An Adaptive MCMC Scheme for Setting Trajectory Lengths in
Hamiltonian Monte Carlo

Matthew D. Hoffman
Google Research

Abstract

Hamiltonian Monte Carlo (HMC) is a pow-
erful MCMC algorithm based on simulating
Hamiltonian dynamics. Its performance de-
pends strongly on choosing appropriate val-
ues for two parameters: the step size used
in the simulation, and how long the simula-
tion runs for. The step-size parameter can be
tuned using standard adaptive-MCMC strate-
gies, but it is less obvious how to tune the
simulation-length parameter. The no-U-turn
sampler (NUTS) eliminates this problematic
simulation-length parameter, but NUTS’s rel-
atively complex control flow makes it diffi-
cult to efficiently run many parallel chains
on accelerators such as GPUs. NUTS also
spends some extra gradient evaluations rela-
tive to HMC in order to decide how long to
run each iteration without violating detailed
balance. We propose ChEES-HMC, a sim-
ple adaptive-MCMC scheme for automatically
tuning HMC’s simulation-length parameter,
which minimizes a proxy for the autocorre-
lation of the state’s second moments. We
evaluate ChEES-HMC and NUTS on many
tasks, and find that ChEES-HMC typically
yields larger effective sample sizes per gradient
evaluation than NUTS does. When running
many chains on a GPU, ChEES-HMC can
also run significantly more gradient evalua-
tions per second than NUTS, allowing it to
quickly provide accurate estimates of poste-
rior expectations.

Proceedings of the 24" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Alexey Radul
Google Research

Pavel Sountsov
Google Research

1 Introduction and background

Hamiltonian Monte Carlo (HMC; Neal, 2011) is one of
the most successful families of MCMC algorithms cur-
rently in use. Its ability to suppress the random-walk
behavior that plagues most MCMC algorithms, and its
relatively “black-box” nature (requiring only an unnor-
malized log-density and its gradient function, which can
be provided using automatic differentiation) make it a
common default choice for probabilistic-programming
languages such as Stan (Carpenter et al., 2017). In
particular, the no-U-turn sampler (NUTS; [Hoffman &
Gelman), 2014)) variant of HMC can be run with very
minimal tuning by the user, which has led to its wide
adoption.

Since NUTS was introduced, the balance of floating-
point computational power has moved from CPUs
to special-purpose single-instruction multiple-data
(SIMD) processors such as GPUs. These devices can
perform huge numbers of floating-point operations per
second. HMC is well positioned to exploit these re-
sources by running many chains in parallel (Lao et al.
2020). But NUTS is a control-flow-heavy recursive
algorithm, and designing implementations that take
full advantage of GPU resources has been challenging
(Radul et al.l |2020; [Lao & Dillon, 2019; Phan et al.,
2019)). In this paper, we propose an alternate strategy
for developing a tuning-free HMC algorithm based on
adaptive MCMC (Andrieu & Thoms| 2008]). This al-
gorithm can outcompete NUTS both in performance
per gradient evaluation and in gradient evaluations per
second on modern hardware and software platforms.

Our goal is to sample from a distribution p(6) o< A1

over a vector § € R”. We assume we can only com-
pute p up to a normalizing constant. We augment this
model with a set of “momentum” variables r € R

that are given independent standard normaﬂ distri-
butions, so that the augmented model’s joint density

"HMC admits a non-identity mass matrix, but an equiv-
alent effect can be achieved by a linear change of variables
(Neall |2011). For ease of exposition, we assume this change
of variables is absorbed into the definition of £ and 6.

An Adaptive MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo

is p(A,) o< exp{L(0) - %||r||2} We then interpret the
negative log-joint —log p(6,r) as a Hamiltonian, with
—L(0) being a potential energy function and %||r||2
being a kinetic energy function. We can update the

joint state by simulating Hamilton’s equations % =7
% = VL(). In practice, we cannot usually solve these
equations exactly, so we use the “leapfrog” integrator,
each iteration of which proceeds by the updates
rer+sVLO); 0 O+er; rTer+sVLO). (1)
We will denote the application of L leapfrog updates
with step size € as leapfrog, ,(0,7). The leapfrog up-
dates are reversible and volume preserving (Neal, |2011]),
so if we compute 6", —r' = leapfrog, 1 (0,) then we can
treat the new state 0,7 as a Metropolis proposal and
po.r), Since Hamilto-
p(0,r)
nian dynamics conserve energy, if the leapfrog integra-
tor accurately approximates the dynamics, the change
in log-density from 6,7 to §',r' will be small and the
probability of acceptance will be large, even if 6" is far
from 6. After each of these Metropolis proposals, we
resample the momenta r ~ A(0, I), which is a valid

Gibbs-sampling move.

accept it with probability a =

As with any MCMC algorithm, one can run multiple
parallel HMC chains to get a larger sample size and
reduce the variance of one’s MCMC estimator. Imple-
menting parallel-chain HMC on top of a vector-oriented
library such as TensorFlow, JAX, or PyTorch (Abadi
et al., 2015 Bradbury et al., [2017-2019; Paszke et al.|
2019) that supports automatic differentiation is rela-
tively easy as long as the chains run in lockstep; a
batch of gradients for the chains can be computed in
parallel quickly on SIMD accelerators such as GPUs or
TPUs (Lao et al., 2020). As we will see in section |3 a
GPU can run tens of chains in parallel nearly as fast
as a CPU core can run a single chain.

