely considered notoriously difficult to
compute (Cirak and West, 2005), due to challenges with
numerically enforcing non-interpenetration constraints
and other issues. A robust and mature literature in
physics and numerical analysis for handling these issues
has developed in recent decades (Jean, 1999; Cirak and
West, 2005; Leyendecker et al., 2008).

By bringing these ideas together with the rapidly-
developing literature on neural ordinary differential
equations (E, 2017; Haber and Ruthotto, 2017; Chen
et al., 2018; Ruthotto and Haber, 2018) and physically-
inspired neural networks (Raissi, 2018; Greydanus et
al., 2019; Lutter et al., 2020; Sæmundsson et al., 2020),
we study the problem of learning unknown contact
dynamics from data. Our work is based on the ap-
proach of Sæmundsson et al. (2020), which derives
neural network architectures by discretising the vari-
ational principle underlying the physical equations of
motion under study. Specifically, we propose specialised
neural network architectures for modelling contact dy-
namics. These architectures combine discretisation
schemes designed for contact dynamics with flexible
parameterised networks for efficiently and accurately
learning system behaviour. We study these networks
under different scenarios, develop schemes to ensure
accurate learning of dynamics, and demonstrate empir-
ically that the addition of an idealised touch feedback
sensor—rarely explicitly considered in deep learning,
but widely utilised by biological systems—significantly
improves model performance.

This suggests that the precise details of what hardware
sensors the robot has available and how the learning
problem is formulated to utilise those sensors, are both
likely to have a significant impact on machine learn-
ing performance and should be studied further. This
includes understanding the effect of different forms of

touch feedback, such as observed tactile sensors, and
inferred feedback using proprioceptive sensors (Rotella
et al., 2018; Ortenzi et al., 2016). Our work provides a
starting point for addressing these questions within a
physically structured deep learning framework.

2 Contact Dynamics

Here we briefly review the mathematical formulation
of contact dynamics. The state of a physical system
is defined through position-velocity pairs (q, q̇). From
analytical mechanics, the trajectories of a physical
dynamical system are assumed to be a stationary point
of the action functional

S(q, q̇) =

∫ t1

t0

L(qt, q̇t) dt, (1)

where L is the Lagrangian—typically, the difference be-
tween kinetic and potential energy. By the d’Alembert–
Lagrange principle, at instances where there is no con-
tact, these trajectories follow the Euler-Lagrange equa-
tions

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (2)

These equations possess a number of important physical
properties, such as conservation of energy, momentum,
and phase volume. A long line of work in numeri-
cal analysis has built efficient numerical integration
schemes for these equations by maintaining these prop-
erties under discretisation (Marsden and West, 2001).
We are particularly interested in symplectic integrators,
which conserve phase volume exactly and conserve
energy and momentum to a high order of accuracy
(Sanz-Serna, 1992).

At time points, where there is contact, the variational
principle is augmented with contact constraints that de-
pend on the precise physical setting. These constraints
ensure that states which are assumed impossible, such
as those with interpenetration or deformation, cannot
occur. At these time points, the d’Alembert–Lagrange
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Figure 2: A CD-Lagrange network. Here, we begin from initial states (Q0, Q̇ 1
2
). We calculate the next position

Q1, and proceed to calculate the next velocity Q̇1+ 1
2

= Q̇S
1+ 1

2

+ Q̇C
1+ 1

2

as a sum of smooth and contact terms.

These terms are in turn calculated using the conservative forces F and the impulse I, which are calculated from
the parameterised Lagrangian, whose potential energy is given by a fully connected network.

principle does not apply, and the Euler–Lagrange equa-
tions (2) do not hold. To handle this, one splits the
action integral in equation (1) into contact-free intervals
with non-smooth contact-driven transitions in between,
which are analysed separately.

Applying the variational principle at the contact time
points yields transfer of momentum equations, usually
resulting from Newton’s restitution law and the law
of conservation of momentum (Fetecau et al., 2003;
Halliday et al., 2013). These equations relate the state
directly before contact to the state directly after con-
tact. To calculate this, one isolates the components of
momentum, which are normal to the contact surface,
and transfers them appropriately.

