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Abstract

Real-world data is laden with outlying values.
The challenge for machine learning is that the
learner typically has no prior knowledge of
whether the feedback it receives (losses, gradi-
ents, etc.) will be heavy-tailed or not. In this
work, we study a simple, cost-efficient algo-
rithmic strategy that can be leveraged when
both losses and gradients can be heavy-tailed.
The core technique introduces a simple robust
validation sub-routine, which is used to boost
the confidence of inexpensive gradient-based
sub-processes. Compared with recent robust
gradient descent methods from the literature,
dimension dependence (both risk bounds and
cost) is substantially improved, without rely-
ing upon strong convexity or expensive per-
step robustification. We also empirically show
that the proposed procedure cannot simply
be replaced with naive cross-validation.

1 INTRODUCTION

Uncertainty is inherent in real world physical and social
systems. This implies that machine learning methods,
driven by data generated from these systems, are inher-
ently uncertain. Coupled with our lack of knowledge
regarding the mechanisms underlying these systems,
it is not possible to provide exact, certain statements
regarding algorithm performance. This uncertainty is
manifested clearly in the “risk minimization” formula-
tion of learning problems: over some set of candidates
W C RY, the risk is Rp(w) == Ep L(w; Z), namely
the expected value of a loss L : W x Z — R, eval-
uated at w, where Z ~ P denotes our random data,
taking values in a set Z. In the context of machine
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learning (by empirical risk minimization), this notion
was popularized in the statistical community by the
work of Vapnik (1982), and in the computer science
community by the work of Haussler (1992). A learning
algorithm will have access to n data points sampled
from P, denoted Z1,...,Z,. Write (Z1,...,2Z,) — W,
to denote the output of an arbitrary learning algorithm.
The usual starting point for analyzing algorithm per-
formance is the estimation error Rp(w,) — R}, where
R} = inf{Rp(w) : w € W}, or more precisely, the dis-
tribution of this error. Since we never know much about
the underlying data-generating process, typically all we
can assume is that P belongs to some class P of proba-
bility measures on Z, and typical guarantees are given
in the form of P {Rp(w,) — Ry > (n,6,P,W)} <4,
over a class P € P. In words, the procedure yielding
Wy, will obtain e-good performance with (1 — §)-high
confidence over the draw of the sample. Citing Hol-
land (2021), in order to have meaningful performance
guarantees, the following properties are important.

1. Transparency: can we actually compute the out-
put w,, that we study in theory?

2. Strength: what form do bounds on &(n,d, P, W)
take? How rich is the class P?

3. Scalability: how do computational costs scale
with the above-mentioned factors?

Balancing these three points is critical to developing
guarantees for algorithms that will actually be used in
practice.

Our problem setting This work considers the setup
of potentially heavy-tailed data, and in contrast with
the recent work of Holland (2021), we only assume
a convex loss, rather than strong convexity. All the
learner can know is that for some m < oo,

P C {P: sup Ep |L(w; Z)|™ < 00}7 (1)

wew

where typically m = 2. Thus, it is unknown whether
the losses (or partial derivatives, etc.) are congenial in
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a sub-Gaussian sense (where (1) holds for all m), or
heavy-tailed in the sense that all higher-order moments
could be infinite or undefined. The goal then comes
down to obtaining the strongest possible guarantees
for a tractable learning algorithm, given (1). We next
review the related technical literature, and give an
overview of our contributions.

2 CONTEXT AND
CONTRIBUTIONS

Challenges without strong convexity When one
is lucky enough to have a p-strongly convex risk Rp,
using a very simple basic idea, a wide range of distance-
based algorithmic strategies are available (Minsker,
2015; Hsu and Sabato, 2016; Holland, 2021). For exam-
ple, say we construct k candidates @™V, . .., @*), and
we know that with high probability, a majority of the
candidates are e-good in terms of the risk Rp. Since Rp
is unknown, we can never know which candidates are
the e-good ones. However, this barrier can be circum-
vented by utilizing the fact that p-strong convexity of
Rp implies that any e-good candidate must be at least
\/2¢/p-close to w*, the minimizer of Rp on W. It fol-
lows that on the “good event” in which the majority of
candidates are e-good, it is sufficient to simply “follow
the majority.” This can be done in various ways, but in
the end all such procedures comes down to computing
and comparing distances ||w — @] for all j € [k].
This can be done without knowing which of the @(7)
are e-good, which makes the problem tractable.

