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Abstract

We study learning algorithms that seek to min-
imize the conditional value-at-risk (CVaR),
when all the learner knows is that the losses
(and gradients) incurred may be heavy-tailed.
We begin by studying a general-purpose esti-
mator of CVaR for potentially heavy-tailed
random variables, which is easy to implement
in practice, and requires nothing more than fi-
nite variance and a distribution function that
does not change too fast or slow around just
the quantile of interest. With this estimator
in hand, we then derive a new learning algo-
rithm which robustly chooses among candi-
dates produced by stochastic gradient-driven
sub-processes, obtain excess CVaR bounds,
and finally complement the theory with a re-
gression application.

1 INTRODUCTION

In machine learning problems, since we only have ac-
cess to limited information about the underlying data-
generating phenomena or goal of interest, there is sig-
nificant uncertainty inherent in the learning task. As
a result, any meaningful performance guarantee for
a learning procedure can only be stated with some
degree of confidence (e.g., a high probability “good per-
formance” event), usually with respect to the random
draw of the data used for training. Assuming some loss
L(w; z) > 0 depending on parameter w € W C R¢ and
data realization z € Z, given random data distributed
as Z ~ P, the de facto standard performance metric in
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machine learning is the risk, or expected loss, defined

w e W.
(1)

The vast majority of research done on machine learn-
ing algorithms provides performance guarantees stated
in terms of the risk (Haussler, 1992; Devroye et al.,
1996; Anthony and Bartlett, 1999). This risk-centric
paradigm goes beyond the theory and reaches into the
typical workflow of any machine learning practitioner,
since “off-sample performance” is typically evaluated
by using the average loss on a separate set of “test
data,” an empirical counterpart to the risk studied
in theory. While the risk is convenient in terms of
probabilistic analysis, it is merely one of countless pos-
sible descriptors of the distribution of L(w; Z). When
using a learning algorithm designed to minimize the
risk, one makes an implicit value judgement about how
the learner should be penalized for “typical” mistakes
versus “atypical” but egregious errors.

R(w) :=Ep L(w; Z) = /ZL(w; z)P(dz),

As machine learning techniques are applied in increas-
ingly diverse domains, it is important to make this
value judgement more explicit, and to offer users more
flexibility in controlling the ultimate goal of learning.
One of the best-known alternatives to the risk is the
conditional value-at-risk (CVaR), which considers the
expected loss, conditioned on the event that the loss
exceeds a user-specified (1 — «)-level quantile, here
denoted for each w € W as

1
Ca(w) =~ Ep L(w; D) {1 z)>vawyy  (2)

1
= —/ L(w; z) P(dz),
A J L(w;2)> Ve (w)

where V, (w) :=inf{u e R: P{L(w; Z) <u} >1—a}
(called value-at-risk, or VaR). Driven by influential work
by Artzner et al. (1999) and Rockafellar and Uryasev
(2000), under known parametric models, the problem
of estimating and minimizing the CVaR reliably and
efficiently has been rigorously studied, leading to a wide
range of applications in finance (Krokhmal et al., 2002;
Mansini et al., 2007), and even some specialized settings
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of machine learning tasks (Takeda and Sugiyama, 2008;
Chow et al., 2016). In general machine learning tasks,
however, a non-parametric scenario is more typical,
where virtually nothing is known about the distribution
of L(w; Z), adding significant challenges to both the
design and analysis of procedures designed to minimize
the CVaR with high confidence.

Our contributions In this work, we consider the
case of potentially heavy-tailed losses, namely a learn-
ing setup in which all the learner knows is that the
distribution of the loss and its gradients have finite
variance, nothing more. It is unknown in advance
whether the feedback received is statistically congenial
in the sub-Gaussian sense, or highly susceptible to out-
liers with infinite higher-order moments. Our main
contributions:

e New error bounds for a large class of estimators
of the CVaR for potentially heavy-tailed random
variables (Algorithm 1, Theorem 3).

e A general-purpose learning algorithm which runs
stochastic GD sub-processes in parallel and uses
the new CVaR estimators to robustly validate the
strongest candidate (Algorithm 2), which enjoys
sharp excess CVaR bounds (Theorem 4), when
both the loss and gradients can be heavy-tailed.

e An empirical study (section 3) highlighting the po-
tential computational advantages and robustness
of the proposed approach to CVaR-based learning.