Implementing contact dynamics numerically yields a
number of issues, which depend on the regime employed.
For example, certain regimes involve calculating the
precise time when contacts occur, which might hap-
pen between integration time steps. In such cases,
transfer of momentum is applied at the contact time
point. This yields good numerical accuracy, but often
requires the solution of an optimisation problem to de-
termine the precise contact time (Fetecau et al., 2003).
Other regimes might instead relax the dynamics to al-
low object interpenetration in order to avoid expensive
fixed-point iterations (Fekak et al., 2017). This entails
carefully considering how to handle interpenetration to
ensure accuracy. Figure 1 illustrates a sample numeri-
cal trajectory of a bouncing ball, including numerical
transfer of momentum at a contact time point.

3 Physically Structured Networks for
Contact Dynamics

To define neural network models for contact dynamics,
we begin with the perspective of neural ODEs (E, 2017;
Haber and Ruthotto, 2017; Chen et al., 2018), which
will be helpful for this purpose. Here, we specify a
system of ODEs driven by a single-layer neural network,

and discretise it to obtain a deep or recurrent neural
network architecture. In the classical case, an Euler
discretisation yields a deep residual network, where the
depth is given by the number of discretisation steps.

Building on these ideas, a number of recent works have
proposed replacing the black-box system of ODEs with
other systems that are more structured (Raissi, 2018;
Greydanus et al., 2019; Lutter et al., 2020; Cranmer
et al., 2020; Sæmundsson et al., 2020). By applying
structure-preserving discretisation schemes to these
ODEs, one obtains neural network architectures with
built-in inductive biases that improve generalisation
and allow the networks to learn with less data.

In physical settings, a number of recent works have
paired structured equations from mechanics, such as
the Euler–Lagrange equations or Hamilton’s equa-
tions, with structure-preserving integrators, such as
the Störmer–Verlet method, giving rise to physically
structured neural networks (Greydanus et al., 2019;
Lutter et al., 2020; Cranmer et al., 2020; Sæmundsson
et al., 2020). These networks use the mathematical
structure of classical mechanics as an inductive bias,
ensuring the network mirrors important qualitative
physical properties, such as conservation of momentum
or conservation of energy. These inductive biases have
been shown to improve data efficiency and facilitate ac-
curate long-term forecasting (Raissi, 2018; Greydanus
et al., 2019; Lutter et al., 2020; Cranmer et al., 2020;
Sæmundsson et al., 2020).

3.1 Central-Difference Lagrange Networks

We now employ these techniques to design neural net-
work architectures specifically suited for modelling con-
tact dynamics. There are three main properties present
in the true physics that we aim to encode into the neu-
ral network architecture.

(a) The network should be expressive enough to model
a general Newtonian rigid body system.
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(b) The network should be constrained to exclude non-
physical dynamics that black-box networks allow,
so that it learns in a data-efficient manner.

(c) The network should be able to handle periods with-
out contact separately from contact events, as said
phenomena differ in character.

Following Sæmundsson et al. (2020), one can construct
a network satisfying the first two properties by applying
a symplectic integrator to the Euler–Lagrange equa-
tions induced by a free-form Lagrangian parameterised
by a fully connected network, which are interpreted as
a structured neural ODE. We extend these construc-
tions to explicitly handle contact events. We begin by
defining a parameterised Lagrangian Lθ for a free-form
Newtonian potential system, given by

Lθ(q, q̇) = q̇TMq̇ − Vθ(q), (3)

where M is a symmetric positive semi-definite position-
independent inertia matrix, and Vθ is modelled by a
fully connected neural network.

To obtain a network architecture for contact dynamics,
we apply the symplectic Central-Difference Lagrange
integrator of Fekak et al. (2017), modified for rigid
body impacts by Di Stasio et al. (2019). We work with
a simplified variant designed for modelling rigid non-
deformable bodies—see Appendix A, as well as Fekak
et al. (2017) and Di Stasio et al. (2019) for the general
case. This construction yields a recurrent network
architecture specialised for modelling contact dynamics,
which we now showcase. A schematic overview can be
found in Figure 2.