Unfortunately, p-strong convexity is a luxury that is of-
ten unavailable. In particular for high-dimensional set-
tings, it is common for the strong convexity parameter
& to shrink rapidly as d grows, making 1/u-dependent
error bounds vacuous (Bach and Moulines, 2014). Al-
gorithmically, if strong convexity cannot be guaranteed,
then the distance-based strategy just described will fail,
since for any particular minimizer w*, it is perfectly
plausible to have a e-good candidate which is arbitrar-
ily far from w*. Even when we assume A;-smoothness
of the risk, all we can say is that e-badness implies
\/2¢/A1-farness from all minimizers; the converse need
not hold. The traditional approach: if from sample Z,,
we obtain independent candidates @V, ..., @*), and
we have a second sample Z], = (Z1,...,Z]) available
for “validation,” then classical procedures return

W, = ©%), where
1 — ,
€ ind =Y L@Y:Z):j=1,....ky. (2
eampuin{ 132 <1k @

This technique of confidence boosting for bounded
losses is well-known; see (Kearns and Vazirani, 1994,

Ch. 4.2) or (Shalev-Shwartz et al., 2010, Thm. 26).
Under exp-concave distributions, Mehta (2016) also
recently made use of this technique. Problems arise,
however, when the losses can be potentially heavy-
tailed. The quality of the validated final candidate
is only as good as the precision of the risk estimate,
and the empirical risk is well-known to be sub-optimal
under potentially heavy-tailed data (Devroye et al.,
2016).

Limitations of existing procedures To begin, em-
pirical risk minimization (ERM) is the cornerstone of
classical learning theory, which studies the statistical
properties of any minimizer of the empirical risk, i.e.,
the sample mean of the losses. Concrete implementa-
tions of ERM just require minimizing a finite sum, and
thus are computationally quite congenial, and scale well,
taken at face value. However, formal guarantees for
ERM-based procedures are limited; the empirical mean
is known to be sensitive to outliers, and this sensitivity
appears in weak formal guarantees. Concretely, under
potentially heavy-tailed losses, the empirical mean is
sub-optimal in that it cannot guarantee sub-Gaussian
deviation bounds. Put roughly, it cannot guarantee
error bounds better than those which scale as Q(1/4);
see Catoni (2012) and Devroye et al. (2016) for more
details. Furthermore, since ERM leaves the method of
implementation completely abstract, this leaves open a
large conceptual gap. Feldman (2017) showed lucidly
how there exist both “good” and “bad” ERM solutions;
the problem with transparency is that we can never
know whether any particular ERM candidate is one
of the good ones or not. In contrast, starting with
seminal work by Brownlees et al. (2015), a recent line
of work has led to new statistical learning procedures
to address the weak guarantees and lack of robustness
of ERM. The basic idea is simply to minimize a differ-
ent estimator of the risk, for example median-of-means
estimators (Minsker, 2018) or M-estimators (Brownlees
et al., 2015). Under weak moment bounds like (1), their
minimizers enjoy O(1/y/n) rates with O(log(6~1)) de-
pendence on the confidence. This provides a significant
improvement in terms of the strength of guarantees
over ERM, but unfortunately the issue of transparency
remains. Like ERM, the algorithmic side of the prob-
lem is left abstract here, and in general may even be
a much more difficult computational task. As such,
the gap between formal guarantees and the guarantees
that hold for any given output of the algorithm may
be even more severe than in the case of ERM.