Review of related work To put the contributions
stated above in context, we give an overview of the two
key strands of technical literature that are closely re-
lated to our work. First, an interesting line of work has
recently developed which handles risk-averse learning
scenarios where the losses can be heavy-tailed, with
key works due to Kolla et al. (2019), Prashanth et al.
(2019), Bhat and Prashanth (2020), and Kagrecha et al.
(2020). These works all consider some kind of sub-
routine for robustly estimating the CVaR, as we do
as well. The actual estimation procedures and proof
techniques differ, and we provide a detailed comparison
of resulting error bounds in section 2.2.1. Furthermore,
the latter three works only consider rather specialized
learning algorithms in the context of bandit-like online
learning problems, whereas the generic gradient-based
procedures we study in section 2.3 have a much wider
range of applications. Second, recent work from Car-
doso and Xu (2019) and Soma and Yoshida (2020) also
consider tackling the CVaR-based learning problem us-
ing general-purpose gradient-based stochastic learning
algorithms. However, these works assume a bounded
(and thus sub-Gaussian) loss; we discuss differences

in technical assumptions in detail in Remark 5, but
the most important difference is that their setup pre-
cludes the possibility of heavy-tailed losses and is thus
more restrictive statistically than ours, which naturally
leads to different algorithms, proof techniques, and
performance guarantees.

2 THEORETICAL ANALYSIS

This section is broken into three sub-sections. First
we establish notation and basic technical conditions in
section 2.1. We then study pointwise CVaR, estimators
in section 2.2, and subsequently leverage these results
to derive a new learning algorithm with performance
guarantees in section 2.3.

2.1 Preliminaries

In the context of learning problems, random variable
Z denotes our data, taking values in some measurable
space Z with P the probability measure induced by
Z. The set W C R% is a parameter set from which the
learning algorithm chooses an element. We reinforce
the point that the ultimate formal goal of learning
here is to minimize C, (-) defined in (2) over W, where
0 < a < 1 is a user-specified risk-level parameter. This
is in contrast with the traditional risk-centric setup,
which seeks to minimize R(-) defined in (1). For the
pointwise estimation problem in section 2.2 to follow,
to cut down on excess notation, we simply take X =
L(w; Z), re-christen P as the distribution of X, and
write the distribution function as Fp(u) := P{X < u}
for u € R. Similarly, since the choice of w € W is not
important in section 2.2, there we shall write simply
C, and V, for the CVaR and VaR of X, and return to
the w-dependent notation C, (w) and V, (w) in section
2.3. For any m > 1, we denote by [m] = {1,...,|m]}
all positive integers less than or equal to m. Finally,
let I{eyent) denote the indicator function, returning 1
when event is true, and 0 otherwise.

Regarding technical assumptions, we shall henceforth
assume that Fp : R — [0, 1] is continuous, which in
particular implies that Fp(V,) = P{X < V,} =1—
« for all . This setup is entirely traditional; see
for example the well-known work of Rockafellar and
Uryasev (2000). In general, if Fp has flat regions, there
may be infinitely many 1 — a quantiles; here V,, as
introduced in section 1 is simply defined to be the
smallest one (see Figure 1 for an illustration). The key
technical assumption that will be utilized is as follows:

A1l. There exists values 0 < v < A < oo such that for
any |u| < 1, the distribution function induced by
P satisfies yu < |Fp(Vy +u) — Fp(Vy)] < Au.
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Figure 1: A simple schematic illustrating V,, and the
condition Al(y, \).

Obviously, we are assuming that V,, + 1 are within the
domain of X ~ P; this is only for notational simplicity,
and the range can be taken arbitrarily small. In words,
assumption Al(y, \) is a local assumption of both a
A-Lipschitz property and a y-growth property, local in
the sense that it need only hold around the particular
point V,, of interest. The former property ensures
that Fp cannot jump with arbitrary steepness in the
region of interest. The latter ensures that Fp is not flat
in this region. Finally, we remark that the property
of v-growth is utilized in key recent work done on
concentration of CVaR estimators under potentially
heavy-tailed data, including Kolla et al. (2019, Prop. 2)
and Prashanth et al. (2019, Lem. 5.1).