CD-Lagrange uses separate time grids for the posi-
tion qn and velocity q̇n+ 1

2
, at times tn and tn+ 1

2
. We

combine the position of all bodies in the matrix

Qn =
(
q1
n, . . . , q

K
n

)
, (4)

where K is the total number of bodies in the sys-
tem. Given a position-velocity pair (Qn, Q̇n+ 1

2
), CD-

Lagrange calculates the next position using the mid-
point velocity, given by

Qn+1 = Qn +
h

2
Q̇n+ 1

2
, (5)

where h is the size of the time step. At the next time
step, the change in velocity is calculated as a sum of
changes due to smooth dynamics and due to contact,
yielding

Q̇n+ 3
2

= Q̇S
n+ 3

2
+ Q̇C

n+ 3
2
, (6)

Q̇S
n+ 3

2
= Q̇n+ 1

2
+ hM−1F(Qn+1, Q̇n+ 1

2
), (7)

Q̇C
n+ 3

2
= M−1I(Qn+1, Q̇n+ 1

2
), (8)

where F is the conservative force and I the impulse that
occurs during contact, both defined below. The con-
servative forces are calculated from the parameterised
Lagrangian as

F(Qn+1, Q̇n+ 1
2
) = −

∂Lθ(Qn+1, Q̇n+ 1
2
)

∂Qn+1
(9)

= −∂Vθ(Qn+1)

∂Qn+1
, (10)

which, in our setting, are the conservative forces arising
from the potential Vθ(Qn+1). Rigid-body impacts are
handled by Newton’s restitution law (Fekak et al., 2017;
Di Stasio et al., 2019)

Un+ 3
2

= −eUn+ 1
2
, (11)

where Un+ 1
2

= Q̇n+ 1
2
LTn+1 with L defined below, and

e ∈ [0, 1] is the elasticity parameter with e = 1 defining
elastic impacts with no dissipation. Furthermore, for
rigid body-body impacts, the law of conservation of
momentum

K∑
k=1

mkq̇kn+ 3
2

=

K∑
k=1

mkq̇kn+ 1
2

(12)

needs to be considered in order to uniquely resolve
collision events. Define the projection operator

L =
[
n1 . . . nk . . . nK

]
, (13)

which contains the normal vectors of the surface each
body it is in contact with. For each body k, the corre-
sponding impulse Ik is given by

Ikn+1 =

{
Lkn+1λ

k
n+ 3

2

if ckn+1 = 1

0 otherwise
, (14)

where ckn+1 is a discrete contact signal for body k and

λkn+ 3
2

=
[
Hn+1

(
eQ̇n+ 1

2
+ Q̇S

n+ 3
2

)
LTn+1

]
kk

(15)

represents the impulse acing on body k. The operator
H is defined as

[Hn+1]i =
[
An+1M

−1AT
n+1

]−1

i
, (16)

and ensures that the mass ratios between the bodies
in contact, resulting from the law of conservation of
momentum, are applied to the correct bodies. Here,
the operator A selects the components of the bodies
that are in contact with each other, and is given by

[An]ij =


−1 if i = j and cin = 1

1 if body i and j are in contact

(implicitly cin = cjn = 1)

0 otherwise.

(17)

In total, these expressions define the general CD-
Lagrange network. Further details, including derivation
of these expressions, are provided in Appendix A.
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Idealised touch feedback. When using a CD-
Lagrange network to predict future system states, one
needs to determine whether or not objects are in con-
tact at each time step in order to calculate whether
or not the impulse component of the network comes
into play. To do so, we introduce an additional contact
network ĉθ that learns to predict a discrete contact
signal c ∈ {0, 1}K defined by

ckn =

{
1 if contact for body k

0 otherwise
(18)

at time step n. We consider two regimes: one in
which cn is unobserved, and another where it is fully
observed at training time. The latter case can be
conceptually thought of as the addition of an idealised
touch feedback sensor to the system, which determines
whether or not contact is present. We explore this
difference and its effect on performance in the sequel.

3.2 Learning from noisy observations

Given a dataset of J observed trajectories (yj , cj),
j = 1, . . . , J , of length Nj each with step size h and

yj = (Qj , Q̇j). We train the network ŷθ,h by minimis-
ing the mean squared error loss between the (noisy)
state observations and predicted states with respect
to the parameters of the potential network Vθ. We
also jointly train the contact network ĉθ by minimising
cross-entropy loss between its output and the contact
signal c. For a single trajectory, this is given by

LT (yj , θ) =
1

NjD

Nj∑
n=1

‖yn − ŷθ,h(y0, c0)‖2. (19)

The corresponding contact network loss is given by

LC(cj ,yj , θ) = − 1

NjK

Nj∑
n=1

K∑
k=1

(
ckn log ĉkθ(yn) (20)

+ (1− ckn) log(1− ĉkθ(yn))
)
,

where the activation of the output of the contact net-
work ĉθ is the sigmoid (logistic) function, and ĉkθ(yn)
is the contact network’s prediction for body k at time
step n. We further add a regularisation term LR(θ) on
the parameters of the model, which is described in the
sequel. In the full dataset, the observed trajectories
might contain many steps or have unequal lengths Nj .
To avoid vanishing gradients, instead of optimising with
respect to the full trajectories, we instead split the data
into batches of horizon H. The optimal parameters are
found by minimising

θ̂ = min
θ
LT + LC + LR (21)

using mini-batch stochastic gradient descent.