Furthermore, several new families of algorithms have
been designed in the past few years to tackle the poten-
tially heavy-tailed setting using a tractable procedure.
Such algorithms may naturally be called robust gra-
dient descent (RGD), since the core update takes the
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same form as steepest-descent applied directly to the
risk, i.e., W1 <+ W — a VRp(w;), except that VRp
is replaced with an estimator G, (w) ~ VRp(w) which
has deviations with near-optimal confidence intervals
under potentially heavy-tailed data (Chen et al., 2017a;
Prasad et al., 2018; Lecué et al., 2018; Holland, 2019;
Holland and Tkeda, 2019a,b). Under strong convex-
ity, all these proposals enjoy excess risk bounds with
optimal dependence on n and 1/§ under potentially
heavy-tailed data, and can be implemented as-is. Un-
fortunately, instead of a simple one-dimensional robust
mean estimate as in Brownlees et al. (2015), all RGD
methods rely on sub-routines that work in d-dimensions.
This makes the procedures much more expensive com-
putationally for “big” learning tasks, and leads to an
undesirable dependence on the ambient dimension d
in the statistical guarantees as well. Moreover, when
strong convexity is not available, the propagation of
statistical error over time for RGD methods becomes
much worse, leading to bounds that are extremely sensi-
tive to mis-specified smoothness parameters, step sizes,
and total number of iterations.

Our contributions Considering the above limita-
tions of existing techniques, notably the lack of scala-
bility and weak formal guarantees available for RGD
methods under weak convexity, here we study a differ-
ent algorithmic approach to the problem. Our approach
has equal generality, and the hope is to achieve as-good
or better dependence on n, d, and 1/6 under potentially
heavy-tailed data (losses and/or partial derivatives),
without strong convexity, and in provably less time for
larger problems. The main technique that we investi-
gate is a natural robustification of classical confidence
boosting (2), applied to traditional stochastic gradi-
ent descent routines run in parallel, though we note
that the basic argument can be easily generalized to
other optimization strategies (e.g., accelerated meth-
ods, adaptive methods, quasi-Newton techniques, etc.).
Our main contributions:

e We study a general-purpose robust learning proce-
dure (Algorithm 1), obtaining sharp risk bounds
(Theorem 1) that improve on the poor dependence
of RGD methods on the dimension and number of
iterations under weak convexity (see Table 1).

e The archetype given in Algorithm 1 is concrete,
easy to implement as-is, and trivial to run in par-
allel. All else equal, for high-dimensional learning
tasks we can expect to obtain a result as good or
better than existing serial RGD methods in far
less time.

e Empirically, we study the robustness of our pro-
posed procedure and relevant competitors to vari-

ous perturbations in the experimental conditions,
simulating a lack of prior knowledge about noise
levels and convexity. The proposed procedure can
easily match benchmark RGD methods in less
time, over a variety of test settings. We also verify
that a naive cross-validation heuristic does not
achieve the same level of performance.

3 THEORETICAL ANALYSIS

3.1 Preliminaries

Notation First we establish some basic notation, and
organize numerous technical assumptions in one place
for ease of reference. For any positive integer k, write
[k] :={1,...,k}. For any index Z C [n], write Z7 :=
(Z:)iez, defined analogously for independent copy Z%.
To keep the notation simple, in the special case of Z =
[n], we write Z,, := Z},,) = (Z1,. .., Zn). We shall use
P as a generic symbol to denote computing probability;
in most cases this will be the product measure induced
by the sample Z,, or Z/,. For any function f : R — R,
denote by 9f(u) the sub-differential of f evaluated
at u. Variance of the loss is denoted by o3(w) =
varp L(w; Z) = Ep(L(w; Z) — Rp(w))? for each w € W.
Denote by I{event} the indicator function that returns
a value of 1 when event is true, and 0 otherwise.

Running assumptions The two key running as-
sumptions that we make are related to independence
and convexity. First, we assume that all the observed
data are independent, i.e., the random variables Z;
and Z! taken over all i € [n] are independent copies
of Z ~ P. Second, for each z € Z, we assume
the map w — L(w;z) is a real-valued convex func-
tion over R%, and that the parameter set W C R¢
is non-empty, convex, and compact, with diameter
A = sup{||lu — v|| : u,v € W}. All results derived in
the next sub-section will be for an arbitrary choice of
P € P, where P satisfies (1) with m = 2. We say a func-
tion f is Aj-smooth if its gradient is A\;-Lipschitz con-
tinuous. Finally, to make formal statements technically
simpler, we assume that Rp(-) achieves its minimum
on the interior of W.