2.2 Robust estimation of the CVaR criterion

We begin by considering pointwise estimates, assuming
that X ~ P is a non-negative random variable, and that
we have 2n independent copies of X, denoted X, :=
{X1,...,X,} for the first half, and Y,, :== {Y3,...,Y,,}
for the second half. The latter half will be used to
construct an estimator Vi, ~ V,,. The former half, with
Vo in hand, will be used to construct an estimator
C, = Cy. As an initial approach to the problem, note
that we can decompose the deviations as

N 11 -
., —C, :7‘ Co—FEp X1, oo
\ al® P2 x>V
+Ep X o)~ Be X Ixov,|
1 ~
< (laC,-Ep X1, 0 ‘
_aqa PA x>0,

+ ‘EpX (I{sza} - I{sza}) D - (3

This gives us two terms to control. Starting with the
left-most term, let us first make the notation a bit
easier to manage. Conditioning on Y,, makes V, € R a
fixed value, and based on this, we define
/

X ::XI{XZ‘A/Q}. (4)
Since XA/a is computed based on available data, and X
is observable, it follows that X’ itself is observable. De-
note the corresponding sample by X, = {X1,..., X, },

Algorithm 1 Scaled CVaR under potentially heavy-

~

tailed data; C!, [X,,, Y,].

inputs: samples X, and Y,,, risk level a € (0, 1),
robust sub-routine RobMean.

Sort ancillary data Y <Yy <...<Y>.
Set threshold f/a = Yﬁka)ny
Augment data X] = X; I .y, for i € [n].

return: C’,[X,,Y,] = RobMean [{X! : i € [n]}].

where we set X := X; I\ ¢ - . The most direct ap-
proach to this problem is to simply pass this trans-
formed dataset X/ to a sufficiently robust sub-routine
for mean estimation. More precisely, we desire a sub-
routine RobMean by which assuming only Ep X? < oo,
for any choice of § € (0,1), we can guarantee that

-1
P {|RobMean[X;] —Ep X'| > co'y/ l+log(5)} <4,
n

(5)

where ¢ > 0 is a constant depending only on the
nature of RobMean, ¢’ is any quantity bounded as
o’ < /Ep(X’)?2, and probability is taken with respect
to the random draw of X,,. The final estimator of in-

terest, then, using 2n observations in total, will simply
be defined as

~ 1~
Co = EC; (X, Ya], (6)
where C' [X,,,Y,] := RobMean [X/].

This general procedure is summarized in Algorithm 1.

Deriving deviation bounds Before proceeding any
further, the first question to answer is whether or not
such a procedure RobMean can be constructed. In the
following lemma, we summarize the robust mean es-
timation performance guarantees available for these
estimators.

Lemma 1 (Procedures for good X,, event). Imple-
menting RobMean using the following well-known pro-
cedures satisfies (5) at confidence level §, as follows
(details in appendix).

e Median of means (Lerasle and Oliveira, 2011):
with ¢ < 2y/e and o’ = y/varp X', whenever k =
og(d~ 1] and n > 2(1 +log(671)).

e M-estimation (Catoni, 2012): ¢ < 2 and o' =
V/varp X'/, whenever n > 4log(671).
e Trimmed mean (Lugosi and Mendelson, 2019):

with ¢ < V2 and ¢’ = \/varp X', whenever n >
(16/3) log(861).
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The preceding lemma settles any issues regarding a
sufficiently accurate sub-routine RobMean under poten-
tially heavy-tailed data. For one concrete example, the
median of means sub-routine amounts to splitting the
index as [n] = U;?:le and taking the median of each
subset mean, i.e.,

med{XW), .. (8)}, where X) =

|ZX

i€Z;

Next, note that o’ depends on ‘7(1, and thus the second
sample Y,,. To remove this dependence, the following
lemma will be useful.