`2 regularisation. Since the change in velocity in
CD-Lagrange Q̇n+ 3

2
= Q̇S

n+ 3
2

+ Q̇C
n+ 3

2

is additive over

conservative and contact components, as part of train-
ing, a CD-Lagrange network needs to learn to distin-
guish which component should be used to predict a
given trajectory in the training data. `2 regularization
affects this aspect of the learning problem in an subtle
but outsized manner: as a consequence of shrinking
the potential network’s weights to zero, the regularizer
shrinks the function F (Qn+1) : Rd → Rd to the zero
function 0 : Q 7→ 0. This encourages the network to
explain contact events with contact forces rather than
conservative forces where possible.

4 Experiments

In order to investigate the properties of the proposed
CD-Lagrange networks, we run experiments on a num-
ber of reference rigid body systems. In Section 4.1, we
study performance on an ideal pendulum system with-
out contacts, focusing on the physical properties of the
conserved dynamics defined in equations (7) and (9),
thereby checking the network’s performance relative to
baselines. In Section 4.2, we perform experiments on
a rigid bouncing ball system, exploring the behaviour
of the network when contact happens and the effect
of including an idealised touch sensor on the ability of
recovering the underlying dynamics. Finally, in Sec-
tion 4.3, we study body-body impacts in an idealised
Newton’s cradle and look at the network’s ability to re-
cover the underlying dynamics and effects of numerical
interpenetration during contact events.

We compare CD-Lagrange networks with residual net-
works (ResNets) and variational integrator networks
(VINs) by evaluating them in terms of predictive per-
formance on held-out test data as well as qualitatively
evaluating the corresponding phase diagrams. For con-
tact experiments, we additionally include a modified
residual network baseline (ResNetContact), which takes
as input both the state as well the contact signal, for
comparison against the CD-Lagrange networks’ ide-
alised touch feedback sensor. To generate data, we
simulate trajectories of motion and add independent
Gaussian noise to the positions and velocities. Full
details for experiment hyperparameters and training
are given in Appendix B.

4.1 Learning to predict motion without
contacts: an ideal pendulum

We first examine whether the performance of CD-
Lagrange networks matches previous work on phys-
ically structured networks in cases where there is no
contact. To this end, we consider learning to predict
the trajectory of a simple ideal pendulum from observed
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Figure 3: Learning the equations of motion of an ideal pendulum, which has no contacts. Given a set of initial
conditions, we forecast a path in phase space and predict against ground truth. We display ground truth, training
data, and model predictions, and energy over time for each of the models. For the CD-Lagrange network, we
display the learned contact function, which is approximately zero everywhere. Root mean squared errors for each
network are given as follows: CD-Lagrange RMSE: 0.538, ResNet RMSE: 1.156, VIN VV RMSE: 0.509.

data. The ideal pendulum is a point-mass attached to
a mass-less rigid rod, suspended from a pivot. The pen-
dulum swings back and forth due to gravity, without
friction, so that the system conserves energy. This task
has been studied previously by a number of authors,
such as Greydanus et al. (2019) and Sæmundsson et al.
(2020), who propose to use a network constructed from
a variational velocity Verlet integrator in order to learn
in a data-efficient manner. The variational integrator
network preserves more physical properties than the
CD-Lagrange network, and therefore we expect it to
perform better in settings where there are no contacts.
We generate 20 training trajectories consisting of 10
points each by simulating trajectories and adding inde-
pendent Gaussian noise to all position-velocity pairs.

Figure 3 plots the phase-space trajectories for the
ground truth system, the observed training data and
the predicted evolution for each model. The CD-
Lagrange network and variational integrator network
achieve comparable error, which significantly improves
upon the baseline residual network, which incorrectly
dissipates energy. The network also recovers the correct

n

−mgx

Figure 4: Schematics of the bouncing ball. Here, the
ball falls due to the gravitational pull −mg, and expe-
riences a contact force in the direction of the contact
normal vector n with respect to the floor.

contact function, which is the zero function. This shows
that relative to prior works on physically structured
neural networks, accurate performance in contact-free
scenarios is not compromised by the extra structure
added to handle contacts.