3.2 Error bounds when both losses and
gradients can be heavy-tailed

Recalling the challenges described in section 2, we con-
sider a straightforward robustification of the classical
validation-based approach using robust mean estima-
tors in a sub-routine. The full procedure is summa-
rized in Algorithm 1. First we outline the key points
of the procedure, then give a general-purpose excess
risk bound in Theorem 1.
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Method \

Error \ Cost ‘

RV-SGDAve

o <\/log(g_1) (orp +aG7p)> ) </\110gn(51)>

O(dnlog(s™1))

Ol 1+ Ala)T\/

RGD (Chen et al., 2017Db)

d(0g, plog(dé—1) 4 log(n))

T O (Tdnlog(6™'))

Table 1: High-probability error bounds and computational cost estimates for RV-SGDAve (Algorithm 1), compared
with modern RGD methods, without assuming strong convexity. Error denotes confidence intervals for Rp (@, ) — R}
with @ being the output of each procedure after T steps (noting RV-SGDAve has T' = n by definition). Detailed

explanation is in supplementary materials.

Algorithm 1 Divide-and-conquer with robust valida-
tion; RV-SGDAve [Z,,, Z/,, Wo; k.

inputs: samples Z, and Z/,, initial value @y € W,
parameter 1 < k < n.

k
Split | J Z; = [n], with |Z;| > [n/k], and Z; NT; = 0
j=1

when j # [.

For each j € [k], set @) to the mean of the sequence
SGD[wo; Zz;, W].

Compute x = arg min Valid [w(j); Z;} .
jelk]

return: @ey = w™).

Core procedure Viewed at a high level, Algorithm 1
is comprised of three extremely simple steps: partition,
train, and validate. For our purposes, the key to im-
proving on traditional ERM-style boosting techniques
is to ensure the validation step is done with sufficient
precision, even when the losses can be heavy-tailed. To
achieve this, we shall require that there exist a constant
¢ > 0 which does not depend on the distribution P,
such that for any choice of confidence level § € (0,1)
and large enough n, the sub-routine Valid satisfies

(1 +log(6—1))o (w)

REEY

|Valid[w; Z),] — Rp(w)| < C\/

with probability no less than 1 — d. Recall that we are
denoting o (w) := varp L(w; Z), thus the only require-
ment on the class of data distributions is finite variance,
readily allowing for both heavy-tailed losses and gra-
dients. The training step can be done in any number
of ways; for concreteness and clarity of the results,
we elect to use a simple stochastic gradient descent
sub-process. Unpacking the notation from Algorithm
1, the basic update used is traditional projected (sub-

)gradient descent, with update denoted by
SGD [w; Z,a, W] :=Tyy (w — a G(w; Z)).  (4)

Here o > 0 denotes a step-size parameter, I,y denotes
projection to W with respect to the /5 norm, and the
standard assumption is that the random vector G(w; Z)
satisfies Ep G(w; Z) € ORp(w), for each w € W. Then
for arbitrary sequence (Z1,...,Z,,), we define

SGD [’L/L}O, (Zl7~ . ,Zm)7W] =
{SGD [ﬁ]\t;Zt_;,_l,Oét,W} = 0,1,...77’77,— 1}7

noting we have suppressed step-sizes from the nota-
tion for readability. Replacing the generic sequence
(Z1,...,Zp) here with Zz, for each j € [k] yields the
iterate sequences used in Algorithm 1, with each @)
being simply the arithmetic (vector) mean of the iter-
ates. As all the data we work with are independent
copies of Z ~ P, the order in which we take the indices
from each Z; does not matter. Under weak assumptions
on the underlying loss distribution, the output wgy of
this algorithm enjoys strong excess risk bounds, as the
following theorem shows.

Theorem 1. Let Rp be Ai-smooth in the {5 norm,
Ep |G(w; Z) — VRp(w)||3 < 0%71) < 00, and o3 (w) <
0%71;, < 0o for allw € W. Run Algorithm 1 with sub-
routine Valid satisfying (3), given a total sample size
n > 2k split into Z,, /o and Z;/Z, and SGD sub-processes
using step sizes oy = 1/(A + (1/a)), where a =
A/y[nog p/2k. If we set k = [log(2[log(6~")]671)],
then for any confidence parameter 0 < 6 < 1/3, we
have

Rp(wry) — Rp <

) \/ 2(1 + log(2[log(6-1)16-1))0? p

j}

n
kA2

N 2k:A2cré7P
n \/ n

with probability no less than 1 — 34.