Lemma 2 (Good Y,, event). Let the observations
Y,, sorted in increasing order be denoted by Y, =
{Y Yiemy, such that Yi" <Yy < ... <Y . It follows
that with probability no less than 1 — 2 exp(—3na/14)
over the draw of Y,, we have that

Voo < }/( n < Va/2~

—a)
ertlng O'gé = EP XQI{XEVQQ} — (Ep XI{XZVQM})Q’ a
straightforward argument (detailed derivation in ap-
pendix) yields high-probability bounds on the two
terms of interest, taking the form

0 Ca = Be X Iysp,| = |G~ Ep X'
1 +log(0
< oy L1807
n
(7)
VaseA [log(6—1)

’EPX (I{sza} *I{Xzf/a})‘ =2y

(8)
Taking (7) and (8) together, applied to (3), we have
essentially proved the following result.
Theorem 3. For any confidence level § € (0,1) and
risk level 0 < o < 1/2, assume that A1(vy,\) holds
and n > log(6~ 1) max{1/(2v)%,14/(3a)}. Letting C’,
be the output of Algorithm 1, and C., = 6&/a, with
probability no less than 1 — 56, we have

A -1
< L (caa Voo ) L+ log(d ),
V2y
where ¢ depends only on the choice of RobMean (specified
in Lemma 1).

., —C,

n

Proof of Theorem 3. To prove this result simply in-
volves sorting out the key facts presented above. The
“good” event in the theorem statement is that in which
both (7) and (8) hold together. This condition can fail
if even one of the following bad events takes place:

1:={(5) fails},
{7~ Val > VgD @m) )

& = {event of Lemma 2 fails} ,

First of all, using Lemma 1 and the deviation bounds
given by (5), we have

P(&) =Ey, P[&|Y,] <0

Next, by Lemma 2, if n > 14log(6~1)/(3a), then we
have P(&2) < 26. Finally, from the derivation of (8),
whenever n > log(671)/(27?), we have P(&3) < 26. If
none of these three bad events take place, the good
event holds, i.e., (61N & NE&;) C {(7) and (8)}. A
union bound implies that this holds with probability
no less than 1 — 44, and via the original decomposition
(3), we have

( /1+log O4/2/\ /10g >

which implies the desired result.

]c

2.2.1 Comparison of estimation error bounds

From the technical literature on CVaR estimation under
potentially heavy-tailed data, the work of Kolla et al.
(2019), Prashanth et al. (2019), and Kagrecha et al.
(2020) are most closely related to our work, and in
this remark we compare our results with theirs. To
align our setup with theirs, we assume access to only n
data points in total, meaning the two data sets used in
Theorem 3 will now be X, /5 and Y}, 5, for simplicity
assuming that n is even. Furthermore, we convert our
high-confidence interval into an exponential tail bound,
which is the form taken by the main results in the cited
works. First, given just n observations, our Theorem 3
implies that

P {|c.

with Bours := coq +

e} < 5exp (~n(ac/Bows)?)
V2Vaph
v

The estimator éa considered by Prashanth et al. (2019,
Thm. 4.1), on the other hand, yields bounds of the

form
P {’ oA 5} < 8exp (—n(ae/B’)Z) ,

where the factor B’ is simply left as a “distribution-
dependent factor.” Looking at their proof, in order to
obtain concentration of the VaR estimator, they also
effectively require a y-growth property and have mo-
ment dependence. Furthermore, their proof is rather
specialized to an estimator borrowed from Bubeck et al.
(2013), which does random truncation that is rather
unintuitive when taken outside the context of online
learning problems. Another closely related result pub-
lished very recently is due to Kagrecha et al. (2020).
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They consider a more natural estimator, which simply
truncates the data to | X;| < b before passing it to the
classical empirical CVaR estimator routine. While b is
a user-specified parameter, it must be taken larger than
a value which depends on the desired deviation level ¢.
In particular, since it must satisfy b = Q(Ep X?/(ag)),
when ¢ is sufficiently small, one ends up with bounds
of the form

P{‘éa—ca

> 5} < 6exp (—na’s*/B"),

with B” := 616 (Ep X)°.

Their results are obtained using very weak assump-
tions, the finiteness of Ep X? is all that is required.
The price paid for this generality is clearly the poor
dependence on «, e, and the moments. In contrast,
under mild additional assumptions on the behaviour of
the distribution function around V,, (namely Al(y, \)),
we obtain much stronger results, using a very simple
proof strategy, which can be readily applied to a wide
collection of estimation routines.