HMC has two key parameters that must be tuned
carefully to achieve good results: the step size € and
the number of leapfrog steps L. HMC ensures high
Metropolis acceptance rates by controlling the change
in energy of the Hamiltonian system. When the
leapfrog integrator is run over long trajectories, this
error is O(€°), so € must be kept small enough to en-
sure a reasonable acceptance rate. On the other hand,
smaller step sizes lead to either less progress (if the
number of leapfrog steps L is held fixed) or more work
(if the trajectory length T' £ €L is held fixed) per it-
eration. Happily, the symplecticness of the leapfrog
integrator ensures that the energy change does not
depend strongly on L (Hairer et al., |2006), so € can
be independently tuned to achieve a high-but-not-too-
high acceptance rate using standard heuristics from the
adaptive-MCMC literature (Andrieu & Thoms| [2008).

Tuning the number-of-steps parameter L is trickier.
Pasarica & Gelman| (2010) observe that maximizing
expected squared jumped distance (ESJD) E[||6'-6]|*]
minimizes the variance-weighted sum over dimensions
of the chain’s first-order autocorrelations. This idea
motivated [Hoffman & Gelman| (2014)) to find a way to
run the leapfrog integrator until the simulation makes
a “U-turn”—that is, until increasing L would decrease
the distance from the proposal to the initial state. The
resulting “no-U-turn sampler” (NUTS) is widely used as
a turnkey sampling algorithm in software packages such
as Stan (Carpenter et al., |2017)), PYMC3 (Salvatier
et al., |2016)), Tensorflow Probability (The TFP Team)
2018-2019; Dillon et al. 2017, Pyro (Bingham et al.
2018)), and Turing (Ge et al., [2018).

We will see in section [3] that, although NUTS is reliable,
robust, and easy to use, it often requires more leapfrog
steps to converge and mix than an optimally tuned
HMC algorithm. This is in part because it must waste
about half of its leapfrog steps to satisfy detailed bal-
ance (Wu et al., [2018). Furthermore, adapting NUTS
to take full advantage of SIMD hardware is challenging
because it requires many control-flow operations, and
each chain may use a different number of leapfrog steps
per iteration (Radul et al., |2020; Lao & Dillonl |2019;
Phan & Pradhan| [2019). A well-tuned SIMD-friendly
implementation of a simpler HMC algorithm run on
a GPU can therefore produce estimates of posterior
expectations with low variance and bias in much less
wallclock time than NUTS, even on the same hardware.

But this advantage only exists for “well-tuned” HMC;
practitioners need some way to set HMC’s parameters,
and in particular the number-of-steps parameter L. In
this paper, we propose an adaptive-MCMC approach
to setting L, based on the heuristic of adjusting the
trajectory length e to increase the expected Change
in the Estimator of the Expected Square (ChEES)
of the parameters 6. Empirically, we find that the
resulting ChEES-HMC algorithm consistently outper-
forms NUTS and often finds trajectory lengths that
are competitive with those found by grid search. An
implementation of ChEES-HMC is available as part of
TensorFlow Probabilit

Figure [I] illustrates ChEES-HMC’s advantage over
NUTS on a Pascal Titan X GPU. The parallel compute
capacity of the GPU lets it run 100 NUTS chains in less
than twice the time it takes to run 4 NUTS chains, so
100-chain NUTS gets reasonable estimates much faster
than 4-chain NUTS. But NUTS takes about four times
as long as ChEES-HMC to run 1000 iterations with

thtps ://github.com/tensorflow/probability/
blob/master/tensorflow_probability/python/
experimental/mcmc/gradient_based_trajectory_
length_adaptation.py

https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/experimental/mcmc/gradient_based_trajectory_length_adaptation.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/experimental/mcmc/gradient_based_trajectory_length_adaptation.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/experimental/mcmc/gradient_based_trajectory_length_adaptation.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/experimental/mcmc/gradient_based_trajectory_length_adaptation.py

Matthew D. Hoffman, Alexey Radul, Pavel Sountsov

0.35
4-chain TFP NUTS
\ —— 100-chain TFP NUTS

0.30 1 \ —— 100-chain ChEES-HMC

0.25 A

<o Mupton
LR T i e e T

v_.‘-l

0.20 A
0.15 4

0.10 +

Estimated p(|TB13A13]| <0.01 | X, y)

0.05

0 20 40 60 80 100
Time (Seconds)

Figure 1: Estimates of the probability that the magni-
tude of a centered regression coefficient is less than 0.01.
TB13A13 is the centered parameterization of the 13th
regression coefficient from the German credit sparse
logistic regression model defined in section 3] Similar
results for other coefficients are provided in the supple-
ment. Estimates are obtained by discarding the second
half of the chain after different numbers of iterations.
ChEES-HMC is the method proposed in this work;
TFP NUTS is the TensorFlow Probability (TFP) im-
plementation of the No-U-Turn Sampler (NUTS) (Lao
& Dillon, 2019; Hoffman & Gelman| 2014)). All algo-
rithms were run for 1000 iterations, with adaptation
frozen after 500 iterations. Dotted lines are + two stan-
dard errors, computed using TFP’s effective sample
size estimator.

100 chains, and achieves a final effective sample size
about half that of ChEES-HMC; altogether ChEES-
HMC gets to NUTS-quality estimates almost an order
of magnitude faster.

2 Tuning HMC to maximize ChEES

In this section we develop and analyze our adaptive-
HMC procedure. To develop intuition, in section [2.]
we begin by considering the behavior of HMC with
an exact integrator and a multivariate-Gaussian target
distribution; this analytically tractable case is impor-
tant in its own right (a sampler can hardly be called
“general-purpose” if it fails on multivariate Gaussians),
but also serves as a proxy for more-general unimodal
targets or single modes of multimodal targets.