+3
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Algorithm 2 Catoni type M-estimate.

inputs: sample {uq,...,u,}, parameters o > 0 and

0<d<l
202 1og(2671)
n — 2log(26—1)

n
;i — 0
return: arg min E p (uz )
s

0eR

and s = n(02 + qQ)

2 _ —_— =’
Set ¢” = ~ 2log(26-1)°

We shall look at concrete implementations of Valid in
section 4, but as an initial example, setting Valid to
be a properly scaled M-estimator (sub-routine given
in Algorithm 2) satisfies (3) with ¢ < 2 whenever
n > 4log(6~1). Additional examples and supporting
lemmas are given in the supplementary materials.

Proof sketch Here we give an overview of the proof
of Theorem 1. We have data sequences Z, and Z/,.
The former is used to obtain independent candidates
wM ..., w® and the latter is used to select among
these candidates. As mentioned earlier, distance-based
strategies (Minsker, 2015; Hsu and Sabato, 2016) re-
quire that the majority of these candidates are e-good,
in order to ensure that points near the majority coin-
cide with e-good points. In our present setup, where
strong convexity is not available, we are taking a very
different approach. Now we only require that at least
one of the candidates is e-good. Making this explicit,

.
k)= J{Re@) - Ro <} (5)

is our first event of interest. Note that if for each
J € [k] we have an upper bound ep(-) depending on
the sample size for the sub-process outputs @) such
that

E [Rp(@") - Rp| < ep(In/k)),

where expectation is taken over the subset indexed
by Z;, then using Markov’s inequality and taking a
union bound, it follows that setting ¢ = ecp, we have
P&i(eep;k) > 1 —e*. Asking for one e-good candi-
date is a much weaker requirement than asking for the
majority to be e-good, but we must pay the price in a
different form, as we require that Valid provide a good
estimate of the true risk for all of the k candidates. In
particular, writing bp(n, d) for a confidence interval to
be specified shortly, this is the following event:

E(d; k) =

{‘Valid [w(j); Z;] - Rp(w(j))‘ < bp(n,d)}.

j=1

Intuitively, while we only require that at least one
of the k candidates be good, we must reliably know
which is best at the available precision, which re-
quires paying the price of the intersection defining
E3(d; k). Recalling the requirement (3), if we con-
dition on Z,, the candidates @™, ..., w*) become
non-random elements of W, which means that setting

bp(n,8) = c\/(1—|—log(5—1))ai7p/n, a union bound
gives us P (&(d;k); Z,) > 1 — k6. This inequality
holds as-is for any realization of Z,,, so we can thus
integrate to obtain

P £,(5: k) = /P (E2(0:k); Zn) P(AZn) > 1 — Kb,
The good event of interest then has probability

p [51 (eeP Q%J) ;k) N &5 k)} >1—eF_ka.

On this good event, we know that there does exist an e-
good candidate, even though we can never know which
it is; call it Wouex € {@WM,...,@"®}. Furthermore,
even though this candidate is unknown, since we have
bp(n,d)-good risk estimates for all & candidates, the
choice of W™, with x = arg min; ¢ ) valid[w\); Z!],
cannot be much worse. More precisely, we have
Rp(w™) - Rp

= Rp(w™) — valid[@w™] + valid[w™] — R}

< Rp(@w™) — valid[@™] 4 Valid[@,uex] — R

= [Rp(w(*)) — valid[w™]| +

[Valid[ﬁ]LUCK] — Rp (@Luck)] + [RP (Wrvex) — R;’]
< 2bp(n,d) +ecp (|n/k]).

We have effectively proved the following lemma.

Lemma 2 (Boosting the confidence under potentially
heavy tails). Assume we have a learning algorithm
Learn such that for n > 1 and § € (0,1), we have

P {Rp(Learn[Zn]) — Rp > Epén) } <.