2.3 CVaR-driven learning algorithms

We now proceed to our main point of interest, namely
learning algorithms which seek to minimize the CVaR of
the loss distribution, defined in (2), given only a sample
Z, = {Z,...,Z,}, independent copies of Z ~ P.
Computationally, it is convenient to introduce

falw,v; Z) ::v+$[L(w;Z)71)]+, (9)

defined for all w € W,v € R. Denote the expected
value denoted by F,(w,v) := Ep fo(w,v; Z), not to
be confused with Fp from the previous section. This
expectation has the useful property of being convex
and continuously differentiable in v, and being related
to the quantities C, (w) and V,,(w) through

min{ F, (w,v) : v € R} = F,(w, V,(w)) = Cy(w),

which holds for any choice of w € W (Rockafellar
and Uryasev, 2000, Thm. 1). This implies that if we
have some candidates (@w,v) such that F,(w,v) < e,
then C,(w) < Fo(w,v) < e. Furthermore, solv-
ing the joint problem is equivalent to solving the
two problems separately (Rockafellar and Uryasev,
2000, Thm. 2), meaning that F¥ = C%, where we
denote F} := inf{F,(w,v) : (w,v) € W x R}, C* :=
inf{Cy(w) : w € W}. When L(w; Z) is convex in w,
the function F, is jointly convex in its arguments, and
thus when W C R? is a convex set, convex optimization
techniques can in principle be brought to bear on the
problem.

Problems with robust objectives Recalling the
analysis of the previous section 2.2, we constructed
a procedure for obtaining sharp estimates of C,(w),
pointwise in w, under potentially heavy-tailed data. To
extend the procedure given by Algorithm 1 and (6) to
this setting, given an extra sample Z/,, compute

Cl(w; ZL) ==
CLIX = {L(w; Z}) i € [[n/2]]},
Y = {L(w; Z)) :nj2 <i<n}], (10)

and set Co(w) = C’,(w; Z,)/a. The most naive ap-
proach to this problem would be to replace the empiri-
cal mean with this robust estimator (10), namely any
algorithm implementing
@ € argmin C', (w; Z,,) /cv.
weWw
The statistical properties of such an w are naturally of
interest, but the computational task of actually obtain-
ing such a @ is highly non-trivial; for example the work
of Brownlees et al. (2015) consider a similar quantity in
the case of traditional risk minimization, but algorith-
mic considerations are left completely abstract. Indeed,
even if L(-, z) is convex and smooth for all z € Z, we
have no guarantee that C’,(-; Z,) will be. The exact
same issues hold if we tackle a robustified version of
the joint optimization task, namely
(w,7) € argmin RobMean [{fu(w,v;Z;) : i € [n]}],
(w,v)EWXR
where RobMean is based on any procedure given in
Lemma 1. All the robust estimates given by RobMean
(or Algorithm 1) are easy to compute for any (w,v)
or w, but are hard to minimize. It thus seems wiser
to use such sub-routines for validation, i.e., to check
that a particular candidate @ actually gets close to
minimizing C, (-) with sufficiently high confidence.

A practical approach under heavy tails With
this intuition in mind, we consider a simple divide-
and-conquer procedure with independent sub-processes
running stochastic gradient descent for the joint opti-
mization of F,,, and a final robust validation step to
determine a final candidate (Holland, 2021b,a). This
is summarized in Algorithm 2, and we unpack the
notation below.

Most of the steps in Algorithm 2 are transparent; it
just remains to provide a more precise definition of
the SGD sequence referred to in the third line. Given
a sequence of observations (Z1,...,Z;) of arbitrary
length ¢t > 1, the core update is traditional projected
stochastic sub-gradient descent:

({Dt;ﬁt) -
My jo,v) (Wi—1,0e-1) — Bt GaWe—1,V¢-1; Z¢)] (11)



Learning with risk-averse feedback under potentially heavy tails

Algorithm 2 Fast gradient-based CVaR learning with robust verification.

/
n’

inputs: samples Z,, and Z
k

Split | J Z; = [n], with |Z;| > [n/k], and Z; N T, = § when j # I.

Jj=1

initial value (wp, Vp), parameters o € (0,1), 0 <V < o0, 1 <k <n.

> Disjoint partition.

For each j € [k], set (w(j>,@(j>) to the mean of sequence SGD(wy, vo; Zz,;, W x [0, V]).

Compute = argmin C", (w@; Z;)
JElK]
return @™,

> Robust validation via (10), based on Algorithm 1.