The Gaussian example demonstrates the importance
of randomizing (“jittering”) HMC’s trajectory length
to ensure convergence in all directions. An analysis of
the jittered chain’s first-order autocorrelations leads us
to conclude that maximizing expected squared jumped
distance (ESJD; [Pasarica & Gelmanl 2010)) leads to an
average trajectory length that is as much as twice the

optimal trajectory length. These too-long trajectories
do extra work to generate estimates of the highest-
variance parameters that are better than the estimates
of lower-variance parameters; if we want to minimize
the maximum autocorrelation across dimensions, this is
a waste of effort. ESJD is also fooled by long trajecto-
ries’ ability to produce anti-correlated samples, which
are good for estimating means but bad for estimating
variances. However, maximizing ESJD after centering
and squaring the parameters yields a shorter, more
efficient trajectory length. In section we apply
these intuitions to derive a practical adaptive-MCMC
algorithm which we call ChEES-HMC.

2.1 Autocorrelation analysis of the
multivariate Gaussian

We consider HMC applied to a D-dimensional multi-
variate Gaussian distribution. Without loss of gener-
alityﬂ we assume that this distribution has mean 0
and diagonal covariance matrix ;4 = 03. We further
assume that we are using a small enough step size ¢
that we can approximate the action of the leapfrog,
integrator with the exact Hamiltonian dynamics, that
is, that for a trajectory length ¢t = €L the new state
0',r' satisfies

2 _ 62 2 -1, 0
ad=0—§+7“d§ ¢aq = tan (=);
rq = aqCco8(Pq); Oq = aqgogsin(og); (2)

ra = aqcos(gg +t/oq); by =asogsin(pg +t/oy),

where (a, ¢) is the magnitude-angle representation of
the phase-space state (0, r). One can readily verify that
equation [2] solves Hamilton’s equations in this case.

Now, we consider the first-order autocorrelation in
dimension d. At equilibrium, afl ~ Exponential(2),
¢4 ~ Uniform(0,27), ag 1L ¢4. The first-order auto-
correlation is therefore

04 E[0264] = Elag sin(¢) sin(¢q + t/04)]
= E[cos(t/oq) — cos(2¢4 + t]a4)] (3)
= cos(t/oq),

since E[a] = 2, sin(¢) sin(¢+4) = %(cos(é)—cos(2¢+5)),
and E[cos(2¢4+t/c4)] = 0. If the number of dimensions
D is large, then for any t it is likely that there is
some d such that t/o; mod 27 = 0; that is, there may
be no setting of ¢ that leads to low autocorrelation
in every dimension. This phenomenon is discussed
by [Neal (2011, section 3.2), who observes that it can

*HMC with an isotropic kinetic-energy function is in-

variant to shifts and rotations; kinetic-energy functions
1

ETTM_lr with mass matrix M can be adapted to a unitary

transformation r' = Ur by choosing M' = UMU".

An Adaptive MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo

Fixed Trajectory Length Uniformly Jittered Trajectory Length

1.0 4

0.5 1

0.0 4

of First Moment

Lag-1 Autocorrelation
|
=4
w

|
=
o

1.0 4 1.0 4

s
o
.r‘_B' 5 0.8 0.8
i1
£2 06 0.6 1
St
<3(S 0.4 A 0.4 A
",‘g 0 =0.100 m— g =0.215 0= 0.464 = g =1.000
g5 02 0.2 = §=0129 === g=0278 === g=0599 EEEE Maximum
g =0. =0. =0.
m— 0 =0.167 g =0.359 0=0.774
0.0 0.0 1
) 2 4 6 8 10 12) 2 4 6 8 10 12
Trajectory Length Maximum Trajectory Length

Figure 2: First-order autocorrelations for Hamiltonian Monte Carlo (HMC) targeting Gaussian distributions
with 10 logarithmically spaced scales o, as a function of HMC’s trajectory-length parameter ¢ = eL (left plots)
or the maximum-trajectory-length parameter T for jittered HMC (i.e., HMC where each iteration we randomly
choose t uniformly between 0 and T'). We assume the step size € is small enough that we can ignore integration
error. Heavy black lines show the worst (highest) autocorrelation across scales; if the different squared scales o’
were the eigenvalues of the covariance matrix of a multivariate normal distribution that we were trying to sample
from using HMC, the black lines would show the autocorrelation in the slowest-mixing direction. When using a
fixed trajectory length, the autocorrelations as a function of trajectory length are cosines with different periods;
no matter what trajectory length we choose, there will be some direction in which we have high autocorrelation.
If instead we randomly jitter the trajectory length, the autocorrelations behave like sincs (which converge to a
constant) as a function of maximum trajectory length. Considering the second moment (bottom plots) instead of
the first moment (top plots) makes the autocorrelation vary twice as fast, and raises the minimum achievable
autocorrelation from -1 to 0 (HMC with fixed ¢) or from about -0.22 to about 0.39 (jittered HMC).

interfere with HMC’s ergodicity unless one randomizes relation under uniform jitter is
the trajectory length. Indeed, if we uniformly jitter L 1T P
. d
the trajectory length between 0 and 7', we get an sts7t o cos(2t/oq)dt = >t 2 T, (6)

autocorrelation of o))
This differs from equation [] in two ways: as T gets

1 fT cos(t/ag)dt = sin(T'/o4) (4) large, this no longer goes to 0, but to %; and it decays

70 Tloa ’ twice as fast, taking a minimum at 7'~ 2.250. Using

T := 2.250,,« ensures that the maximum across dimen-

takes a minimum of about —0.22 at T ~ 450, and if sions of the first-moment autocorrelation from equation

T =45 I sin(T/og) <0.129 o [is no more than 0.346, and the second-moment auto-
= 4.90max then maxg =777 < 0.129. correlation from equation [6] is no more than 0.564.