Splitting the data Z, using sub-indices Iy, ..., Iy, if

we set

* = argminValid [Learn[Zz,]; Z]
ESL '

then when Valid satisfies (3), it follows that for any
0 € (0,1), we have

Rp (Learn[Z7,]) — Rp <

o TS, 1)

wew n k

with probability no less than 1 — k§ — e ™",
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Note that Lemma 2 here makes no direct requirements
on the underlying loss or risk, beyond the need for a
variance bound, which appears as o3 (w) < 07 p < 00
in the statement of Theorem 1. Indeed, convexity
does not even make an appearance. This is in stark
contrast with distance-based confidence boosting meth-
ods, which rely upon the strong convexity of the risk
(Minsker, 2015; Hsu and Sabato, 2016). As such, so
long as we can validate in the sense of (3), then Lemma
2 gives us a general-purpose tool from which we can
construct algorithms with competitive risk bounds un-
der potentially heavy-tailed data. This can be done for
many practical procedures, and the only main step that
remains is to clean up the good event probability and
specify k to achieve the properties stated in Theorem 1.
Letting § be that given in the theorem statement, first
set dp = 6/(2[log(671)]) < 6. Next, set the number of
subsets to be

k = [log(1/60)] = [log(2[log(6~")]6~ 1)1,

and note that with this setting of k and §y, we have
that

1 kdy = 1 [log(2Mlog(6~)16~)] (

flog(2)]
> 1= (gt *

s
2Mog(6-1)]
log(log(3=))] -\ &
Mog(6-1)] “)2

>1—26.

The inequalities follow readily via the fact that for
arbitrary ¢1,ce > 0 we have [¢1 + ¢c2| < [er1] + [e2],
and that [log(2)]/[log(61)] < 1 for all § < 1/2. As
for the exponential term, note that

e ¥ =exp (—[log(6;")]) < exp (—log(d; ")) = 8o < 6.

It thus immediately follows that the desired good event
holds with probability no less than

l—e*—kég>1-6—-20=1-—30.

Tying together these basic facts readily allows us to
prove Theorem 1 (detailed proof in the supplementary
materials).

4 EMPIRICAL ANALYSIS

To study how the theoretical insights obtained in the
previous section play out in practice, we carried out
a series of tightly controlled numerical tests. The ba-
sic experimental design strategy that we employ is to
calibrate all the methods (learning algorithms) of in-
terest to achieve good performance under a particular

learning setup, and then we systematically modify char-
acteristics of the learning tasks, leaving the methods
fixed, to observe how performance changes in both
an absolute and relative sense. Viewed from a high
level, the main points we address can be categorized
as follows:

(E1) How do error trajectories of baseline methods
change via robust validation?

(E2) How does relative performance change in high
dimensions without strong convexity?

(E3) How do actual computation times compare as n
and/or d grow?

(E4) Can robust validation be replaced by cross-

validation?

Experimental setup We essentially follow the stan-
dard “noisy convex minimization” tests used in the liter-
ature to test the robustness of RGD methods (Holland
and Tkeda, 2019a). Complete details of the experimen-
tal setup are provided in the supplementary materi-
als.! Put simply, we provide the learner with random
losses of the form L(w;Z) = ((w — w*, X) + E)?/2,
where w* € R? is a pre-defined vector unknown to
the learner, X is a d-dimensional random vector, F
is zero-mean random noise, and X and F are in-
dependent of each other. This approach is advan-
tageous in that we can compute the resulting risk
Rp(w) = Ep L(w; Z) exactly, and by modifying the
distribution P, we can ensure that even while allowing
heavy-tailed losses/gradients, we still satisfy the key
technical assumptions of Theorem 1, namely \;-smooth
Rp and gradients with og p-bounded variance, plus
with the p-strong convexity of Rp is at our control,
we can construct many flat directions, and observe
behaviour as p | 0.