The update direction here is Gy(w,v;Z) €
Ofo(w,v; Z), namely any vector from the sub-
differential of the map (w,v) — fo(w,v; Z). The oper-
ator II denotes projection in the /5 norm, and 3; > 0
is a step-size parameter. The recursive definition in
(11) bottoms out at t = 1, and is initialized by some
pre-defined (wy, Up), passed to the algorithm as an in-
put. The sequence SGD(wy, vo; Zz,, W x [0, V]) referred
to in Algorithm 2 is simply the sequence of iterates
generated by (11) using data {Z; : t € Z;}; since all Z,
are independent copies of Z ~ P, the order does not
matter. The key technical assumptions on the data are
summarized below:

A2. Let Al(y,A) hold for X = L(w;Z) > 0, for
any choice of w € W. Let W be convex, have
a diameter in ¢, norm of 0 < A < oo. Let
Fo = max{o,(w) : w € W} < co and V,, =
max{V,(w) : w € W} < co. Let L(w;z) be a
convex, differentiable function of w for all z € Z,
and let Ep |[VL(w; Z2)||? < A2 for all w € W.

Note o, (w) extends o, from section 2.2 to the case of
X = L(w; Z).

The preceding assumptions clearly allow for poten-
tially heavy-tailed losses and gradients. As a concrete
illustration of this, consider linear regression using
squared error and a linear model, so that L(w;Z) =
((w —w*, X) +¢€)?, where X is a d-dimensional random
vector, and e is additive noise. Convexity and differen-
tiability as required by A2 are essentially immediate.
As for the moment bound, noting that VL(w;Z) =
2((w—w*, X)4€)X, basic algebra and an application of
Cauchy-Schwarz gives us Ep | VL(w; Z)||? < A%, where

AL < 2¢/A2Ep | X[[* + Ep [ X[ + 2A Ep [¢]| X]°.
(12)

In particular, the random noise € and inputs X need
not be bounded, nor are they required to have finite
higher-order moments. As such, A2 can be satisfied
on problems of practical interest when the “feedback”
(CVaR loss and sub-gradients) is potentially heavy-
tailed. Under this setting, the following performance
guarantee holds.

Theorem 4. Under assumption A2, run Algorithm
2 with parameters 0 < o < 1/2, V. = V,, k =
[log(2[log(671)]1071)] for arbitrary choice of § € (0,1),
and fix the step sizes in (11) to
A2+ 1V,
(AL + DIZ;]
for each sub-process, indexed by j € [k].
Cal@) - C <

2 VoA ~1
V2 T+ /2 1+ log(56—1)
a V2y n

. e\/k(/\% F1)(AZ £ T2)

(&% n

By =«

We have

with probability no less than 1 — 30, where constant ¢
corresponds to the relevant constant from Lemma 1.

Remark 5 (Discussion of related technical work). As far
as technical conditions go, the convexity and bounded
diameter assumptions align with Soma and Yoshida
(2020, Thm. 3.6). The main difference is that they as-
sume bounded and Lipschitz-continuous losses, which
precludes both heavy-tailed losses and gradients. Al-
gorithmically, they run a single averaged SGD process
using a surrogate objective, for multiple passes over
the data, and further assuming the losses are smooth,
obtain error bounds in expectation. In contrast, as
discussed above, we allow both losses and gradients
to be heavy-tailed, we do not require the gradients
to be Lipschitz. Our high-probability guarantees are
obtained for a procedure which runs multiple SGD
processes in parallel, each of which takes only a single
pass over the subset of data allocated to it. Finally,
we remark that since their procedure does not actually
make any direct estimates of V,,, they do not use an
assumption like A1. Note that it is certainly possible
to modify our Algorithm 2 such that this assumption is
not needed, by doing the final validation step based on
an estimate of F, instead of C,. This would remove
the need for Al, and instead result in bounds depend-
ing on the second moment of f,(w,v; Z). The formal
analysis goes through in a perfectly analogous fashion
to our proof of Theorem 4 here. |
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Figure 2: Average and standard deviation of |6a — C4| over @ and n. Left: fixed a = 0.05, increasing n. Right:
fixed n = 10000, increasing «. All methods were essentially the same for the folded-Normal case, given in the

appendix. Top: log-Normal. Bottom: Pareto.