4.2 Learning body-wall contacts: an ideal
bouncing ball

Next, we study using CD-Lagrange networks to learn
contact dynamics for an ideal rigid bouncing ball. This
system, shown in Figure 4, is a commonly studied
example in the non-smooth contact dynamics literature
(Di Stasio et al., 2019). The ball accelerates towards the
ground due to the force of gravity, hits the ground, and
bounces back up. The effect of the impact is determined
by Newton’s restitution law, given in equation (11),
where the elasticity parameter e controls the energy
behaviour. We focus on the regime e = 1, where energy
is conserved.

We consider two different data regimes. In the first
regime, only observed trajectories of motion are pro-
vided at training time. In the second regime, we add

RMSE

ResNet 6.6± 1.2
ResNetContact 4.8± 0.8
CD-Lagrange 1.9± 1.0

Table 1: Average root-mean squared error and standard
error of the bouncing ball experiment averaged over
5 runs with 40 trajectories each consisting of 10 data
points.
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Figure 5: Learning the equations of motion of the bouncing ball. Given a set of initial conditions, we forecast
a path in phase space and predict against ground truth. We display ground truth, training data, and model
predictions for each of the models. For the CD-Lagrange network, we display the gradient of the potential
energy, and the learned contact function. Root mean squared errors for each network’s predictions are as follows:
CD-Lagrange: 0.067, CD-Lagrange (no touch): 7.578, ResNet: 6.778, ResNetContact: 8.866.

idealised touch sensor data that indicates at each time
point whether or not contact has occurred, given in
equation (18). This can be viewed as representing an
ideal impact sensor located inside the ball, or along
the floor. To learn this system’s equations of motion
from data, we generate 52 training trajectories of 10
points each, and train a CD-Lagrange network, a resid-
ual network, and a modified residual network that also
takes contact data as input. Results can be seen in
Figure 5. Here, we see that the CD-Lagrange network’s
performance depends critically on whether or not it has
access to touch feedback data. With touch feedback,
the CD-Lagrange network predicts the ball’s trajec-
tory much more accurately than the residual network.
Without touch feedback, the CD-Lagrange network
fails to learn the correct dynamics—instead, the net-
work attempts to incorrectly explain noise using contact
events, and contact events using smooth dynamics, be-
cause all scenarios lead to similar-looking noisy data
from the network’s perspective. The residual network
struggles to approximate the non-smooth behaviour at
impact time, replacing instantaneous contacts with fast
movement. Adding contact information to the residual
network’s inputs does not improve its performance.

From examining the potential and contact network
in Figure 5, we see that the CD-Lagrange network
with touch feedback determines the impact times near-
exactly. The gradient of the potential energy remains
very close to the ground truth value, even as the system
evolves and contact events occur. This shows that
the network correctly determines that contact-driven
changes in system states are caused by contacts, and
not by spurious potential energy within the smooth
dynamics—so long as the network is provided with

touch feedback that enables it to differentiate between
contact events and noise. Root mean squared error,
together with standard error, can be seen in Table 1.

4.3 Learning body-body impacts: Newton’s
cradle

Finally, we consider learning body-body impacts using
CD-Lagrange networks in a simple Newton’s cradle
system consisting of two balls suspended by a string,
shown in Figure 6. We assume both bodies have no
volume, are suspended from a common mounting point,
and parameterise their locations using angles relative
to the vertical axis. This means that collisions will
occur perpendicular to the contact surface. We train
on 54 trajectories consisting of 10 data points each,
and again consider CD-Lagrange networks with and
without idealised touch sensor data, along with residual
network baseline within both data regimes.

2
1

n1

Figure 6: Schematics of the Newton’s cradle system
with two balls. Here, the first ball swings along the
suspended rope due to gravity, and experiences a con-
tact force in the direction of the contact normal vector
n1 upon impact.
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Figure 7: Learning the equations of motion of the Newton’s cradle. Given a set of initial conditions, we forecast
a path in phase space and predict against ground truth. We display ground truth, training data, and model
predictions for each of the models. For the CD-Lagrange network, we display the gradient of the potential energy,
and the learned contact function. Root mean squared errors for each network are given as follows: CDL RMSE:
0.406, Resnet RMSE: 1.685, ResnetContact RMSE: 1.034.