which goes to 0 as T//o4 gets large. In particular, it

T = 4.50max produces an antiautocorrelated chain, pigyre f] summarizes these results. If we want low-
which is good for es'tlmatlng first m9ments. But .lf W€ variance estimators of many expectations with different
care about estimating the expectation of a nonlinear posterior scales, we must jitter trajectory lengths and
function of our variables, we must consider the autocor- ;56 4 maximum trajectory length of the same order as
relation under that change of variables. For example, {}¢ largest posterior scale. If we jitter trajectory lengths
if we want to estimate posterior variances, we need to and we want to estimate E[(6, — E[0 d])2] for some d
. 2

worry about the autocorrelatl(;n of 0 (those mean and with relatively small posterior scale (so that 04 << 0.y,
variance at equilibrium are o° and 20"): o4 < T, and therefore % + %Sin(T/ 04)/(T'[oq) = %)7
then the maximum first-order autocorrelation over di-

LE[((&')Z— 2)(92_ 212 1(1 ot 5 . . .)
5T d o N0, -07)] = 2(+cos(2t/a4)). (5) mensions and expectations will be at least 0.5; therefore,
we may as well use the shortest (and therefore cheap-
See the supplement for a full derivation. The autocor- est) maximum trajectory length that approximately

Matthew D. Hoffman, Alexey Radul, Pavel Sountsov

achieves this autocorrelation in all dimensions for both
the first and second moments of 8, which T" := 2.250 .«
does.

While this analysis may not generalize in detail to
arbitrary target distributions, the Bayesian central limit
theorem ensures that approximately Gaussian posterior
distributions are common enough that general-purpose
samplers must deal with them gracefully. That is,
working well in the Gaussian case is a necessary-but-
not-sufficient condition for being a good sampler. In
the following section, we use the analysis above to
derive a jittered adaptive-HMC algorithm based on the
lessons from this section.

2.2 The ChEES criterion

Above, we argued for choosing a trajectory length eL
in jittered HMC by trying to minimize the first-order
autocorrelation of the statistic (0—E[0]) v)?, where v is
a unit vector pointing in the highest-variance direction
of the posterior. In this section we will propose a
heuristic for doing so.

We want our heuristic to be (i) invariant to shifts
and rotations, (ii) relatively insensitive to directions
with low posterior variance (since under uniform jitter
the long trajectories needed to explore high-variance
directions will always explore low-variance directions as
well), and (iii) focused on second-moment estimation
(since the trajectories that are optimal for estimating
first moments are longer than those that are optimal
for estimating second moments, and would therefore
waste computation).

We propose tuning 7' to maximize the following
“Change in the Estimator of the Expected Square”
(ChEES) criterion (expectations are with respect to
the chain at equilibrium, with 6 ~ p, 7 ~ A(0, I), and
¢',r' = leapfrog, 1 (0,7)):

ChEES £ {E[(10' - E[0]II* - 110 - E[0]I)*]. (7)

This criterion is invariant to shifts (because of the cen-
tering by E[#]) and rotations (because it only depends
on the squared norm of the centered 6). Below we
will show that it satisfies the other two criteria. At
equilibrium, assuming without loss of generality (to
reduce clutter) that E[f] = 0 and E[6;0;] = 0 for i # j,
and letting o 2 Y, 07 be the trace of the covariance
matrix of 6,

ChEES £ E[(Il6]I* - o7) = ([161I* - 07))"]
= SEL(I01" - 07)’] (8)
= SELI011* = a2)1161]” = 02)].

The first term is constant with respect to 7. The

second includes a weighted sum of the first-order auto-
correlations of 9?11

E[(116']1* - o2)(Il011* -)] = ¥, , BL((6;)* - 07)(67 - 02)]

E[((6; 2—01-2 91-—0?
= TA(E[6] - o) Mol ll ()

+ Y4 0 BL6)* = 07)(65 = 03)].

The second sum will be small if each dimension is
approximately independent under the posterior once
6 has been rotated so that E[0;6,] = 0 for i # j. The
first sum is the sum of the autocorrelations of each 93,
weighted by the variance of 937 which will generally be
proportional to the posterior scale 03. This scheme
therefore aggressively weights high-variance directions,
as desired.

We can compute the derivative of the expected ChEES
with respect to T' from Hamilton’s equations:
u=1 1
- o2 B L5116 (T, 6,7) = B[O - 1|6 - E[6]]]*)°]du
u=1 1]
= [i2o uE[(10'(uT, 0,7) - E[0]||* - |10 - E[0]||?)

x (0'(uT, 0,7) - E[6]) ']du. (10)

We can follow this gradient signal to maximize ChEES
with respect to the maximum trajectory length 7'. The
procedure is summarized in algorithm [1} We highlight
in blue the new computations introduced by ChEES-
HMC relative to length-jittered and step-size-adapted
HMC with a fixed, user-supplied maximum trajectory
length T'. The rationales for some of the details follow
below.

Since the scale of § is highly problem-dependent, we
use Adam (Kingma & Bal, |2015) to adjust the scale
of the gradient steps. We use step size a = 0.025
(the algorithm was generally not very sensitive to this
parameter; see the supplement for further analysis),
no momentum (B; = 0), and relatively fast second-
moment adaptation (8 = 0.95). We average ¢ across
all chains, and use the same sampled ¢ for each of them
to ensure that each chain does the same amount of
work per iteration (this results in faster and simpler
code). We weight the contribution of each chain to g
by its acceptance probability to avoid being influenced
by obviously invalid states. We estimate E[6] from the
initial and final states of the integrator across chains.

When using the same step size for all chains, one of the
chains may get “left behind”—that is, while warming up
a chain may get stuck in a region that it cannot escape
from without using a relatively small step size, while the
other chains may have already escaped from this region.
Tuning average acceptance probability may not solve
this problem when we run many chains, since a single
stuck chain contributes relatively little to the average.