3 EMPIRICAL ANALYSIS

In this section, we start with a numerical investigation
of the efficiency of pointwise CVaR estimation enabled
by the analysis of section 2.2, using concrete imple-
mentations of Algorithm 1, comparing efficient robust
estimators against more naive benchmarks. This is
followed by an empirical analysis of the performance
of CVaR-driven learning algorithms, including Algo-
rithm 2 studied in section 2.3, under an environment
in which the nature of the feedback provided to the
learner is controlled to range between sub-Gaussian
and heavy-tailed.

Accuracy of pointwise estimates First, we con-
sider “static” tests looking at the accuracy of CVaR
estimators newly captured by the analysis of section 2.2.
Recalling the notation of section 2.2, given samples X,
and Y, all sampled independently from X ~ P, the
objective here is to investigate the deviations |C,, —Cy|,
in particular how these deviations change for different
estimators C,, distributions P, sample sizes n, and
risk levels . We consider folded-Normal, log-Normal,
and Pareto distributions for P. We study the classi-
cal empirical estimate (denoted Empirical), random
truncation (Prashanth et al., 2019) (R-Trunc), and Al-
gorithm 1 implemented using median-of-means (MoM)
and Catoni-type M-estimation (Cat). Further details

of the experimental setup are relegated to the sup-
plementary materials.! Key results are summarized
in Figure 2, where averages and standard deviations
of these deviations over many trials are given. As a
general take-away, we see that using a slightly more
sophisticated estimation procedure can lead to clear im-
provements in estimation in a potentially heavy-tailed
setting. The concrete procedure which tended to per-
form best overall (Cat-12) is a procedure captured by
the theory of section 2.2.

Application to learning algorithms Next, we
conduct “dynamic” tests which look at applications
of Algorithm 2 in section 2.3 to machine learning tasks.
As a natural first application, we consider linear regres-
sion in the context of CVaR-based learning. That is,
random data are generated as pairs Z = (X,Y) ~ P
following the relation Y = (w*, X) + E, where FE is
a zero-mean random noise term independent of X,
and w* € W is some pre-fixed vector, and the goal
is to minimize C,(-) induced by two losses, namely
squared error and absolute deviations, respectively
amounting to L(w;Z) = ((w — w*, X) — E)?/2 and
L(w; Z) = [{w — w*, X) — E|. The learner does not
know w* and cannot observe E directly, all it has is
access to X and Y, and thus the final loss values (and

!Software repository:
https://github.com/feedbackward/robrisk
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Figure 3: Average and standard deviation of excess CVaR for squared error (left-most plots) and absolute error
(right-most plots). Top: Normal. Middle: log-Normal. Bottom: Pareto.

resulting partial derivatives, etc.). We consider Normal,
log-Normal, and Pareto distributions for the noise E.
We compare Algorithm 2 (denoted RV-SGDAve) with
three well-known baseline methods. As a classic base-
line, we run batch gradient descent empirical CVaR-risk
minimization (ERM-GD). As modern alternatives, we run
robust gradient descent using M-estimation (Holland
and Tkeda, 2019) (RGD-M) and median-of-means (Chen
et al., 2017; Prasad et al., 2018) RGD-MoM. Additional
details are given in the supplementary materials.

Representative results are given in Figure 3. While the
sample splitting leads to a small hit in performance
under the Normal case, as a general take-away, we
see that the proposed algorithm offers an appealing
improvement in efficiency, realizing superior CVaR-
risk using far less operations. Furthermore, this is
robust both to the underlying distribution, and the

nature of the underlying loss. That is, even when the
Ap-Lipschitz assumption on the loss breaks down (left-
hand side of Figure 3), we see competitive behaviour.

4 FUTURE DIRECTIONS

One appealing future direction is to go beyond CVaR to
more diverse classes of feedback, such as general coher-
ent risks under potentially heavy-tailed data, or even
extensions to completely distinct performance classes
that in some sense mimic human loss/reward systems
(e.g., cumulative prospect theory). Initial explorations
have been made by Bhat and Prashanth (2020), but
the basic theory and algorithmic analysis are still far
from complete. Other notions of conditional expecta-
tion, which do not necessarily depend on quantiles, is
another natural approach of interest.
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