Results can be seen in Figure 7. Here, we see that the
phase-space trajectory of the CD-Lagrange network is
substantially more accurate than for a baseline residual
network. Root mean squared error, together with stan-
dard error, can be seen in Table 2. As before, adding
contact information does not improve the residual net-
work’s performance. This replicates the results of the
single-body bouncing ball experiment in Section 4.2 in
a multi-body setting.

Next, we examine how accurately the potential energy
and contact function are recovered—this can also be
seen in Figure 7. The CD-Lagrange network learns
the potential accurately, with some error around the
contact points. In particular, the contact network
accurately learns to determine when contact will occur
based on the touch sensor data. Mirroring the results

RMSE

ResNet 1.6± 0.1
ResNetContact 3.5± 1.3
CD-Lagrange 0.4± 0.1

Table 2: Average root-mean squared error with stan-
dard error of the Newton’s cradle experiment averaged
over 5 runs with 50 trajectories each consisting of 10
data points.

of Section 4.2, the residual network struggles to predict
contact events even when it is given explicit touch
sensor data on when they occur, particularly through
mistiming contact events to occur earlier or later than
is correct.

The CD-Lagrange integrator, and by proxy the CD-
Lagrange network, allow some slight interpenetration
to occur. In body-wall impact scenarios, this does not
strongly affect performance. However, in body-body
impacts, this qualitative behaviour difference becomes
more significant. Specifically, as momentum gets trans-
ferred between bodies, the slight allowed interpene-
tration can cause the system to significantly violate
conservation of energy. In the Newton’s cradle exam-
ple, this causes the resting ball to gain potential energy
during collision events, eventually causing both balls
to accelerate. To mitigate this problem, we introduce a
closest-point projection during impact events (Fetecau
et al., 2003), which aligns the resting ball with the
closest point on the boundary where no penetration
occurs. This improves accuracy and restores correct
long-term system behaviour.

5 Discussion

CD-Lagrange networks are a flexible way for data-
driven learning of equations of motion that include
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contact dynamics. These networks can learn to ac-
curately predict trajectories and resolve collisions in
a noise-robust and data-efficient manner. This con-
tributes to a rapidly-expanding line of work on neural
ODEs and physically structured learning, and shows
that these ideas can work successfully in non-smooth
settings.

Compared to black-box neural networks, the implemen-
tation of physically structured networks for learning
contact dynamics presents a number of additional chal-
lenges to ensure their performance. In particular, we
find that the presence or absence of touch feedback
impacts the model’s performance dramatically. This is
because without touch feedback the learning problem
is ambiguous: abrupt shifts in the system state can be
explained either by contacts, or by noise, and it is diffi-
cult for the network to tell which is which. This results
in weak identifiability in the loss function, which could
lead to difficulties with local optima or other issues.
It is therefore important that the network is provided
with an appropriate means to differentiate between the
two, e.g. by means of a touch sensor.

The networks studied here are based on the CD-
Lagrange integrator, which is an explicit scheme that
fits conveniently within an automatic differentiation
framework. This convenience comes at a cost: the
integrator allows for some physically incorrect inter-
penetration, which can affect long-term prediction ac-
curacy. Other schemes, such as variational integrators
for contact dynamics (Fetecau et al., 2003), avoid these
issues and achieve higher accuracy, but they require
the solution of fixed-point iterations or convex optimi-
sation problems during time-stepping, which renders
them more expensive and cumbersome to work with.
These issues can potentially be mitigated through the
use of differential physics engines as components of
deep-learning-based models (de Avila Belbute-Peres
et al., 2018). Studying these trade-offs in the context of
learning could pave the way toward better understand-
ing on how to incorporate inductive biases to improve
performance of neural networks to model the real world,
thereby facilitating their use in applications such as
robotics.

6 Conclusion

In this work, we introduce CD-Lagrange networks,
which build on ideas from neural ODEs and physically
structured learning to construct networks for learning
contact dynamics in data-limited regimes. With the
addition of an idealised touch feedback sensor, these net-
works can learn to accurately reconstruct non-smooth
contact dynamics from data, in a way that disentangles
contact-driven forces from conservative forces. The

simple and explicit structure makes these networks in-
terpretable, well-matched with the underlying physics,
and straightforward to implement. A rapidly growing
line of work has focused on adapting deep networks to
various physical settings. We hope our contributions
facilitate the inclusion of non-smooth contact dynamics
within these settings.
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