An Adaptive MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo

Algorithm 1 ChEES-HMC; new elements in blue

Input: unnormalized target distribution p(f) o<
eﬁ(a), initial states Gf)m) for each chain m € {1,..., M},
initial step size €g, desired number of samples N,
number of adaptation steps Nyarmup, Halton se-
quence hi.y.
Set initial trajectory length 7 = €g
Initialize moving averages T = 0, € 0.
for n=1to N do
Sample momenta ™ ~ A(0, I).
Select jittered trajectory length ¢, = h,T},_1.
Compute HMC proposal
g(M)’ m)

= leapfrog, ;. /e, (00",

Compute accept probabilities

(m) _ . 5(m) (m) \y N(#™50,1)
o, mln{l,exp{E(H)—E(Gn_l)}m}.

With probability a(m), set next state lem) = é(m),
otherwise set an) = 95;?)1
if 7 < Nyarmup then
Compute harmonic-mean acceptance probability
= (/M) T, 1™,

Update step size €,, using dual averaging target-

ing a = 0.651.
Estimate the means of the states
Q—MXWQ H_A[zmenl

Compute trajectqry gradlent estlmates
g o=, (116" =011 - 103", ~011°) (6"
Update log-trajectory length log T, with Adam
with Weighted gradient
g Z (m) m)/ Z m)). i
Set € « 0.9¢+0.1¢,,, T « 0.97 + 0.17,,.

end if

if n = Nyarmup then
Set €y =€ Ty =T

end if

end for

)_g) T,

(See the supplement for an example.) To ensure that all
chains progress, we tune the average harmonic mean of
the acceptance probabilities across chains. If any chains
have a very low acceptance probability, this reduces
the step size for all the chains, giving “stragglers” a
chance to catch up.

When sampling using the leapfrog integrator we round
the jittered trajectory length ¢ up to the nearest inte-
ger multiple of the step size e. We only adapt trajec-
tory length during the initial warmup phase to avoid
bias due to letting the hyperparameters depend on the
chains’ recent states (although this is less of a concern
when averaging adaptation signals across many chains).

A possible issue with jittering trajectory lengths is that
it adds another source of variance to the procedure,

which may slow adaptation or lead to suboptimal mix-
ing. To alleviate this, rather than use uniform random
noise to jitter the trajectory lengths, we use a quasi-
random Halton sequence (Owen, |2017)), which ensures a
more even distribution of trajectory lengths. Since this
sequence is determined a priori, it does not affect the
correctness or stationary distribution of the algorithm.

3 Experiments

In this section we empirically study the speed with
which various flavors of HMC can generate large num-
bers of effectively independent samples, measuring com-
pute cost in terms of both number of gradient evalua-
tions (which is independent of hardware and software
substrates) and wallclock time on a V100 GPU running
in the cloud.

We studied HMC and NUTS on seven target distri-
butions, which we describe below. Two are synthetic
distributions, two are models run on data sampled from
the prior, and three are models run on real data.

Ill-conditioned Gaussian (D = 100): A 100-
dimensional multivariate-normal distribution with
mean 0 and covariance . The eigenvalues of 3 are
drawn from a gamma distribution with shape 0.5 and
scale 1, and the eigenvectors are chosen to be a random
orthogonal basis. The condition number of ¥ is about
1.3x10°.

Banana (D =2): This is a two-dimensional distribu-

tion with
6, ~ N(0,10); 05 ~ N(0.03(67 - 100),1). (11)

It is a simple transformation of a 2-dimensional normal,
but it has highly non-convex level sets.

Logistic regression (D = 25): This is a logistic-
regression model on the numerical version of the Ger-
man credit dataset (Dua & Graff] 2017). There are 24
features and an additional intercept parameter. Letting

o(z) £ the model is

1+ o

0~N(0,I); y,~ Bernoulli(a(@Tacn)). (12)

Probit regression (D = 25): This is a probit-
regression model on the same German credit dataset as

in the logistic regression. Letting ®(x f N(z;0,1),
the model is
0 ~N(0,I); 1y, ~ Bernoulli(®(6" z,,)). (13)

Matthew D. Hoffman, Alexey Radul, Pavel Sountsov

Table 1: Effective sample size (ESS) per gradient evaluation for jittered HMC with fixed average trajectory
length chosen by grid search, NUTS, EHMC, and jittered HMC tuned by gradient ascent on ESJD or ChEES.
ESS depends on the statistic being estimated; we compute it for the mean and variance of each parameter and
report the minimum across statistics and dimensions of the median ESS across chains, averaged across 10 runs
for NUTS, EHMC, ESJD-HMC, and ChEES-HMC. We also report + three standard errors. “HMC Grid” is the
best result across the range of trajectory lengths considered. Bold denotes the best result outside of the HMC
grid search. Results were generally consistent across runs; see the supplement for more detailed results.

TARGET HMC GRID NUTS EHMC ESJD-HMC CHEES-HMC

BANANA 1.16E-2 4.62E-3 +1.66-4 5.92E-3 +2.0E-4 4.22E-3 +#1.86-4 9.04e-3 +3.1e-4
(GAUSSIAN 4.50E-4 1.60E-4 +4.28-6 1.70E-4 +5.7E-6 3.41E-4 +7.5E-6 4.80e-4 *+1.2e-5
ITEM-RESPONSE 2.71E-3 1.19e-3 +2.86-5 4.89E-4 +9.7E-5 2.46e-3 +7.4e-5 1.77E-3 *9.1E-4
LogisTic REGR. 4.80E-2 2.45E-2 +3.56-4 1.67E-2 +4.5E-4 3.44E-2 +6.7E-4 5.23e-2 +1.6e-3
ProBIiT REGR. 4.95E-2 2.50E-2 #5.7E-4 1.58E-2 #5.2E-4 3.64E-2 *1.3E-3 5.19e-2 +1.5e-3
SPARSE LocGIsTIC 9.49E-4 4.07e-4 +2.1E-5 7.00e-4 +2.1e-5 6.72E-4 +£9.7E-5 5.36E-4 *2.7E-5
STOCHASTIC VOL. 1.71E-3 6.95E-4 +3.86-6 8.08E-5 +6.4E-6 1.16E-3 *1.6E-5 1.94e-3 +5.8e-5

Sparse logistic regression (D = 51) This is a
sparse, hierarchical version of the logistic-regression
model above (Hoffman et al., |2019)). The model is

7 ~ Gamma(0.5,0.5); Ay ~ Gamma(0.5,0.5); (14)
By ~N(0,1); y, ~ Bernoulli(o((7A o 8) z,,)).