With respect to the different methods being studied,
we use a mixture of classical baselines and modern
alternatives to compare with our Algorithm 1 based
on SGD with and without averaging, denoted RV-SGD
and RV-SGDAve respectively. The sub-routine Valid is
carried out using a Catoni-type M-estimator (Catoni,
2012). For baselines, we do empirical risk minimiza-
tion using batch gradient descent (denoted ERM-GD)
and stochastic gradient descent, both with and without
averaging (denoted SGD and SGD-Ave). Several repre-
sentative robust gradient descent methods discussed
in section 2 are implemented here, including RGD via
median-of-means (Chen et al., 2017b; Prasad et al.,
2018) (denoted RGD-MoM), median-of-means minimiza-
tion by gradient descent (Lecué et al., 2018) (denoted

!Software repository:
https://github.com/feedbackward/sgd-roboost



Matthew J. Holland

Excess risk (ave) Excess risk (sd)

Excess risk (ave) Excess risk (sd)

—— RV-SGD
st N 4 RV-SGD-CV 151
—— RV-SGDAve ,-,l
P N A R RV-SGDAve-CV i ‘; y
10 § i A
A il L 'i g
41 t HER Y ATATRN S i
b AT ﬂi i
51 Wandedi P ’
2 z<,r\7 ‘,' /
o | N | e
102 103 104 102 103 104 102 10° 10 102 103 104

Figure 1: The negative impact of trying to modify Algorithm 1 to use a cross validation heuristic. Left: Normal

noise. Right: log-Normal noise.

RGD-Lec), and RGD via M-estimation (Holland and
Tkeda, 2019a) (denoted RGD-M). Finally, we also study a
cross validation heuristic (marked by -CV suffix), where
instead of splitting the sample for validation, we do
k-fold cross validation using the full training data set.
Essentially, the candidates @w(7) are computed just as
in Algorithm 1, except without the split into Z,, /o and

Z;/Q, and Valid is used to evaluate each candidate

using the held-out data for each j € [k]. The final can-
didate is the one for which Valid on the held-out data
returns the smallest value. This gives the sub-processes
double the data for training, but sacrifices the indepen-
dence of the data used for validation. Detailed settings
of each method, including random initialization, are
given in the supplementary materials.

Discussion of results Representative results are
given in Figures 2-1. Starting with proof-of-concept
test results given in Figure 2, we see how even very noisy
sub-processes can be ironed out easily using the simple
robust validation sub-routine included in Algorithm 1,
and that even running the algorithm for much longer
than a single pass over the data, risk which is compa-
rable to benchmark RGD methods can be realized at
a much smaller cost, with comparable variance across
trials, and that this holds under both sub-Gaussian and
heavy-tailed data, without any modifications to the
procedure being run. A particularly lucid improvement
in the cost-performance tradeoff is evident in Figure 3,
since near-identical performance can be achieved at a
small fraction of the computational cost. Note that un-
der Normal noise, running Algorithm 1 for just a single
pass leaves room for improvement performance-wise,
but as we saw in the low-dimension case, in practice
this can be remedied by taking additional passes over
the data. Finally, regarding the question of whether or
not Algorithm 1 can be replaced with a naive k-fold
cross-validation heuristic, the answer is clear (Figure 1):
while the results are comparable under well-behaved

data (the Normal noise case here), when heavy tails
are a possibility (e.g., the log-Normal case), the naive
cross-validation method fails to get even near the per-
formance of Algorithm 1.

5 FUTURE DIRECTIONS

The main take-away from this initial study is that
even without strong convexity, under potentially heavy-
tailed losses and/or gradients, there exists a computa-
tionally efficient procedure which improves upon the
formal performance guarantees of modern robust GD
techniques, is very competitive in practice, and scales
much better to large tasks with many parameters. The
basic archetype for such a procedure was illustrated
using the concrete Algorithm 1, but naturally this can
be extended in many directions, to deal with accel-
erated, adaptive, or variance-reducing sub-processes,
under more general geometries and more challenging
constraints applied to WW. In particular, if one considers
a stochastic mirror descent type of generalization to
the proposed algorithm, it would be interesting to com-
pare the robust validation approach taken here with
say the truncation-based approach studied recently by
Juditsky et al. (2019), and how the performance of the
respective methods changes under different constraints
on prior knowledge of the underlying data-generating
distribution.
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