We unconstrain the non-negative parameters 7 and A
by sampling them in log-space.

Item-response theory (D = 501): This is a 1-
parameter logistic item-response theory model from
the Stan example models repository]| The model is

6 ~N(3/4,1); B ~N(0,1); a; ~N(0,1);

1
Yn ~ Bernoulli(o(a;, — B, +9)). (15)

«; is the ability of student j, 8 is the difficulty of
question k, and 0 is the average student ability. There
are J = 100 students, K = 400 questions, and N =
30105 responses, for a total of 501 parameters. We
condition on data drawn from the prior.

Stochastic volatility (D = 3003): This is a
stochastic-volatility model due to |[Kim et al.| (1998).
For a time series of N = 3000 points, the model is

o ~ HalfCauchy(0, 2);
¢+1 .
=~ Beta(20, 1.5);

= p+ ==
Y ~ N(0, "), (16)

1 ~ Exponential(1);
Zn "~ N(Ov 1)7
hn>1 =p+oz, + ¢(hn—1 - p’)v

There are three top-level parameters and 3000 per-time-
step latent variables, for a total of 3003 dimensions.
We condition on data y drawn from the prior.

4https://github.com/stan—dev/example—
models/blob/master/misc/irt /irt.stan

3.1 Effective samples per gradient

For each target distribution and algorithm, we ran 100
parallel chains with step size tuned by dual averaging
(Nesterov,, |2009; [Hoffman & Gelman! 2014) to achieve
a harmonic-mean acceptance rate of 0.651. Initial step
sizes were chosen by repeatedly halving the step size
(starting from a consistently too-large value of 1.0) until
an HMC proposal with a single leapfrog step achieved
a harmonic-mean acceptance probability of at least 0.5.

For each of a logarithmically spaced series of fixed
maximum trajectory lengths T', we ran HMC for 2000
iterations, discarding the first 1000 as warmup. We
also ran 10 runs of ChEES-HMC, ESJD-HMC (identi-
cal to ChEES-HMC but maximizing ESJD instead of
ChEES), empirical HM([] (EHMC; [Wu et all, [2018),
and TensorFlow Probability’s NUTS implementation
(Lao & Dillon, [2019), again with 100 parallel chains,
2000 iterations, and 1000 discarded warmup iterations.
For each chain, we used Tensorflow Probability (The
TFP Team, 2018-2019)) to estimate effective sample size
(ESS) for each dimension 6, of the parameter vector ¢
as well as for the square of each dimension 93 (which is
more relevant for estimating posterior variances). We
report ESS per gradient evaluation (including warmup)
as a hardware-independent measure of efficiency. NUTS
and EHMC use a different number of leapfrog steps per
chain; we use batched, padded implementations that
wait until each chain has finished (Lao & Dillon, |2019)),
but only count useful gradient evaluations.

EHMC has an important number-of-leapfrog-steps-
during-warmup hyperparameter L,. Unfortunately, Wu
et al.| (2018) give no guidance on how to set Lg, so we
follow their code (https://github.com/jstoehr/eHMC) and
set Lo for EHMC to the average number of leapfrog steps
taken by NUTS on each target (although this would not be
available in real applications). We do not count the cost of
this NUTS pilot run against EHMC.

An Adaptive MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo

Item-Response Theory Logistic Regression

o 200000 $ °® 400000
S z . 600000 e
[
o 150000 : 300000
5}
o ' [400000 L]
3 100000 |
g PS 200000
%] o
o>
200000 5
2 50000 o ° 100000
o
b | []
- 0 A L oA L 0o A

0 25 50 75 100 0 25 50 75 100

Number of Chains

Probit Regression Stochastic Volatility

' 125000 8 o
®
[100000 .
e [" method
I 75000 @ HMC (TF GPU)
] " A NUTS (Stan 4-core CPU
] 50000 Ld -~ ()
[® NUTS (TF GPU)
e) 25000 @
oA

25 50 75 100 0 25 50 75 100

Figure 3: Total number of gradients evaluated per second summed across chains, versus number of parallel chains
for HMC and NUTS run on a V100 GPU and NUTS run on a 4-core CPU. HMC incurs much less overhead
than NUTS on GPU, and GPU-HMC can run dozens of chains with little increase in wallclock time. We do not
distinguish ChEES-HMC here because the adaptation scheme’s overhead is negligible

Table [[l summarizes the results. Plots with more de-
tailed results are available in the supplement. ChEES-
HMC consistently performs well, outperforming NUTS
and achieving the top ESS/gradient among adaptive
algorithms on 5 of 7 targets, and in the other two cases
scoring within a factor of two of the best HMC proce-
dure found by grid search. ESJD-HMC twice slightly
outperforms ChEES-HMC, but when it underperforms
the gap is more dramatic. Despite having access to
information from a NUTS pilot run, EHMC does not
consistently outperform NUTS. We believe the superior
results reported by \Wu et al.| (2018) are because they
only considered ESS in terms of mean estimates—for
example, on the logistic regression target, EHMC’s ESS
for means is more than twice its ESS for variances.

These results suggest that ChEES-HMC can be at least
as efficient as NUTS in terms of ESS per gradient
evaluation, without requiring the user to manually
tune trajectory lengths. ChEES-HMC picks up a still-
greater speed advantage over NUTS when running
multiple chains on a GPU.

3.2 Wallclock time per gradient

How quickly HMC generates useful samples is a func-
tion not just of the algorithm, but of its implementation
and especially of the hardware and software platforms
it runs on. In this section, we examine the ability of
HMC and NUTS to scale to many chains on V100 GPUs
running on cloud servers, and compare the results to a
state-of-the-art single-threaded CPU implementation
of NUTS run on a 4-core desktop CPU. The results
will show how much of an advantage practitioners can
get from using modern hardware accelerators.

On GPU, we ran TensorFlow Probability’s implemen-
tations of HMC and NUTS with 10, 20, 50, 75, and
100 parallel chains, targeting the logistic regression,

probit regression, item-response theory, and stochastic-
volatility distributions. We omit the Gaussian and
banana distributions (since they are synthetic), as well
as the sparse logistic regression (since the cost of its
gradient evaluations is essentially identical to that of
the basic logistic regression). Each target/number-of-
chains pair was run three times. We also ran Stan
targeting the same distributions with 4 parallel chains
60 times. In each experiment, we measured the to-
tal number of gradient evaluations (summing across
chains) per second to evaluate the implementations’
throughput on these platforms.

Figure[3|displays the results. On GPU, HMC’s through-
put increases linearly with the number of parallel chains
up to at least 50 chains for all targets considered,
and only starts to roofline at around 75-100 chains
for the higher-dimensional item-response-theory and
stochastic-volatility models. That is, the cost in wall-
clock time of running 50 HMC chains on the GPU is
not much more than that of runing 10 chains. NUTS
on GPU scales up to many chains well, but it has sig-
nificantly higher overhead than HMC due to its more
elaborate control flow and padding scheme. Stan’s
CPU-based NUTS implementation yields reasonable
throughput per chain, but on a 4-core CPU it cannot
compete with the GPU implementations in terms of
total throughput.

In summary, GPUs can cheaply run many parallel
HMC chains (automatically yielding dramatic increases
in ESS), but GPU implementations of NUTS incur
significant control-flow overhead relative to simpler
HMC schemes. Taken with the results of section [3.1
this implies that ChEES-HMC run on GPU can yield
ESS-per-second rates orders of magnitude higher than
NUTS run on a 4-core CPU.

Matthew D. Hoffman, Alexey Radul, Pavel Sountsov

Banana Gaussian Item-Response

0.0125 0.06

I £ o 0.0006

§ s 8. [] ‘ 0.006

T 00100 s 8

£ A | (N |
5 e 0.04
g 0.0075 0.0004] 0.004

[=3 S :

S 00050

§ 0.0002 0.002 0.02
O 0.0025 ¢ heoo?

gn

E @

0 0
0 0.250.500.75 1

0 0

0 0.250.500.75 1 0 0.250.500.75 1

Logistic Regression

1

0 0.250.500.75 1

Probit Regression Stochastic Volatility

0.06 § @ 00006 ® 0.0020

Sparse Logistic

o
. D il
('} | g4 00008 | 00015 [§
: | | f
0.0010

0.02 0.0002
0.0005

0 0 0

0 0.250.500.75 1 0 0.250.500.75 1 0 0.250.500.75 1

Amount of Jitter

Figure 4: Effective sample size (ESS) per gradient evaluation for ChEES-HMC with trajectory length jittered by
scaling the Halton sequence between (1 —)T and T for « € {0,0.25,0.5,0.75,1}. Red circles and blue triangles
denote ESS for estimating first and second moments, respectively.

3.3 Jitter ablations

We studied the effects of applying different amounts
of trajectory-length jitter to ChREES-HMC, and of re-
placing the Halton sequence used to jitter trajectory
lengths with standard uniform pseudo-random num-
bers. The results are summarized in figure] and in
the supplement.

Uniformly jittering trajectory length between 0 and T’
is always close to optimal, and lower amounts of jitter
are often worse. As predicted in section using too
little jitter in the Gaussian case is disastrous; inade-
quate jitter also leads to poor results for the logistic,
probit, and sparse logistic regression models. In other
models jitter has little effect on effective sample size
per gradient. We conclude that jittering the number
of leapfrog steps uniformly between 1 and T'/e offers
robustness against resonances with little downside.

Using Halton sequences instead of uniform random
numbers consistently reduces the variability of the tra-
jectory length chosen by ChEES-HMC. The step-size
tuning procedure exhibits relatively little variation un-
der either kind of jitter.

4 Discussion

We have proposed ChEES-HMC, an adaptive Hamilto-
nian Monte Carlo variant that can automatically tune
its step size and trajectory-length parameters. ChEES-
HMC is competitive with the widely used NUTS algo-
rithm in terms of effective samples per gradient evalua-
tion, but it really shines when running many parallel
chains on a GPU, since its lack of control-flow over-
head lets it fully exploit these accelerators’ massive
floating-point computational resources.

We found that, when run on a GPU, ChEES-HMC
can run tens of chains at a wallclock-time cost similar
to that of running a few chains on a CPU. If, as is
common in Bayesian inference problems, we need only
an ESS of a few hundred before our Monte Carlo error

is small relative to the posterior uncertainty, we may be
able to get a sufficient number of independent samples
by running, say, 50 chains for a few iterations past
warmup (Hoffman & Maj, 2020)). This is far less than
the hundreds or thousands of post-warmup iterations
practictioners often run on CPU-based workflows.

Acknowledgements

We thank the entire Tensorflow Probability team at
Google for many helpful discussions, especially Rif A.
Saurous and Sharad Vikram for their helpful comments
on early versions of the paper.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/l Software available
from tensorflow.org.

Andrieu, C. and Thoms, J. A tutorial on adaptive
MCMC. Statistics and computing, 18(4):343-373,
2008.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer,
F., Pradhan, N.; Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., and Goodman, N. D. Pyro: Deep
Universal Probabilistic Programming. Journal of
Machine Learning Research, 2018.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.,
Leary, C., Maclaurin, D., and Wanderman-Milne,
S. JAX, 2017-2019. URL https://github.com/
google/jax. Specifically the vmap functionality.

https://www.tensorflow.org/
https://github.com/google/jax
https://github.com/google/jax

An Adaptive MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M., Guo,
J., Li, P., and Riddell, A. Stan: A probabilistic pro-
gramming language. Journal of statistical software,

76(1), 2017.

Dillon, J. V., Langmore, 1., Tran, D., Brevdo, E.,
Vasudevan, S., Moore, D., Patton, B., Alemi, A.,
Hoffman, M., and Saurous, R. A. TensorFlow Distri-
butions, 2017. URL https://arxiv.org/abs/1711)|
10604.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Ge, H., Xu, K., and Ghahramani, Z. Turing: A lan-
guage for flexible probabilistic inference. 2018.

Hairer, E., Lubich, C., and Wanner, G. Geomet-
ric numerical integration: Structure-preserving algo-
rithms for ordinary differential equations, volume 31.
Springer Science & Business Media, 2006.

Hoffman, M. and Ma, Y.-A. Black-Box variational
inference as distilled Langevin dynamics. In ICML
2020, 2020.

Hoffman, M., Sountsov, P., Dillon, J. V., Langmore,
I., Tran, D., and Vasudevan, S. NeuTra-lizing bad
geometry in Hamiltonian Monte Carlo using neural
transport. March 2019.

Hoffman, M. D. and Gelman, A. The no-U-turn sam-
pler: Adaptively setting path lengths in Hamiltonian
Monte Carlo. The Journal of Machine Learning
Research, 2014.

Kim, S., Shephard, N., and Chib, S. Stochastic volatil-
ity: likelihood inference and comparison with arch
models. The review of economic studies, 65(3):361—
393, 1998.

Kingma, D. and Ba, J. Adam: A method for stochas-
tic optimization. In International Conference on
Learning Representations, 2015.

Lao, J. and Dillon, J. V. Unrolled implementa-
tion of no-U-turn sampler, August 2019. URL
https://github.com/tensorflow/probability/
blob/master/discussion/technical_note_
on_unrolled_nuts.mdl Software contributed
to TensorFlow Probability as lhttps://github.
com/tensorflow/probability/blob/master/
tensorflow_probability/python/mcmc/nuts.py.

Lao, J., Suter, C., Langmore, 1., Chimisov, C., Saxena,
A, Sountsov, P., Moore, D., Saurous, R. A., Hoffman,
M. D., and Dillon, J. V. tfp.mcmc: Modern Markov
chain Monte Carlo tools built for modern hardware.
arXiv preprint arXiw:2002.01184, 2020.

Neal, R. M. MCMC using Hamiltonian dynamics. In
Handbook of Markov Chain Monte Carlo. CRC Press
New York, NY, 2011.

Nesterov, Y. Primal-dual subgradient methods for
convex problems. Mathematical programming, 120
(1):221-259, 20009.

Owen, A. B. A randomized Halton algorithm in R.
arXw preprint arXiw:1706.02808, 2017.

Pasarica, C. and Gelman, A. Adaptively scaling the
Metropolis algorithm using expected squared jumped
distance. Statistica Sinica, pp. 343-364, 2010.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. Pytorch: An imperative style, high-performance
deep learning library. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32, 2019.

Phan, D. and Pradhan, N. Iterative NUTS,
May 2019. URL https://github.com/pyro-ppl/
numpyro/wiki/Iterative-NUTS|

Phan, D., Pradhan, N., and Jankowiak, M. Com-
posable effects for flexible and accelerated proba-
bilistic programming in numpyro. arXiv preprint
arXiv:1912.1155/4, 2019.

Radul, A., Patton, B., Maclaurin, D., Hoffman, M. D.,
and Saurous, R. A. Automatically batching control-
intensive programs for modern accelerators. In Ma-
chine Learning Systems, 2020.

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. Proba-
bilistic programming in Python using PyMC3. PeerJ
Computer Science, 2016(4):1-24, 2016.

The TFP Team. TensorFlow Probability, 2018-
2019. URL https://github.com/tensorflow/
probability.

Wu, C., Stoehr, J., and Robert, C. P. Faster hamilto-

nian monte carlo by learning leapfrog scale. October
2018.

https://arxiv.org/abs/1711.10604
https://arxiv.org/abs/1711.10604
http://archive.ics.uci.edu/ml
https://github.com/tensorflow/probability/blob/master/discussion/technical_note_on_unrolled_nuts.md
https://github.com/tensorflow/probability/blob/master/discussion/technical_note_on_unrolled_nuts.md
https://github.com/tensorflow/probability/blob/master/discussion/technical_note_on_unrolled_nuts.md
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/mcmc/nuts.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/mcmc/nuts.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/mcmc/nuts.py
https://github.com/pyro-ppl/numpyro/wiki/Iterative-NUTS
https://github.com/pyro-ppl/numpyro/wiki/Iterative-NUTS
https://github.com/tensorflow/probability
https://github.com/tensorflow/probability

	Introduction and background
	Tuning HMC to maximize ChEES
	Autocorrelation analysis of the multivariate Gaussian
	The ChEES criterion

	Experiments
	Effective samples per gradient
	Wallclock time per gradient
	Jitter ablations

	Discussion

